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Abstract: We present an elementary derivation of the “intrinsic” symmetry groups for links
of 8 or fewer crossings. We show that standard invariants are enough to rule out all potential
symmetries outside the symmetry group of the group of the link for all but one of these links
and present explicit isotopies generating the symmetry group for every link.
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1. Introduction

The symmetry group of a link L is defined to be the mapping class group MCG(L) (or Sym(L)) of
the pair (S3, L). The study of this symmetry group is a classical topic in knot theory, and these groups
have now been computed for prime knots and links in several ways. Kodama and Sakuma [1] used a
method in Bonahon and Siebenmann [2] to compute these groups for all but three of the knots of 10 and
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fewer crossings in 1992. In the same year, Weeks and Henry used the program SnapPea to compute the
symmetry groups for hyperbolic knots and links of 9 and fewer crossings [3]. These efforts followed
earlier tabulations of symmetry groups by Boileau and Zimmermann [4], who found symmetry groups
for non-elliptic Montesinos links with 11 or fewer crossings.

We consider a different group of symmetries of a link L given by the image of the natural
homomorphism

π : Sym(L) = MCG(S3, L)→ MCG(S3)×MCG(L)

Since these symmetries record an action on L itself (and only record the orientation of the ambient S3),
we will call them “intrinsic” symmetries of L to distinguish them from the standard symmetry group
and denote them as Σ(L), cf. Definition 4.5. Following Whitten [5], we denote all possible intrinsic
symmetries as Γ(L) = MCG(S3)×MCG(L); see Definition 4.1.

Unlike the elements in the Sym group, which may be somewhat difficult to describe explicitly, each
of the elements in Σ(L) corresponds to an isotopy of L which may exchange the position of some
components, which may reverse the orientation of the ambient space—this mirrors any diagram of
L, and which may reverse orientations of some components. Neither the Boileau–Zimmerman or the
Henry–Weeks-SnapPea method gives much insight into what those isotopies might look like. In
addition, it is worth noting that SnapPea is a large and complicated computer program, and while
its results are accurate for the links in our table, it is always worthwhile to have alternate proofs for
results that depend essentially on nontrivial computer calculations.

In this spirit, the present paper presents an elementary and explicit derivation of the Σ(L) groups
for all links of 8 and fewer crossings. We rule out certain isotopies using elementary and polynomial
invariants to provide an upper bound on the size of Σ(L) for each link in our table and then present
explicit isotopies generating Σ(L) starting with the configurations of the link in Cerf’s table of alternating
oriented links [6] or (for nonalternating links) Doll and Hoste’s table [7]. For two links in our table, 72

6

and 82
13, an additional construction is needed to rule out certain “component exchange” symmetries using

satellites and the Jones polynomial. This shows that the polynomial invariants are powerful enough to
compute Σ(L) for these links. For one link in our table, 83

5, even this construction does not rule out all
the isotopies outside the symmetry group and we must fall back on the hyperbolic structure of the link
to compute the symmetry group. We give the first comprehensive list of Σ(L) groups that we know of,
though Hillman [8] provides examples of various two-component links (including some split links) with
symmetry groups equal to 12 different subgroups of Γ2.

Why are the Σ(L) groups interesting? First, it is often more natural to consider the restricted group
Σ(L) than the generally larger Sym(L). Sakuma [9] has shown that a knot K has a finite symmetry
group if and only if K is a hyperbolic knot, a torus knot, or a cable of a torus knot. Thus for many [10]
knots, the group Sym(L) contains infinitely many elements which act nontrivially on the complement of
L but fix the link itself. We ignore such elements, which lie in the kernel of the natural homomorphism
π : MCG(S3, L) → MCG(S3) ×MCG(L). In fact, even when MCG(S3, L) is finite, we give various
examples below where π has nontrivial kernel. It is often difficult to describe an element of Sym(L) in
kerπ explicitly, but it is always simple to understand the exact meaning of the statement γ ∈ Σ(L).

As an application, if one is interested in classifying knots and links up to oriented, labeled ambient
isotopy, it is important to know the symmetry group Σ(L) for each prime link type L, since links related
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by an element in Γ(L) outside Σ(L) are not (oriented, labeled) ambient isotopic. The number of different
links related by an element of Γ(L) to a given link of prime link type L is given by the number of cosets
of Σ(L) in Γ(L). If we count these cosets instead of prime link types, the number of actual knots and
link types of a given crossing number is actually quite a bit larger than the usual table of prime knot and
link types suggests. (See Table 1.)

Table 1. This table shows the number of distinct isotopy classes of links by crossing number
and number of components in the link. The columns labeled “n-U” count link types for
n-component links in the usual way, where the components are unlabeled and unoriented,
and the mirror image of a given link is considered to have the same link type, regardless of
whether the two are ambient isotopic. The columns labeled “n-OS” give finer information,
considering two n-component links to have the same type if and only if they are oriented,
labeled ambient isotopic. As we can see, this stricter definition leads to a much larger
collection of link types.

Number of link types by components and crossings
Crossings

1-U 1-OS 2-U 2-OS 3-U 3-OS 4-U 4-OS All Links-U All Links-OS

2 1 2 1 2
3 1 2
4 1 1 1 4 1 4
5 2 4 1 2 1 2
6 3 5 3 10 3 18 6 44
7 7 14 8 38 1 8 9 40
8 21 38 16 78 10 200 3 120 29 398

Second, Σ(L) seems likely to be eventually relevant in applications. For instance, when studying
DNA links, each loop of the link generally has a unique sequence of base pairs which provide an
orientation and an unambiguous labeling of each component of the link. In such a case, the question
of whether two components in a link can be interchanged may prove to be of real significance.

Last, we are interested in the topic of tabulating composite knots and links. Since the connect sum of
different symmetry versions of the same knot type can produce different knots (such as the square knot,
which is the connect sum of a trefoil and its mirror image, and the granny knot, which is the connect
sum of two trefoils with the same handedness), keeping track of the action of Σ(L) is a crucial element
in this calculation. We treat this topic in a forthcoming manuscript [11].

2. The Symmetry and Intrinsic Symmetry Groups

As we will describe below, the group MCG(S3)×MCG(L) was first studied by Whitten in 1969 [5],
following ideas of Fox. They denoted this group Γ(L) or Γµ, where µ is the number of components of L.
We can write this group as a semidirect product of Z2 groups encoding the orientation of each component
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of the link L with the permutation group Sµ exchanging components of L (cf. Definition 4.1), finally
crossed with another Z2 recording the orientation of S3:

Γ(L) = Γµ = Z2 × (Zµ
2 o Sµ)

It is clear that an element γ = (ε0, ε1, . . . , εµ, p) ∈ Γ(L) acts on L to produce a new link Lγ . If ε0 = +1,
then Lγ and L are the same as sets (but the components of L have been renumbered and reoriented),
while if ε0 = −1 the new link Lγ is the mirror image of L (again with renumbering and reorientation).
We can then define the symmetry subgroup Σ(L) by

γ ∈ Σ(L) ⇐⇒ there is an isotopy from L to Lγ preserving component numbering and orientation.

For knots, Σ(L) < Γ1 = Z2 × Z2. Here the five subgroups of Z2 × Z2 correspond to the standard
descriptions of the possible symmetries for a knot, as shown in Table 2.

Table 2. The five standard symmetry types for knots correspond to the five subgroups of the
Whitten group Γ1.

Symmetry subgroup of Γ1 Name Example(s)

{(1, 1)} No symmetry 932, 933

{(1, 1), (−1, 1)} (+) amphichiral symmetry 12427

{(1, 1), (1,−1)} invertible 1 symmetry 31

{(1, 1), (−1,−1)} (−) amphichiral 2 symmetry 817

Γ1 full symmetry 41

1 Conway [12] calls this reversible symmetry; 2 Conway [12] calls this invertible symmetry.

For links, the situation is more interesting, as the group Γ(L) is more complicated. In the case of
two-component links, the group Γ2 = Z2×(Z2×Z2oS2) is a non-Abelian 16 element group isomorphic
to Z2 ×D4. The various subgroups of Γ2 do not all have standard names, but we will call a link purely
invertible if (1,−1, . . . ,−1, e) ∈ Σ(L), and say that components (i, j) have a pure exchange symmetry
if (1, 1, . . . , 1, (ij)) ∈ Σ(L). For two-component links, we will say that L has pure exchange symmetry
if its two components have that symmetry. The question of which links have this symmetry goes back
at least to Fox’s 1962 problem list in knot theory, cf. Problem 11 in [13] and [14]. For example, 22

1 (the
Hopf link) has pure exchange symmetry while we will show that 72

4 does not.
We similarly focus on the pure invertibility symmetry: we show that 45 out of the 47 prime links with

8 crossings or less are purely invertible. The two exceptions are 63
2 (the Borromean rings) and 83

5; we
show that both of these are invertible using some nontrivial permutation, i.e., (1,−1,−1,−1, p) ∈ Σ(L)

for some p 6= e. (Whitten found examples of more complicated links which are not invertible even when
a nontrivial permutation is allowed [15].)

Increasing the number of components in a link greatly increases the number of possible types of
symmetry. Table 3 lists the number of subgroups of Γµ; each different subgroup represents a different
intrinsic symmetry group that a µ-component link might have. We note that if Σ(L) is the symmetry
subgroup of link L, then the symmetry subgroup of Lγ is the conjugate subgroup Σ(Lγ) = γΣ(L)γ−1.
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Therefore, it suffices to only examine the number of mutually nonconjugate subgroups of Γµ in order to
specify all of the different intrinsic symmetry groups. Table 3 also lists the number of conjugacy classes
of subgroups of Γµ, and the number of these which appear for prime links of 8 or fewer crossings.

Table 3. The number of subgroups of Γµ; each one represents a different intrinsic symmetry
group possible for a µ-component link. The number of nonconjugate symmetries (the fourth
column) is given by the number of conjugacy classes of subgroups. This article computes
the symmetry group for all prime links of 8 or fewer crossings; the last column summarizes
our results.

# subgroups nonconjugate ones
µ |Γµ| # subgroups

(up to conjugacy) for≤ 8 crossings

1 4 5 5 3
2 16 35 27 5
3 96 420 131 7
4 768 9,417 994 3
5 7,680 270,131 6,382 0

3. Methods and Notation

We started from the excellent table of oriented alternating links provided by Cerf [6]. Cerf considers
the effect of reversing orientations of components of her links, but does not compute the effect of
permutations. Our more detailed calculation does not depend on this information, so our paper also
provides a check on Cerf’s symmetry calculations. For alternating links, we have kept component
numbers and orientations consistent with her table. For non-alternating links, we use component
numbers and orientations consistent with those of Doll and Hoste [7]. Like Cerf, Doll and Hoste
considered the effect of reversing the orientation of individual components of these links, but not the
effect of permutations of components. We note that these component numbers and orientations are not
consistent with those used in SnapPea. The component numbers and orientations in SnapPea seem
to have been chosen arbitrarily sometime in the 1980s by Joe Christy when he digitized the Rolfsen
table [16].

To check our results against the SnapPea calculations, we used the Python interface provided by
SnapPy [17] to compute the image of π : MCG(S3, L) → MCG(S3) × MCG(L). The results
agreed [18] with the tables we give below, meaning that our results serve as an independent verification
of SnapPea’s accuracy for all of these links except 83

5 (which uses SnapPea to rule out a single
potential symmetry).

Finally, some notational comments: we henceforth use the term ‘link’ to refer to a prime,
multicomponent link unless otherwise indicated. We use the Rolfsen notation for links but provide
the Thistlethwaite notation as well in our summary tables (Tables 4, 5, and 6).
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Table 4. The Whitten symmetry group for each two-component link.

Link Σ Group Link Σ Group Link Σ Group

22
1 (2a1) Σ8,2 72

5 (7a2) Σ2,1 82
7 (8a8) Σ4,1

42
1 (4a1) Σ4,1 72

6 (7a1) Σ4,2 82
8 (8a9) Σ8,2

52
1 (5a1) Σ8,1 72

7 (7n1) Σ2,1 82
9 (8a3) Σ2,1

62
1 (6a3) Σ4,1 72

8 (7n2) Σ4,2 82
10 (8a2) Σ4,2

62
2 (6a2) Σ8,2 82

1 (8a14) Σ4,1 82
11 (8a5) Σ2,1

62
3 (6a1) Σ4,1 82

2 (8a12) Σ4,1 82
12 (8a4) Σ4,2

72
1 (7a6) Σ4,1 82

3 (8a11) Σ4,1 82
13 (8a1) Σ4,2

72
2 (7a5) Σ4,1 82

4 (8a13) Σ4,1 82
14 (8a7) Σ2,1

72
3 (7a4) Σ8,1 82

5 (8a10) Σ4,1 82
15 (8n2) Σ4,2

72
4 (7a3) Σ4,2 82

6 (8a6) Σ4,1 82
16 (8n1) Σ2,1

Table 5. Three-component link symmetry groups, by crossing number. The first three groups
are all conjugate to each other; also, all 12 element groups above are conjugate to each other.

Link(s) |Σ(L)| Σ isomorphic to Generators

831 (8a18), 838 (8n4) 4 Z2 × Z2
∼= D2 PI, (1, 1,−1,−1, (23))

832 (8a17), 837 (8n3) 4 Z2 × Z2
∼= D2 PI, (1, 1, 1, 1, (23))

8310 (8n6) 4 Z2 × Z2
∼= D2 PI, (1, 1, 1, 1, (12))

834 (8a20) 4 Z2 × Z2
∼= D2 PI, (−1, 1, 1, 1, (12))

835 (8a16) 4 Z2 × Z2
∼= D2 (1, 1,−1,−1, e), (1,−1,−1,−1, (23))

836 (8a19) 8 (Z2)
3 PI, (−1, 1,−1,−1, e), (1, 1,−1,−1, (23))

839 (8n5) 8 (Z2)
3 PI, (1, 1, 1, 1, (23)), (1, 1,−1,−1, e)

631 (6a5), 833 (8a15) 12 D6 PI, PE
633 (6n1) 12 D6 (1, 1, 1, 1, (12)), (1,−1, 1, 1, (123))

731 (7a7) 12 D6 (1, 1, 1, 1, (23)), (1, 1,−1, 1, (123))

632 (6a4) 48 Z2 ×
(
(Z2)

2 o S3
) (−1, 1, 1, 1, e) (1, 1, 1, 1, (123))

(1,−1, 1, 1, (12))

Table 6. Four-component link symmetry groups, by crossing number.

Link(s) |Σ(L)| Σ(L) isomorphic to Generators

84
1 (8a21) 16 Z2 ×D4 PI, (1, 1, 1, 1, 1, (23)), (1, 1, 1, 1, 1, (1243))

84
2 (8n7) 16 D8 (1, 1, 1, 1, 1, (13)(24)), (1, 1, 1,−1, 1, (1243))

84
3 (8n8) 32 Z2 × Z2 ×D4

PI, (−1, 1, 1, 1, 1, (23)),

(−1, 1, 1, 1, 1, (1243)), (−1,−1, 1, 1,−1, e)
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4. The Whitten Group

We begin by giving the details of our construction of the Whitten group Γ(L) and the symmetry
group Σ(L). Consider operations on an oriented, labeled link L with µ components. We may reverse
the orientation of any of the components of L or permute the components of L by any element of
the permutation group Sµ. However, these operations must interact with each as well: if we reverse
component 3 and exchange components 3 and 5, we must decide whether the orientation is reversed
before or after the permutation. Further, we can reverse the orientation on the ambient S3 as well, a
process which is clearly unaffected by the permutation. To formalize our choices, we follow [5] to
introduce the Whitten group of a µ-component link.

Definition 4.1 Consider the homomorphism given by

ω : Sµ 7−→ Aut(Zµ+1
2 ), p 7−→ ω(p)

where ω(p) is defined as
ω(p)(ε0, ε1, ε2...εµ) = (ε0, εp(1), εp(2)...εp(µ))

For γ = (ε0, ε1, ...εµ, p), and γ′ = (ε′0, ε
′
1, ...ε

′
µ, q) ∈ Zµ+1

2 oω Sµ, we define the Whitten group Γµ as the
semidirect product Γµ = Zµ+1

2 oω Sµ with the group operation

γ ∗ γ′ = (ε0, ε1, ε2...εµ, p) ∗ (ε′0, ε
′
1, ε
′
2...ε

′
µ, q)

= ((ε0, ε1, ε2...εµ) · ω(p)(ε′0, ε
′
1, ε
′
2...ε

′
µ), qp)

= (ε0ε
′
0, ε1ε

′
p(1), ε2ε

′
p(2)...εµε

′
p(µ), qp)

We will also use the notation Γ(L) to refer to the Whitten group Γµ.

4.1. Link Operations

Given a link L consisting of µ oriented knots in S3, we may order the knots and write

L = K1 ∪K2 ∪ · · · ∪Kµ

Consider the following operations on L:

1. Permuting the Ki.
2. Reversing the orientation of any set of Ki’s
3. Reversing the orientation on S3 (mirroring L).

Let γ be a combination of any of the moves (1), (2), or (3). We think of γ = (ε0, ε1, ...εµ, p) as an element
of the set Zµ+1

2 × Sµ in the following way. Let

ε0 =

−1, if γ mirrors L

+1, if γ does not mirror L

and

εi =

−1, if γ reverses the orientation of Kp(i)

+1, if γ does not reverse the orientation of Kp(i)
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Lastly, let p ∈ Sµ be the permutation of the Ki associated to γ. To be explicitly clear, permutation p
permutes the labels of the components; the component originally labeled i will be labeled p(i) after the
action of γ.

For each element, γ in Zµ+1
2 × Sµ, we define

Lγ = γ(L) = ε1K
(∗)
p(1) ∪ ε2K

(∗)
p(2) ∪ · · · ∪ εµK

(∗)
p(µ) =

µ⋃
i=1

εiK
(∗)
p(i) (1)

where −Ki is Ki with orientation reversed, K∗i is the mirror image of Ki and the (∗) appears above if
and only if ε0 = −1. Note that the ith component of γ(L) is εiK

(∗)
p(i) the possibly reversed or mirrored

p(i)th component of L. Since we are applying εi instead of εp(i) to Kp(i) we are taking the convention of
first permuting and then reversing the appropriate components.

Example 4.2 Let L = K1 ∪K2 ∪K3 and γ = (1, 1,−1, 1, (123)). Then, γ(L) = K2 ∪ −K3 ∪K1.

Example 4.3 Let L = K1 ∪ K2 ∪ K3 ∪ K4 and γ = (−1, 1, 1,−1,−1, (14)(23)). Then, γ(L) =

(K∗4 ∪ K∗3 ∪ −K∗2 ∪ −K∗1). Since we have reversed the orientation on S3, note that γ(L) will be the
mirror image of L as well.

We now confirm that this operation defines a group action of the Whitten group Γ(L) on the set of
links obtained from L by such transformations.

Proposition 4.4 The Whitten group Γ(L) is isomorphic to the group MCG(S3)×MCG(L).

We know that L is a disjoint union of µ copies of S1 denoted L = K1t· · ·tKµ. Further, the mapping
class groups of S1 and S3 are both Z2, where the elements ±1 correspond to orientation preserving and
reversing diffeomorphisms of S1 and S3. In general, the mapping class group of µ disjoint copies of
a space is the semidirect product of the individual mapping class groups with the permutation group
Sµ. This means that MCG(L) = (Z2)

µ o Sµ and the Whitten group Γ(L) has a bijective map to
MCG(S3)×MCG(L).

It remains to show that the group operation ∗ in the Whitten group maps to the group operation
(composition of maps) in MCG(S3) × MCG(L). To do so, we introduce some notation. Let
γ = (ε0, ε1, ...εµ, p) and γ′ = (ε′0, ε

′
1, ...ε

′
µ, q). We must show

Lγ∗γ
′
= (γ ◦ γ′)(L) = γ(γ′(L))

where γ ∗ γ′ is the operation of the Whitten Group, Γµ.
Then,

γ′(L) = γ′

(
µ⋃
i=1

Ki

)
=

µ⋃
i=1

ε′iKq(i) =

µ⋃
i=1

Xi

where Xi denotes the i-th component ε′iKq(i) of γ′(L).

γ(γ′(L)) = γ

(
µ⋃
i=1

ε′iKq(i)

)
= γ

(
µ⋃
i=1

Xi

)
=

µ⋃
j=1

εiXp(i)
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Note that Xp(i) = ε′p(i)Kq(p(i)), which implies

γ(γ′(L)) =

µ⋃
i=1

εi(ε
′
p(i)Kq(p(i)))

Now, γ ∗ γ′ = (ε0ε
′
0, ε1ε

′
p(1), ε2ε

′
p(2), . . . , εµε

′
p(µ), qp) and acts on L as

Lγ∗γ
′
= ε1ε

′
p(1)Kqp(1) ∪ ε2ε

′
p(2)Kqp(2) ∪ . . . ∪ εµε

′
p(µ)Kqp(µ)

Lγ∗γ
′
=

µ⋃
i=1

εp(i)(ε
′
iKqp(i)) = γ(γ′(L))

We have dropped the notation for mirroring throughout the proof, because the two links clearly agree
in this regard. The element γ ∗ γ′ preserves the orientation of S3 if and only if ε0ε′0 = 1, i.e., if either
both or neither of γ and γ′ mirror L.

We can now define the subgroup of Γ(L) which corresponds to the symmetries of the link L.

Definition 4.5 Given a link, L and γ ∈ Γ(L), we say that L admits γ when there exists an isotopy
taking each component of L to the corresponding component of Lγ which respects the orientations of
the components. We define as the Whitten symmetry group of L,

Σ(L) := {γ ∈ Γ(L)| L admits γ}

The Whitten symmetry group Σ(L) is a subgroup of Γµ, and its left cosets represent the different
isotopy classes of links Lγ among all symmetries γ. By counting the number of cosets, we determine
the number of (labeled, oriented) isotopy classes of a particular prime link.

Next, we provide a few examples of symmetry subgroups. Recall that the first Whitten group
Γ1 = Z2 × Z2 has order four and that Γ2 = Z2 × (Z2 × Z2 o S2) is a non-Abelian 16 element group.

Example 4.6 Let L = 41, the figure eight knot. Since L ∼ −L ∼ L∗ ∼ −L∗, we have Σ(41) = Γ1,
so the figure eight knot has full symmetry. There is only one coset of Σ(41) and hence only one isotopy
class of 41 knots.

Example 4.7 Let L = 31, a trefoil knot. It is well known that L ∼ −L and L∗ ∼ −L∗, but
L � L∗, so we have Σ(31) = {(1, 1, e), (1,−1, e)}. This means that the two cosets of Σ(31) are
{(1, 1, e), (1,−1, e)} and {(−1,−1, e), (−1, 1, e)}, and there are two isotopy classes of 31 knots. A
trefoil knot is thus invertible.

Example 4.8 Let L = 72
5, whose components are an unknot K1 and a trefoil K2. In Section 7.2, we

determine all symmetry groups for two-component links, but we provide details for 72
5 here. Since the

components K1 and K2 are of different knot types, we conclude that no symmetry in Σ(72
5) can contain

the permutation (12). SinceK2 � K∗2 , we cannot mirror L, i.e., the first entry of γ ∈ Σ(72
5) cannot equal

−1. The linking number of L is nonzero, so we can rule out the symmetries (1,−1, 1, e) and (1, 1,−1, e)

by Lemma 7.6. Last, L is purely invertible, meaning isotopic to −L = −K1 ∪ −K2. Thus, Σ(L) is the
two element group Σ2,1 = {(1, 1, 1, e), (1,−1,−1, e)}. There are 8 cosets of this two element group in
the 16 element group Γ2, so there are 8 isotopy classes of 72

5 links.
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We now prove

Proposition 4.9 The Whitten symmetry group Σ(L) is the image of Sym(L) under the map
π : Sym(L) = MCG(S3, L)→ MCG(S3)×MCG(L) = Γ(L).

Given a map f :S3 → S3 ∈ MCG(S3, L), we see that if f is orientation-preserving on S3, then it
is homotopic to the identity on S3 since MCG(S3) = Z2. This homotopy yields an ambient isotopy
between L and f(L), proving that f |L = π(f) ∈ Σ(L). If f is orientation-reversing on S3, it is
homotopic to a standard reflection r. Composing the homotopy with r provides an ambient isotopy
between L and r(f(L)), proving that π(f) ∈ Σ(L). This shows π(Sym(L)) ⊂ Σ(L).

Now suppose g ∈ Σ(L). The isotopy from L to g(L) generates an orientation-preserving (since it is
homotopic to the identity) diffeomorphism f :S3 → S3 which either fixes L or takes L to rL. In the first
case, f ∈ Sym(L). In the second, the map rf ∈ Sym(L).

5. The Linking Matrix

For each link L, our overall strategy will be to explicitly give isotopies for certain elements of the
symmetry subgroup Σ(L), generate the subgroup containing those elements, and then rule out the
remainder of Γ(L) using invariants. For three- and four-component links, a great deal of information
about Σ(L) can usually be obtained by considering the collection of pairwise linking numbers of the
components of the link.

We recall a few definitions:

Definition 5.1 Given a n-component link, with components L1, L2, . . . , Ln, we let the n × n linking
matrix of L be the matrix Lk(L) so that Lk(L)ij = Lk(L)ji = Lk(Li, Lj) and Lk(L)ii = 0 where
Lk(Li, Lj) is the linking number of Li and Lj . We let Lk(n) denote the set of n × n symmetric,
integer-valued matrices with zeros on the diagonal.

The linking number can also be computed by counting the signed crossings of one knot over another.
Among minimal crossing number diagrams of alternating links, the following three numbers are also
useful link invariants:

Definition 5.2 The (overall) linking number `k(L) of L is half the sum of the entries of the linking
matrix. (This is half of the intercomponent signed crossings of L.) The writhe wr(L) is the sum of all
signed crossings of L. The self-writhe s(L) is the sum of the intracomponent signed crossings of L.
Clearly, wr = 2`k + s.

Murasugi and Thistlethwaite separately showed that writhe was an invariant of reduced alternating
link diagrams [19,20]. Since linking number is an invariant for all links, self-writhe is also an invariant
of reduced alternating diagrams. We will utilize this invariance to rule out certain symmetries of links,
cf. Lemma 7.6.

The Whitten group Γn acts on the set of linking matrices Lk(n). Further, for a given link L, the
symmetry subgroup Σ(L) must be a subgroup of the stabilizer of Lk(L) under this action. This means
that it is worthwhile for us to understand this action and make a classification of linking matrices
according to their orbit types. We start by writing down the action:
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Proposition 5.3 The action of the Whitten group Γn on n-component links gives rise to the following Γn

action on the set of n× n linking matrices Lk(n):

Lk(γ(L))ij = ε0εiεj Lk(L)p(i)p(j)

Equation (1) reminds us that

γ(L) = ε1K
(∗)
p(1) ∪ ε2K

(∗)
p(2) ∪ · · · ∪ εµK

(∗)
p(µ) =

µ⋃
i=1

εiK
(∗)
p(i)

This means that the ith component of γ(L) is component p(i) ofL. Recall that linking number is reversed
by changing the orientation of either curve or the ambient S3, which proves that we should multiply by
ε0εiεj as claimed.

Corollary 5.4 For γ = (ε0, ε1, ε2, ε3, p), let ε = ε0ε1ε2ε3. The action of Γ3 on Lk(3) can be written

Lk(γ(L))ij = εkεLk(L)p(i)p(j)

where {i, j, k} = {1, 2, 3} as sets.

In principle, this description of the action provides all the information one needs to compute orbits
and stabilizers for any given matrix (for instance, by computer). However, that brute force approach does
not yield much insight into the structure of the problem. We now develop enough theory to understand
the situation without computer assistance in the case of three-component links.

5.1. Linking Matrix for Three-Component Links

We first observe that there is a bijection between Lk(3) and Z3 given by 0 z3 z2

z3 0 z1

z2 z1 0

↔ (z1, z2, z3) (2)

We would like to understand the action of Γ3 on Lk(3) by reducing it to the natural action of the simpler
group (Z2)

3 o S3 on Z3.

Proposition 5.5 The action of Γ3 on Lk(3) descends to the natural action of (Z2)
3 o S3 on Z3 via the

surjective homomorphism Γ3 → (Z2)
3 o S3 defined by

f : (ε0, ε1, ε2, ε3, p) 7→ (ε1ε, ε2ε, ε3ε, p)

where
ε = ε0ε1ε2ε3

We first check that f(γ ∗ γ′) = f(γ) ∗ f(γ′). Now γ ∗ γ′ = (ε0ε
′
0, ε1ε

′
p(1), ε2ε

′
p(2)...εµε

′
p(µ), qp). This

means that

f(γ ∗ γ′) = (ε1ε
′
p(1)ε0ε

′
0ε1ε

′
p(1)ε2ε

′
p(2)ε3ε

′
p(3), . . . , qp)

= (ε1ε
′
p(1)εε

′, ε2ε
′
p(2)εε

′, ε3ε
′
p(3)εε

′, qp)
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since ε′p(1)ε
′
p(2)ε

′
p(3) = ε′1ε

′
2ε
′
3 for any permutation p. But

f(γ) ∗ f(γ′) = (ε1ε, . . . , ε3ε, p) ∗ (ε′1ε
′, . . . , ε′3ε

′, q)

= (ε1ε ε
′
p(1)ε

′, . . . , ε3ε ε
′
p(3)ε

′, qp)

This proves that f is a homomorphism. In order to show that f is surjective we will compute the
kernel. Consider the image (δ1, δ2, δ3, p) = f(ε0, ε1, ε2, ε3, p). Then the product δ1δ2δ3 = ε0 since
δ1δ2δ3 = ε1ε ε2ε ε3ε = ε30ε

4
1ε

4
2ε

4
3 = ε0.

Note that direct computation shows that the pre-image of a general element (δ1, δ2, δ3, p) is given by
(δ1δ2δ3, δ1, δ2, δ3, p) and (δ1δ2δ3,−δ1,−δ2,−δ3, p). So suppose that f(ε0, ε1, ε2, ε3, p) = (1, 1, 1, e). It is
clear that p = e and ε0 = 1. Since ε1ε = ε2ε = ε3ε = 1, if ε1 = 1, then ε2 = ε3 = 1 and γ = (1, 1, 1, 1, e).
Likewise, if ε1 = −1, then ε2 = ε3 = −1 as well, and γ = (1,−1,−1,−1, e).

Since Γ3 is a group of order 96 and the kernel of f has order 2, the image of f has order 48. Since the
target group (Z2)

3 o S3 also has order 48, we conclude that f is surjective, as claimed.
By Corollary 5.4, the Γ3 action on Lk(3) maps each entry zk = Lk(L)ij in the linking matrix to

εεk Lk(L)p(i)p(j) = εεk zp(k), i.e.,

γ ∗

 0 z3 z2

z3 0 z1

z2 z1 0

 =

 0 εε3 zp(3) εε2 zp(2)

εε3 zp(3) 0 εε1 zp(1)

εε2 zp(2) εε1 zp(1) 0

 (3)

By the definition of f , the natural action of (Z2)
3 o S3 on Z3 is

f(γ) ∗ (z1, z2, z3) = (ε1ε zp(1), ε2ε zp(2), ε3ε zp(3))

This triple corresponds precisely to the new linking matrix (3) obtained from the Γ3 action, so we have
shown the two actions correspond.

We are now in a position to classify 3×3 linking matrices according to their orbit types, and compute
their stabilizers in Γ3. The stabilizer of a linking matrix A ∈ Lk(3) as a subgroup of Γ(3) under the
group action of Proposition 5.3 is the pre-image under the homomorphism f of Proposition 5.5 of the
stabilizer of the corresponding triple (z1, z2, z3) ∈ Z3 under the natural action of (Z2)

3 o S3 on Z3.
Since the kernel of f has order 2, stabilizers in Γ3 are twice the size of the corresponding stabilizers in
(Z2)

3 o S3.
There are 10 orbit types of triples (z1, z2, z3) under this action. To list the orbit types, we write a

representative triple in terms of variables a, b, and c which are assumed to be integers with distinct
nonzero magnitudes. To list the stabilizers, we either give the group explicitly as a subgroup of (Z2)

3oS3

or provide a list of generators in the form 〈g1, g2, . . . , gn〉. One of these groups, S(a, a,−a), is more
complicated and is described below.

The group S(a, a,−a) is a 6 element group isomorphic to S3 (or D3) given by

S(a, a,−a) =

{
(1, 1, 1, e) (1, 1, 1, (12)) (1,−1,−1, (23))

(−1, 1,−1, (13)) (1,−1,−1, (123)) (−1, 1,−1, (132))

}
Using the pre-image formula in the proof of Proposition 5.5, it is easy to compute the stabilizer of a

given linking matrix in Γ3 directly from the table above; we simply conjugate by a permutation to bring
the corresponding triple into one of the forms above and then apply the pre-image formula.
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We can now draw some amusing conclusions which might not be obvious otherwise, such as:

Lemma 5.6 If L is a three-component link and any element of Σ(L) reverses orientation on S3 then at
least one pair of components of L has linking number zero.

The stabilizer of Lk(L) includes an element of the form (−1, ε1, ε2, ε3, p) if and only if some element
(δ1, δ2, δ3, p) in the stabilizer of the corresponding triple (z1, z2, z3) has δ1δ2δ3 = −1 since we showed in
the proof of Proposition 5.5 that ε0 equaled δ1δ2δ3.

A negative δi will switch the sign of the linking number zp(i); to stabilize the triple (z1, z2, z3) there
must be an even number of sign changes unless some zi = 0. Hence, if L has some mirror symmetry,
i.e., one with ε0 = −1, then δ1δ2δ3 = −1 which produces an odd number of sign changes, so some
linking number zi = 0.

Example 5.7 We will see that the linking matrix for 73
1 has corresponding triple in the form (a, a,−a).

This means that the stabilizer of this linking matrix is a group of order 12 isomorphic to Z2 × S3 in Γ3

conjugate to the pre-image of the stabilizer S(a, a,−a). Using the pre-image formula of Proposition 5.5,
we can explicitly compute

f−1(S(a, a,−a)) =


(1, 1, 1, 1, e) (1, 1, 1, 1, (12)) (1, 1,−1,−1, (23))

(1,−1,−1,−1, e) (1,−1,−1,−1, (12)) (1,−1, 1, 1, (23)

(1,−1, 1,−1, (13)) (1, 1,−1,−1, (123)) (1,−1, 1,−1, (132))

(1, 1,−1, 1, (13)) (1,−1, 1, 1, (123)) (1, 1,−1, 1, (132))


Conjugating this subgroup by (1, 1, 1, 1, (13)), we obtain the stabilizer of Lk(73

1):
(1, 1, 1, 1, e) (1, 1, 1, 1, (23)) (1,−1,−1, 1, (12))

(1,−1,−1,−1, e) (1,−1,−1,−1, (23)) (1, 1, 1,−1, (12)

(1,−1, 1,−1, (13)) (1,−1,−1, 1, (132)) (1,−1, 1,−1, (123))

(1, 1,−1, 1, (13)) (1, 1, 1,−1, (132)) (1, 1,−1, 1, (123))


We know that Σ(73

1) is a subgroup of this stabilizer; actually, it equals the stabilizer, which we show in
Section 8.4.

5.2. Linking Matrix for Four-Component Links

For four-component links, we will need to develop a different observation. There are only three prime
four-component links with 8 or fewer crossings, and fortunately they all possess a particular type of
linking matrix. While the situation seems too complicated to make a full analysis of the S4 action on the
6 nonzero elements of a general 4 × 4 linking matrix, it is relatively simple to come up with a theory
which covers our cases. We first give a correspondence between certain 4 × 4 linking matrices and
elements of Z4: 

0 z1 z3 0

z1 0 0 z2

z3 0 0 z4

0 z2 z4 0

↔ (z1, z2, z3, z4) (4)
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Equivalently, we let
z1 = A12, z2 = A24, z3 = A31, z4 = A43

If we let Γ4 act on the matrix Aij as usual, matrices in this form are fixed by the subgroup with
permutations in an 8 element subgroup of S4 isomorphic to D4 which we will call G0.

Proposition 5.8 LetG0 denote the subgroup {e, (14), (23), (14)(23), (12)(34), (13)(24), (1243), (1342)}
(isomorphic to D4) of S4. The action of the subgroup G = {(ε0, ε1, . . . , ε4, p)|p ∈ G0} < Γ4 on Lk(4)

descends to the natural action of (Z2)
4 o S4 on Z4 via the homomorphism

f : (ε0, ε1, . . . , ε4, p) 7→ (ε0ε1ε2, ε0ε2ε4, ε0ε1ε3, ε0ε3ε4, f0(p))

where f0 : G0 → G0 is defined as

e 7→ e (14) 7→ (12)(34) (13)(24) 7→ (14) (1243) 7→ (1243)

(23) 7→ (13)(24) (12)(34) 7→ (23) (14)(23) 7→ (14)(23)

(1342) 7→ (1342)

A series of easy but lengthy direct computations show that this homomorphism has a kernel of order
4 given by

ker(f) = {(1, 1, 1, 1, 1, e), (1,−1,−1,−1,−1, e), (−1,−1, 1, 1,−1, e), (−1, 1,−1,−1, 1, e)}

and the image of f in (Z2)
4 o S4 is {(δ1, δ2, δ3, δ4, f0(p)) : δ4 = δ1δ2δ3, p ∈ G0}. The pre-image of

such an element is the 4 element set {(ε1ε2δ1, ε1, ε2, ε2δ1δ3, ε1δ1δ2, p)}, where ε1 and ε2 are arbitrary.
To show that the action of G on Lk(4) descends to the natural action of (Z2)

4 o S4 on Z4, i.e.,

γ ∗


0 z1 z3 0

z1 0 0 z2

z3 0 0 z4

0 z2 z4 0

↔ f(γ) ∗ (z1, z2, z3, z4) (5)

we need only check that

zf0(p)(1) = Ap(1)p(2), zf0(p)(2) = Ap(2)p(4), zf0(p)(3) = Ap(3)p(1), zf0(p)(4) = Ap(4)p(3)

for all p ∈ G0. This is another straightforward, if lengthy, computation.
We now need to find stabilizers for a few carefully chosen linking matrix types.

Lemma 5.9 The stabilizers in f(G) < (Z2)
4 o S4 of (a, a, a, a), (a, a,−a, a), and (a,−a,−a, a) are

all 8 element groups isomorphic to D4. These produce 32-element stabilizers for the corresponding
linking matrices in Γ4 isomorphic to Z2 × Z2 ×D4. The individual stabilizers in f(G) are in the form
(δ1, . . . , δ4, p) where the δi are determined uniquely by p. For (a, a, a, a), the δi = 1. In the other two
cases, the pattern of signs is more intricate. We give the subgroups explicitly below in Table 7.
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Table 7. Stabilizer subgroups for certain four-component links .

(z1, z2, z3, z4) Stabilizer subgroup S(z1, z2, z3, z4) of f(G) < (Z2)
4 o S4

(a, a, a, a) ({+1} × {+1} × {+1} × {+1})oG0

(a, a,−a, a)

(1, 1, 1, 1, e) (1, 1,−1,−1, (12)(34)) (1, 1,−1,−1, (1243))

(1, 1, 1, 1, (14)) (−1, 1,−1, 1, (13)(24)) (−1, 1,−1, 1, (1342))

(1,−1,−1, 1, (23)) (1,−1,−1, 1, (14)(23))

(a,−a,−a, a)

(1, 1, 1, 1, e) (−1,−1,−1,−1, (12)(34)) (−1,−1,−1,−1, (1243))

(1, 1, 1, 1, (14)) (−1,−1,−1,−1, (13)(24)) (−1,−1,−1,−1, (1342))

(1, 1, 1, 1, (23)) (1, 1, 1, 1, (14)(23))

As before, we can draw some conclusions about links from this theory which we might not have
noticed otherwise. For example,

Corollary 5.10 If L is a four-component link with linking matrix in the form of Equation (4), then no
element of Σ(L) exchanges components 1 and 3 without also exchanging components 2 and 4.

6. The Satellite Lemma

We begin with two definitions.

Definition 6.1 A link L is invertible if reversing the orientation of all of its components produces a
link isotopic to L, i.e., if (1,−1, . . . ,−1, p) ∈ Σ(L) for some permutation p. If the trivial permutation
suffices, we call L purely invertible.

Definition 6.2 Let L be a link with µ components. If swapping the ith and jth components produces a
link isotopic to L, i.e., if the element γ = (1, . . . , 1, (ij)) ∈ Σ(L), then components (i, j) have a pure
exchange symmetry.

We note that if components Ki and Kj are not of the same knot type, then it is impossible for them
to have a pure exchange symmetry. We also note that if a link admits all pure exchange symmetries, the
terms invertible and purely invertible are equivalent.

The most difficult part of our work below will be in ruling out pure exchange symmetries. So far,
we have two (crude) tools; we can rule out pure exchange when the two components have different knot
types or when the pure exchange does not preserve the linking matrix. In a few cases, these tools will
not be enough and we will need the following:

Lemma 6.3 Suppose that L(K, i) is a satellite of L constructed by replacing component i with a knot or
link K. Then L cannot have a pure exchange symmetry exchanging components i and j unless L(K, i)

and L(K, j) are isotopic.

Such a pure exchange would carry an oriented solid tube around Li to a corresponding oriented solid
tube around Lj . If we imagine K embedded in this tube, this generates an isotopy between L(K, i)

and L(K, j).
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The point of this lemma is that we can often distinguish L(K, i) and L(K, j) using classical invariants
which are insensitive to the original labeling of the link. This seems like a general technique, and it would
be interesting to explore this topic further.

7. Two-Component Links

This section records the symmetry group Σ(L) for all prime two-component links with eight or fewer
crossings; there are 30 such links to consider. Our results are summarized in Section 7.1, which names
and lists the symmetry groups which appear (see Table 8). We count how frequently each group appears
by crossing number in Table 9. The symmetry group for each link is listed in Tables 4 and 10, by group
and by link, respectively. Proofs of these assertions appear in Section 7.2

Table 8. Certain Whitten symmetry groups of two-component links (subgroups of Γ2).
∆(Z2 × Z2) refers to the diagonal subgroup of Z2 × Z2.

Symmetry name Notation
Subgroup of

Isomorphic to
Γ2 = Z2 × (Z2 × Z2 o S2)

No symmetry {e} {(1, 1, 1, e)} {e}
Purely Invertible Σ2,1 {1} ×∆(Z2 × Z2)× {e} Z2

∼= D1

Invertible with pure exchange Σ4,1 {1} × (∆(Z2 × Z2)o S2) Z2 × Z2
∼= D2

Individually invertible Σ4,2 {1} × Z2 × Z2 × {e} Z2 × Z2
∼= D2

Even number of operations Σ4,3 {(ε0, ε1, ε2, e) : ε0ε1ε2 = 1} Z2 × Z2
∼= D2

Full orientation-preserving Σ8,1 {1} × (Z2 × Z2 o S2) D4

Even ops & pure exchange Σ8,2 {(ε0, ε1, ε2, p) : ε0ε1ε2 = 1} D4

No exchanges Σ8,3 Z2 × Z2 × Z2 × {e} Z2 × Z2 × Z2

Full symmetry Γ2 Γ2 Z2 ×D4

Table 9. Whitten symmetry groups, by crossing number and by alternation.

2-component Link symmetry group
Crossings

links count Σ2,1 Σ4,1 Σ4,2 Σ4,3 Σ8,1 Σ8,2 Σ8,3 Full

0a 1 1
2a 1 1
4a 1 1
5a 1 1
6a 3 2 1
7a 6 1 2 2 1
7n 2 1 1
8a 14 3 7 3 1
8n 2 1 1

Total 31 6 12 7 2 3 1

First example 725 421 724 9261 521 221 – 021
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Table 10. List of Whitten symmetry groups, and links possessing that symmetry.

Symmetry name Notation Prime links

No symmetry {e} none
Invertible Σ2,1 72

5, 72
7, 82

9, 82
11, 82

14, 82
16

Invertible with pure exchange Σ4,1 42
1, 62

1, 62
3, 72

1, 72
2, 82

1, 82
2, 82

3, 82
4, 82

5, 82
6, 82

7

Individually invertible Σ4,2 72
4, 72

6, 72
8, 82

10, 82
12, 82

13, 82
15

Even number of operations Σ4,3 none
Full orientation-preserving Σ8,1 52

1, 72
3

Even operations with pure exchange Σ8,2 22
1, 62

2, 82
8

No exchanges Σ8,3 none
Full symmetry Γ2 02

1

7.1. Symmetry Names and Results

The Whitten group Γ2 = Z2× (Z2×Z2o S2) of all possible symmetries for two-component links is
a non-Abelian 16 element group isomorphic to Z2×D4. The symmetry group Σ(L) of a given link must
form a subgroup of Γ2. There are 27 mutually nonconjugate subgroups of Γ2; of these possibilities, only
seven are realized as the symmetry subgroup of a prime link with 9 or fewer crossings (see Table 8). An
eighth appears as the symmetry subgroup of a 10-crossing link.

Question 7.1 Do all 27 nonconjugate subgroups of Γ2 appear as the symmetry group of some (possibly
composite, split) link? Of some prime, non-split link?

Hillmann [8] provided examples for a few of these symmetry subgroups, but some of his examples
were split links. Here are the groups we found among links with 8 or fewer crossings.

The first seven nontrivial groups in Table 8 are realized as the symmetry group of a link with nine
or fewer crossings, while Σ8,3 appears to be the symmetry group of a 10-crossing link. We know of no
nontrivial links with full symmetry but speculate that they exist. We now give three tables of results.
Table 9 records the frequency of each group. Table 10 lists the prime two-component links of eight or
fewer crossings by symmetry group. And Table 4 lists each two-component link and its corresponding
Whitten symmetry group.

Theorem 7.2 The symmetry groups for all prime two-component links up to 8 crossings are as listed in
Table 4.

The proof of this theorem is divided into five cases, based on the five symmetry groups that appear
in Table 4; these proofs are found in Section 7.2. Many of our arguments generalize to various families
of links. As this paper focuses on these first examples, we ask for the reader’s understanding when we
eschew the most general argument in favor of a simpler, more expedient one.

7.2. Proofs for Two-Component Links

Below, we attempt to provide a general framework for determining symmetry groups for
two-component links. Since Σ(L) is a subgroup of Γ2, the order of the symmetry group must divide
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|Γ2| = 16. Our strategy begins by exhibiting certain symmetries via explicit isotopies. With these in
hand, we next use various techniques to rule out some symmetries until we can finally determine the
symmetry group Σ(L). These techniques generally involve using some link invariant to show Lγ � L.
Among link invariants, the linking number and self-writhe (for alternating links) are easily applied since
they count signed crossings; we also use polynomials and other methods.

We focus on the 30 prime links with eight or fewer crossings. Our first results indicate which of
these 30 links have either a pure invertibility or a pure exchange symmetry, which we prove explicitly by
exhibiting isotopies. Recall that a link is purely invertible if reversing all components’ orientations
produces an isotopic link; a link has pure exchange symmetry if swapping its two components is
an isotopy.

Lemma 7.3 Via the isotopies exhibited in Figures B1, B2, and C10–C16 in Appendices B.1 and C.1, the
following 17 links have pure exchange symmetry:

22
1, 42

1, 52
1, 62

1, 62
2, 62

3, 72
1, 72

2, 72
3, 82

1, 82
2, 82

3, 82
4, 82

5, 82
6, 82

7, 82
8 (6)

i.e., (1, 1, 1, (12)) belongs to the symmetry group of each of these links.

As we determine symmetry groups, we will establish that the remaining 13 links in consideration do
not have pure exchange symmetry.

Cerf [6] states that all prime, alternating two-component links of 8 or fewer crossings are invertible,
though this may involve exchanging components. Via the isotopies exhibited in Figures B3 and C17–C24
of Appendices B.2 and C.2, we extend Cerf’s result to non-alternating links, and we show that the
invertibility is pure (i.e., without exchanging components). To obtain invertibility for 72

8, combine the
results of Figures B4 and B5, which show that each of its components can be individually inverted.

Lemma 7.4 All 30 prime two-component links with eight or fewer crossings are purely invertible.

We note that the pure exchange and pure invertibility symmetries, corresponding to Whitten elements
(1, 1, 1, (12)) and (1,−1,−1, e), respectively, generate the subgroup Σ4,1 of Γ2. This implies our first
result about link symmetry groups.

Lemma 7.5 Any two-component link, such as those listed in Equation (6), that has both pure exchange
symmetry and (pure) invertibility, must have Σ4,1 as a subgroup of its symmetry group Σ(L).

By examining signed crossings of a link, we calculate its linking number and self-writhe; if one of
these is nonzero, we may rule out some symmetries.

Lemma 7.6

1. If the linking number Lk(L) 6= 0, then Σ(L) < Σ8,2.
2. For L alternating, if the self-writhe s(L) 6= 0, then Σ(L) < Σ8,1.
3. For L alternating, if Lk(L) 6= 0 and s(L) 6= 0, then Σ(L) < Σ4,1.
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Consider the effect of each symmetry operation upon linking number (see Proposition 5.3): mirroring
a link or inverting one of its components will swap the sign of the linking number, while exchanging
its components fixes the linking number. As for the self-writhe of a link, it is fixed by inverting any
component or exchanging the two components; however, mirroring a link swaps the sign of s(L).

Thus, the elements of Γ2 that will swap the sign of a linking number are precisely those of the form
γ = (ε0, ε1, ε2, p) with ε := ε0ε1ε2 = −1. If the linking number Lk(L) is nonzero, these cannot
possibly produce a link Lγ isotopic to the original link L, so these eight elements are not part of Σ(L).
The remaining eight symmetry elements form Σ8,2 = {(ε0, ε1, ε2, p) : ε0ε1ε2 = 1}, which proves the
first assertion.

Self-writhe is an invariant of reduced diagrams of alternating links, and any symmetry operation
which mirrors the link will swap the sign of s(L). If the self-writhe s(L) is nonzero, then no element
which mirrors, i.e., (−1, ε1, ε2, p), can lie in Σ(L). The remaining elements form Σ8,1 = {1} × (Z2 ×
Z2 o S2).

The last assertion follows as an immediate corollary of the first two. If both hypotheses are satisfied,
then Σ(L) ⊂ Σ8,1 ∩ Σ8,2 = Σ4,1.

Lemma 7.7 Let L be a two-component link.

1. If L is purely invertible, then Σ2,1 < Σ(L).
2. If the components of L are different knot types, then Σ(L) < Σ8,3.
3. If both hypotheses above are true, and

(a) if lk(L) 6= 0, then Σ(L) is either Σ2,1 or Σ4,3.
(b) if L is alternating and s(L) 6= 0, then Σ(L) is either Σ2,1 or Σ4,2.

If the components of L have different knot types, then no exchange symmetries are permissible; the
permutation p = (12) never appears in Σ(L). Hence the symmetry group Σ(L) is contained in the “No
exchanges” group Σ8,3.

Combining these two results with the previous lemma proves the third assertion. If the linking number
is nonzero and the components of L have different knot types, then Σ2,1 < Σ(L) < Σ8,2 ∩ Σ8,3 = Σ4,3.
If L is also purely invertible, then Σ2,1 < Σ(L) < Σ4,3. This implies that the order of Σ(L) equals 2 or
4, so it is either Σ2,1 or Σ4,3.

If instead self-writhe is nonzero and the first two hypotheses hold, then Σ2,1 < Σ(L) < Σ8,1 ∩
Σ8,3 = Σ4,2. This implies that the order of Σ(L) equals 2 or 4, so it is either Σ2,1 or Σ4,2.

With these five lemmas in hand, we are now prepared to begin proving Theorem 7.2, which we treat
by each symmetry group.

7.2.1. Links with Symmetry Group Σ2,1

Claim 7.8 Links 72
5, 72

7, 82
9, 82

11, 82
14, and 82

16 have symmetry group Σ2,1.

All of these links are purely invertible, so Σ2,1 ⊂ Σ(L). Also, all of them have components of
different knot types and nonzero linking numbers; thus by Lemma 7.7, their symmetry groups are either
Σ2,1 or Σ4,3.
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Three of the alternating links (72
5, 82

11, 82
14) have nonzero self-writhe, so we apply Lemma 7.7 again.

We conclude that they have only the purely invertible symmetry, and Σ2,1 is their symmetry group.
For the remaining three links in this case (72

7, 82
11, 82

16), consider the action of the Whitten element
γ = (−1,−1, 1, e). We consider the Jones polynomials of L and Lγ . They are unequal, as demonstrated
below, which implies Lγ is not isotopic to L. Thus Σ(L) 6= Σ4,3, so it must be Σ2,1.

Jones(72
7) = z−15/2 − z−13/2 − z−9/2 − z−5/2

Jones
(
(72

7)
γ
)

= −z−7/2 − z−3/2 −
√
z + z3/2

Jones(82
11) = −z9/2 + 3z7/2 − 1

z7/2
− 4z5/2 +

1

z5/2
+ 5z3/2 − 4

z3/2
− 5
√
z +

4√
z

Jones
(
(82

11)
γ
)

= − 4

z9/2
+

1

z7/2
− 1

z5/2
− 1

z21/2
+

3

z19/2
− 4

z17/2
+

5

z15/2
− 5

z13/2
+

4

z11/2

Jones(82
16) =

2

z9/2
− 2

z7/2
+

2

z5/2
− 2

z3/2
− 2

z11/2
−
√
z +

1√
z

Jones
(
(82

16)
γ
)

= − 2

z9/2
+

2

z7/2
− 2

z5/2
+

2

z3/2
− 1

z13/2
+

1

z11/2
− 2√

z

7.2.2. Links with Symmetry Group Σ4,1

Claim 7.9 Links 42
1, 62

1, 82
1, 82

2, and 82
4 have symmetry group Σ4,1.

All five of these links appear in our list Equation (6) of pure exchange symmetry links; also,
they all are purely invertible and have nonzero linking numbers. Lemmas 7.3 and 7.6 imply that
Σ4,1 < Σ(L) < Σ8,2.

For each link, the Conway polynomials differ for L and Lγ , where γ = (−1,−1, 1, e) ∈ Σ8,2. Thus
each link cannot have Σ8,2 as its symmetry group and must therefore have Σ(L) = Σ4,1. We display the
Conway polynomials in Table 11 below.

Table 11. Conway polynomials for Claim 7.9.

Link L Conway(L) Conway(Lγ)

42
1 2z z3 + 2z

62
1 −z5 − 4z3 − 3z −3z

82
1 −z7 − 6z5 − 10z3 − 4z −4z

82
2 2z5 + 7z3 + 4z 3z3 + 4z

82
4 4z3 + 4z 2z5 + 6z3 + 4z

Claim 7.10 Links 62
3, 72

1, 72
2, 82

3, 82
5, 82

6, and 82
7 have symmetry group Σ4,1.

These links have both pure exchange and pure invertibility symmetries; they also have nonzero self-
writhes and linking numbers. By Lemmas 7.3 and 7.6, their symmetry group must be Σ4,1.

7.2.3. Links with Symmetry Group Σ4,2

Claim 7.11 Links 72
4 and 82

12 have symmetry group Σ4,2.
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These links are purely invertible, comprised of different knot types, and have self-writhe s(L) 6= 0;
thus, Lemma 7.6 implies Σ2,1 < Σ(L) < Σ4,2.

Figures C3 and C7 exhibit an isotopies which shows that (−1,−1, 1, e) ∈ Σ(L) for each link, which
means Σ4,2 is their symmetry group.

Claim 7.12 Links 72
8, 8

2
10, and 82

15 have symmetry group Σ4,2.

These links are purely invertible and comprised of different knot types; thus, Lemma 7.6 implies
Σ2,1 < Σ(L) < Σ8,3.

First, we use the Jones polynomial to rule out mirror symmetry, i.e., the element γ = (−1, 1, 1, e) ∈
Σ8,3 does not lie in Σ(L). That means order of the subgroup Σ(L) is between 2 and 7; hence it is either
a 2 or 4 element subgroup. Here are the Jones polynomials:

Jones(72
8) = − 1

z9/2
+

1

z7/2
− 2

z5/2
+

1

z3/2
+

1

z11/2
− 2√

z

Jones
(
(72

8)
γ
)

= −z9/2 + z7/2 − 2z5/2 + z3/2 + z11/2 − 2
√
z

Jones(82
10) = −z9/2 + 3z7/2 − 1

z7/2
− 5z5/2 +

2

z5/2
+ 5z3/2 − 4

z3/2
− 6
√
z +

5√
z

Jones
(
(82

10)
γ
)

= − 1

z9/2
− z7/2 +

3

z7/2
+ 2z5/2 − 5

z5/2
− 4z3/2 +

5

z3/2
+ 5
√
z − 6√

z

Jones(82
15) = − 1

z7/2
− z5/2 +

1

z5/2
+ z3/2 − 1

z3/2
− 2
√
z +

1√
z

Jones
(
(82

15)
γ
)

= −z7/2 + z5/2 − 1

z5/2
− z3/2 +

1

z3/2
+
√
z − 2√

z

Next, for each link we depict an isotopy which reverses the orientation of just one component, i.e., we
show either γ = (1,−1, 1, e) or γ = (1, 1,−1, e) lies in Σ(L). This means Σ4,2 is the symmetry group
for these three links.

Figures B4, C6, and C9 show these isotopies for 72
8, 82

10, and 82
15, respectively.

Claim 7.13 Links 72
6 and 82

13 have symmetry group Σ4,2.

These links are purely invertible and have nonzero self-writhe; thus Lemma 7.6 implies Σ2,1 <

Σ(L) < Σ8,1.
We take the satellites, L1, L2 of the first and second component of L, for L ∈ {72

6, 82
13}, as shown in

Figures 1 and 2, and then compute the Jones polynomial for each.

Jones
((

82
13

)
1

)
= 1− 1

z6
+

2

z5
− 3

z4
+

4

z3
− 2

z2
+

1

z
− 2z + 4z2 − 2z3 + 3z4 − z5

Jones
((

82
13

)
2

)
= 1 +

1

z11
− 2

z10
+

2

z8
− 2

z7
+

1

z6
+

1

z5
− 2

z4
+

2

z3
− 1

z2
+

1

z
− 2z + 4z2 − z3 + 2z5 − z6

Jones
((

72
6

)
1

)
= 2 + 1/z10 − 2/z9 + 1/z8 − 1/z6 + 2/z5 − 1/z4 + 2/z3 − z + z2 + z3 − z4

Jones
((

72
6

)
2

)
= 3 + 1/z7 − 2/z6 + 2/z5 − 2/z4 + 2/z3 + 1/z2 − 2z + 2z2 − z3

Since the Jones polynomials of the two different satellites are not equal for either link L, we have that
L is not isotopic to Lγ for γ = (1, 1, 1, (12)) by Lemma 6.3. Thus, (1, 1, 1, (12)) /∈ Σ(L).
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Figure 1. Gray knot is satellite for the first and second component of 72
6, respectively.

Figure 2. Gray knot is satellite for the first and second component of 82
13, respectively.

Figures C4 and C8 exhibit isotopies that show (1,−1, 1, e) ∈ Σ(L) for both of these links. Therefore,
we conclude Σ(L) = Σ4,2 for these two links.

7.2.4. Links with Symmetry Group Σ8,1

Claim 7.14 Links 52
1 and 72

3 have symmetry group Σ8,1.

These two links have the pure exchange and pure invertibility symmetries, and their self-writhes are
nonzero; thus Lemma 7.6 implies Σ4,1 < Σ(L) < Σ8,1. We show, in Figures B4 and B5, that each
symmetry group includes either (1, 1,−1, e) or (1,−1, 1, e), neither of which is an element of Σ4,1.
Therefore, we conclude Σ(L) = Σ8,1 for these two links.

7.2.5. Links with Symmetry Group Σ8,2

Claim 7.15 Links 22
1, 62

2, and 82
8 have symmetry group Σ8,2.

These three links have the pure exchange and pure invertibility symmetries, and their linking numbers
are nonzero; thus Lemma 7.6 implies Σ4,1 < Σ(L) < Σ8,2.

Figures C1, C2, and C5 display the isotopies which show (−1, 1,−1, e) lies in the symmetry group
for each of these three links. Since this element is not in Σ4,1, we may conclude all three links have
symmetry group Σ(L) = Σ8,2.

8. Three-Component Links

There are 14 three-component links with 8 or fewer crossings. In this section, we determine the
symmetry group for each one; Table 5 summarizes the results. We obtain 11 different symmetry
subgroups inside Γ3, which represent 7 different conjugacy classes of subgroups (out of the 131 possible).

For each link, our first task is to calculate the linking matrix. Then, we utilize Table 12 to determine
the stabilizer of this matrix within Γ3; we know that the symmetry group Σ(L) must be a subgroup
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of this stabilizer. From there, we proceed by ruling out other elements using polynomial invariants
and by exhibiting isotopies to show that certain symmetries do lie in Σ(L) until we can discern the
symmetry group.

Table 12. This table gives stabilizers for triples in Z3 in the group (Z2)
3oS3 under the natural

action of this group on Z3. This list of examples covers all the orbit types of this action. As
we have shown above, the pre-images of these stabilizers in Γ3 are the stabilizers of the
corresponding linking matrices in Lk(3). For convenience, the order of these pre-images are
given in the right-hand column of the table.

(z1, z2, z3) Stabilizer in (Z2)3 o S3 Stab. in Γ3 Order

(0, 0, 0) (Z2)
3 o S3 Γ3 96

(a, 0, 0) ({+1} × Z2 × Z2)o {e, (23)} D4 × Z2 16
(a,−a, 0) 〈(1, 1,−1, e), (−1,−1, 1, (12))〉 (Z2)

3 8
(a, a, 0) ({+1} × {+1} × Z2)o {e, (12)} (Z2)

3 8
(a, b, 0) ({+1} × {+1} × Z2)o {e} D2 4
(a, a,−a) S(a, a,−a) Z2 × S3 12
(a, a, a) ({+1} × {+1} × {+1})o S3 Z2 × S3 12
(a, b,−b) 〈(1,−1,−1, (23))〉 D2 4
(a, b, b) ({+1} × {+1} × {+1})o {e, (23)} D2 4
(a, b, c) {(1, 1, 1, e)} D1 2

Here are the results, listed in terms of generators for each group. We use the following notation for
common group elements:

• PI, for pure invertibility, i.e., the element (1,−1,−1,−1, e)

• PE, for having all pure exchanges, i.e., all elements (1, 1, 1, 1, p) where p ∈ S3

We note that all but two of these links are purely invertible, even though PI might not be part of a
minimal set of generators. Neither the Borromean rings (63

2) or the link 83
5 are purely invertible. Both of

these links are, however, invertible. The Borromean rings can be inverted using any odd permutation p,
i.e., they admit the symmetry γ = (1,−1,−1,−1, p); the link 83

5 is invertible using p = (23).

Claim 8.1 The subgroup Σ(63
1) < Γ3 is the 12 element group isomorphic to D6 generated by pure

exchanges and pure invertibility.

The linking matrix for 63
1 is

1 2 3
1 0 −1 −1
2 −1 0 −1
3 −1 −1 0
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which is in the standard form (a, a, a). We know that Σ(63
1) is a subgroup of the stabilizer of this matrix

under the action of Γ3 on linking matrices. Consulting Table 12, we see that this stabilizer is the group
in the claim. We must now show that all these elements are in the group. Figures B2 and D2 show that

(1, 1, 1, 1, (123)), (1, 1, 1, 1, (23)) ∈ Σ(63
1)

Since any 3-cycle and 2-cycle generate S3, we have the rest of the pure exchanges as well. Figure D1
shows that this link is purely invertible, completing the proof.

Claim 8.2 The subgroup Σ(63
2) < Γ3 is the 48 element group where (ε0, ε1, ε2, ε3, p) is in the group

if either

(a) ε1ε2ε3 = 1 and p is an even permutation, or
(b) ε1ε2ε3 = −1 and p is odd.

Figures B5, D3, and D4 tell us that Σ(63
2) contains the elements

(1,−1, 1,−1, (132)), (−1,−1, 1, 1, (13)), (−1, 1, 1, 1, e)

which clearly obey the rules in the claim. In fact, they generate a group of 48 such elements. Since
the order of Σ(63

1) must divide |Γ3| = 96, it is either these 48 elements or it is all of Γ3. But in [21],
Montesinos proves that 63

2 is not purely invertible. Thus, (1,−1,−1,−1, e) cannot be in Σ(63
2), which

completes the proof.

Claim 8.3 The subgroup Σ(63
3) < Γ3 is the 12 element group isomorphic to D6 given by

f−1(S(a, a,−a)).

Figures D5 and D6 imply that Σ(63
3) contains

{(1, 1,−1, 1, (132)), (1,−1,−1,−1, (12))}

These three elements generate the 12 element group of the claim. Now the linking matrix for 63
3 is

1 2 3
1 0 1 −1
2 1 0 −1
3 −1 −1 0

which is in the standard form (a, a,−a). Consulting Table 12, we see that this means |Σ(63
3)| divides 12,

the order of the stabilizer. Since we already have 12 elements in the symmetry group, it must equal the
stabilizer, which completes the proof.

Claim 8.4 The subgroup Σ(73
1) < Γ3 is the 12 element subgroup isomorphic to D6 that is conjugate to

f−1(S(a, a,−a)) by (1, 1, 1, 1, (13)).

The linking matrix for 73
1 is
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1 2 3
1 0 −1 −1
2 −1 0 1
3 −1 1 0

which corresponds to the triple (1,−1,−1) and has the same orbit type as (a, a,−a). Thus, the
stabilizer of this linking matrix is a 12 element group conjugate to the stabilizer f−1(S(a, a,−a)) by
(1, 1, 1, 1, (13)). Figures D7 and D8 show that

(1, 1,−1, 1, (123)), (1, 1, 1, 1, (23)) ∈ Σ(73
1)

These elements generate a 12 element group, so this stabilizer is the entire symmetry group of 73
1, as

claimed. We note that this stabilizer was worked out explicitly as Example 5.7.

Claim 8.5 The subgroup Σ(83
1) < Γ3 is the 4 element group isomorphic to D2 generated by pure

invertibility and (1, 1,−1,−1, (23)).

The linking matrix for 83
1 is

1 2 3
1 0 −1 1
2 −1 0 2
3 1 2 0

which is in the standard form (a, b,−b). Consulting Table 12, we see that the stabilizer of this linking
matrix in Γ3 has order 4. But Figures B3 and D9 show stabilizer elements

(1,−1,−1,−1, e), (1,−1, 1, 1, (23)) ∈ Σ(83
1)

which means that we also have (1, 1,−1,−1, (23)) ∈ Σ(83
1). Therefore these three elements, plus the

identity, must form the symmetry group Σ(83
1) .

Claim 8.6 The subgroup Σ(83
2) < Γ3 is the 4 element group isomorphic to D2 generated by the pure

exchange (1, 1, 1, 1, (23)) and pure invertibility.

The linking matrix for 83
2 is

1 2 3
1 0 −1 −1
2 −1 0 −2
3 −1 −2 0

which is in the standard form (a, b, b). Consulting Table 12, we see that the stabilizer of Lk(83
2) has order

4. Figures B4 and D10 show

(1,−1,−1,−1, (23)), (1, 1, 1, 1, (23)) ∈ Σ(83
2)

and these generate the 4 element subgroup of the claim, which equals the stabilizer.
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Claim 8.7 The subgroup Σ(83
3) < Γ3 is the 12 element group isomorphic to D6 generated by pure

exchanges and pure invertibility.

The linking matrix for 83
3 is

1 2 3
1 0 −1 −1
2 −1 0 −1
3 −1 −1 0

which is in the form (a, a, a). Consulting Table 12, we see that the stabilizer of Lk(83
3) has order 12, and

hence |Σ(83
3)| divides 12. Now Figures D12 and D13 show that

(1, 1, 1, 1, (12)), (1, 1, 1, 1, (13)) ∈ Σ(83
3)

Since the cycles (12) and (13) generate all of S3, we know that all 6 of the pure exchanges are in Σ(83
3).

Figure D11 shows that 83
3 is purely invertible as well, completing the proof.

Finally, we note that we have encountered this symmetry group before, as Σ(63
1) = Σ(83

3).

Claim 8.8 The subgroup Σ(83
4) < Γ(3) is the 4 element group isomorphic to D2 generated by pure

invertibility and (−1, 1, 1, 1, (12)).

The linking matrix for 83
4 is

1 2 3
1 0 0 2
2 0 0 −2
3 2 −2 0

which is in the standard form (a,−a, 0). Consulting Table 12, we see that the stabilizer of Lk(83
4) is the

8 element group f−1 (S(a,−a, 0)), which is generated by (−1, 1, 1,−1, e), (−1, 1, 1, 1, (12)), and pure
invertibility. Hence, |Σ(83

4)| divides 8. Figures B3 and D14 show that the latter two of these generators,
namely pure invertibility and (−1, 1, 1, 1, (12)), are in Σ(83

4).
To finish the proof, we now show that the third stabilizer generator (−1, 1, 1,−1, e) does not lie in the

symmetry group. Applying it to 83
4, we get a link with HOMFLYPT polynomial

a4 +
1

a4
− 2a2z2 +

a2

z2
− 2z2

a2
+

1

a2z2
+ z4 − 2

z2
− 2

However, the base 83
4 has HOMFLYPT polynomial

a2z4 +
z4

a2
+ 3a2z2 +

3z2

a2
+
a2

z2
+

1

a2z2
+ 4a2 +

4

a2
− z6 − 5z4 − 10z2 − 2

z2
− 8

This means that (−1, 1, 1,−1, e) /∈ Σ(83
4) and hence that Σ(83

4) is generated by (−1, 1, 1, 1, (12)) and
pure invertibility, as claimed.

Claim 8.9 The symmetry group Σ(83
5) < Γ3 is the four element group isomorphic to D2 generated by

(1, 1,−1,−1, e) and (1,−1, 1, 1, (23)).
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Figures D15 and D16 imply that the four element group given above is a subgroup of Σ(83
5). Now the

linking matrix for 83
5 is

1 2 3
1 0 0 0
2 0 0 −1
3 0 −1 0

which is in the standard form (a, 0, 0). This means that the symmetry group must be a subgroup of the
16 element pre-image of {{+1} × Z2 × Z2 o {e, (23)} in Γ3. Computing this pre-image, we observe
next that if we apply any of the group elements

(−1,−1,−1, 1, (23)) (−1,−1, 1,−1, (23)) (−1, 1,−1, 1, (23)) (−1, 1, 1,−1, (23))

(−1,−1,−1, 1, e) (−1,−1, 1,−1, e) (−1, 1,−1, 1, e) (−1, 1, 1,−1, e)

in this pre-image to our link, we get a link with Jones polynomial

− 1

z5
+

3

z4
− z3 − 3

z3
+ 3z2 +

6

z2
− 4z − 5

z
+ 6

while the base link has Jones polynomial

− 1

z6
+

3

z5
− 4

z4
+

6

z3
− z2 − 5

z2
+ 3z +

6

z
− 3

This rules out those 8 elements, leaving us with a subgroup of 8 possible elements remaining.
Interestingly, even framing the various components of the knot and using the satellite lemma does not
allow us to rule out any of the remaining symmetries. However, this link is hyperbolic, and Henry
and Weeks[3] use SnapPea to show that the symmetry group has four elements. Thus the four element
subgroup of Σ(83

5) generated by the isotopies in Figures D15 and D16 must be the entire group.

Claim 8.10 The subgroup Σ(83
6) < Γ3 is the 8 element group isomorphic to (Z2)

3 which is generated by

(1,−1,−1,−1, e), (1,−1, 1, 1, (23)), and (−1, 1,−1,−1, e)

Figures B3, D17, and D18, respectively, imply that the three generators above lie in the symmetry
group Σ(83

6). Now the linking matrix for 83
6 is

1 2 3
1 0 1 −1
2 1 0 0
3 −1 0 0

which corresponds to the triple (0,−1, 1) and has the same orbit type as (a,−a, 0). Consulting Table 12,
we see that the stabilizer of the linking matrix is precisely the group above, and hence equals Σ(83

6),
which completes the proof.

Claim 8.11 The subgroup Σ(83
7) < Γ3 is the 4 element group isomorphic to D2 generated by the pure

exchange (1, 1, 1, 1, (23)) and pure invertibility.
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Figures B4 and D19 show that (1,−1,−1,−1, (23), (1, 1, 1, 1, (23)) ∈ Σ(83
7), which implies that the

subgroup above is contained in Σ(83
7). Now the linking matrix for 83

7 is

1 2 3
1 0 1 1
2 1 0 −2
3 1 −2 0

which is in the standard form (a, b, b). Consulting Table 12, we see that |Σ(83
7)| divides 4. Since we

already have 4 elements in the group, this completes the proof.
Finally, we note that we have encountered this symmetry group before, as Σ(83

2) = Σ(83
7).

Claim 8.12 The subgroup Σ(83
8) < Γ3 is the four element subgroup isomorphic toD2 generated by pure

invertibility and (1, 1,−1,−1, (23)).

Figures D20 and D21 show that (1,−1, 1, 1, (23), (1, 1,−1,−1, (23)) ∈ Σ(83
8), which implies that

Σ(83
8) contains the claimed group. Now the linking matrix for 83

8 is

1 2 3
1 0 1 −1
2 1 0 −2
3 −1 −2 0

which is in the standard form (a, b,−b). Consulting Table 12, we see that |Σ(83
8)| divides 4. This

completes the proof, since we already have 4 elements in the subgroup.
Finally, we note that we have encountered this symmetry group before, as Σ(83

1) = Σ(83
8).

Claim 8.13 The subgroup Σ(83
9) < Γ3 is the 8 element group isomorphic to (Z2)

3 generated by pure
invertibility, the pure exchange (1, 1, 1, 1, (23)) and (1,−1, 1, 1, e).

Figures B4, D22, and D23 show that (1,−1,−1,−1, (23), (1, 1, 1, 1, (23)), (1,−1, 1, 1, e) ∈ Σ(83
9),

which implies that the 8 element subgroup generated by these elements is a subgroup of Σ(83
9). Now the

linking matrix for this link is

1 2 3
1 0 0 0
2 0 0 2
3 0 2 0

which is in the standard form (a, 0, 0). Consulting Table 12, we see that |Σ(83
9)| divides 16. Working out

these 16 elements as in the case of 83
5, we see that if we apply any of the elements

(−1,−1,−1, 1, (23)) (−1,−1, 1,−1, (23)) (−1, 1,−1, 1, (23)) (−1, 1, 1,−1, (23))

(−1,−1,−1, 1, e) (−1,−1, 1,−1, e) (−1, 1,−1, 1, e) (−1, 1, 1,−1, e)

to 83
9, we get a link with Jones polynomial

2z5 − 2z4 + 4z3 − 2z2 + 3z +
1

z
− 2
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while the Jones polynomial of the base 83
9 link is

z7 − 2z6 + 3z5 − 2z4 + 4z3 − 2z2 + 2z

This leaves only the subgroup claimed. We note that while Lk(83
5) and Lk(83

9) have the same stabilizer,
the symmetry group Σ(83

5) is a proper subgroup of Σ(83
9).

Claim 8.14 The subgroup Σ(83
10) < Γ3 is the 4 element group isomorphic to D2 generated by pure

invertibility and the pure exchange (1, 1, 1, 1, (12)).

Figures B3 and D24 show that (1,−1,−1,−1, e) and (1, 1, 1, 1, (12)) are in Σ(83
10). Now the linking

matrix for 83
10 is

1 2 3
1 0 0 2
2 0 0 2
3 2 2 0

which has the standard form (a, a, 0). Consulting Table 12, we see that this matrix has an 8 element
stabilizer in Γ3 given by the inverse image of 〈(1, 1, 1, (12)), (1, 1,−1, e)〉 under the map f . Now we
observe that if we apply any of the four elements

(−1,−1,−1, 1, (12)) (−1, 1, 1,−1, (12)) (−1,−1,−1, 1, e) (−1, 1, 1,−1, e)

in this stabilizer to 83
10, we get a link with Jones polynomial

z10 + z6 + z5 + z3

while the base 83
10 link has Jones polynomial

z9 + z7 + z6 + z2

This rules out all but the four element subgroup above, completing the proof.

9. Isotopies for Four-Component Links

There are three prime four-component links with 8 crossings. They are quite similar in appearance,
with only some crossing changes distinguishing them. Their symmetry computations are made somewhat
more difficult by the fact that we are working in the 768 element group Γ4. All three of these links are
composed of four unknots linked together so that component 1 is linked to 2 and 3, and 2 and 3 are
linked to 4.

Here are the symmetry groups for these links, listed in terms of generators for each group. Again, we
denote the purely invertible symmetry, i.e., element (1,−1,−1,−1,−1, e), by PI; all three links admit
this symmetry.

Our approach mimics the one used for three-component links. After calculating the linking matrix,
we utilize Table 7 to determine the stabilizer of this matrix within Γ4; we know that the symmetry
group Σ(L) must be a subgroup of this stabilizer. Next, we show some elements are in the symmetry
group by exhibiting isotopies and rule others out using polynomial invariants until we can discern the
symmetry group.
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Claim 9.1 The symmetry subgroup for 84
1 is the 16 element group isomorphic to Z2 × D4 given by the

S3-orientation-preserving elements of the inverse image f−1(S(a, a, a, a)).

The linking matrix for 84
1 is

1 2 3 4

1 0 1 1 0

2 1 0 0 1

3 1 0 0 1

4 0 1 1 0

which corresponds to the standard form (a, a, a, a). By Lemma 5.9, Σ(84
1) must be a subgroup of the 32

element stabilizer f−1(S(a, a, a, a)) of the linking matrix.
Figures E1, E2, and B2 show that pure invertibility and (1,−1,−1,−1,−1, (23)) and

(1, 1, 1, 1, 1, (1342)) are all in Σ(84
1). Together, these generate the 16 element group of the claim.

We must show that the 16 S3-orientation-reversing elements of the stabilizer (i.e., elements of the
form (−1, ε1, . . . , ε4, p)) are not in the symmetry group. If we apply any of these 16 elements to the base
link, we obtain a link with Jones polynomial

−5z9/2 + z7/2 − z5/2 − z21/2 + 3z19/2 − 6z17/2 + 4z15/2 − 7z13/2 + 4z11/2

But the Jones polynomial of the base 84
1 is

4z9/2 − 6z7/2 + 3z5/2 − z3/2 − z19/2 + z17/2 − 5z15/2 + 4z13/2 − 7z11/2

This rules out all 16 of these remaining elements, which proves the claim.

Claim 9.2 The symmetry subgroup for 84
2 is the 16 element group isomorphic to D8 given by the

S3-orientation-preserving elements of f−1(S(a, a,−a, a)).

The linking matrix for 84
2 is

1 2 3 4

1 0 1 -1 0

2 1 0 0 1

3 -1 0 0 1

4 0 1 1 0

which corresponds to the standard form (a, a,−a, a) (remember that the ordering of elements given by
Equation (4) is not obvious). By Lemma 5.9 the stabilizer of this linking matrix in Γ4 is a 32 element
subgroup isomorphic to Z2 ×D8.

Figures E3 and E4 show that (1, 1, 1,−1, 1, (14)) and (1, 1, 1, 1, 1, (13)(24)) are in Σ(84
1). Together,

these generate the 16 element group of the claim.
We must show that the 16 S3-orientation-reversing elements of the stabilizer (i.e., elements of the

form (−1, ε1, . . . , ε4, p)) are not in the symmetry group. If we apply any of these 16 elements to the base
link, we obtain a link with Jones polynomial

2z9/2 − 4z7/2 + z5/2 − 4z3/2 − 3z11/2 +
√
z − 1√

z
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while the base link has Jones polynomial

−4z9/2 + z7/2 − 4z5/2 + 2z3/2 − z13/2 + z11/2 − 3
√
z

This rules out these 16 remaining elements, so the claim is proven.

Claim 9.3 The symmetry subgroup for 84
3 is the 32 element group isomorphic to Z2×Z2×D4 given by

f−1(S(a,−a,−a, a)).

The linking matrix for 84
3 is

1 2 3 4

1 0 1 −1 0

2 1 0 0 −1

3 −1 0 0 1

4 0 −1 1 0

which corresponds to the standard form (a,−a,−a, a). By Lemma 5.9 the stabilizer of this linking
matrix in Γ4 is a 32 element subgroup isomorphic to Z2 × Z2 × D4. This group is generated by the
isotopies in Figures E5, E6, E7, and E8, which show that pure invertibility, along with elements

(−1, 1, 1, 1, 1, (23)), (−1,−1, 1, 1,−1, e), (−1, 1, 1, 1, 1, (1342)) ∈ Σ(84
3)

10. Comparison of Intrinsic Symmetry Groups with Ordinary Symmetry Groups for Links

We now compare our results on intrinsic symmetry groups to the existing literature on symmetry
groups for links. Henry and Weeks [3,22] report Sym(L) groups for hyperbolic links up to 9 crossings,
while Boileau and Zimmerman [4] computed Sym(L) groups for non-elliptic Montesinos links with up
to 11 crossings, and Bonahon and Siebenmann computed Sym(L) for the Borromean rings link (63

2) as
an example of their methods in [2] (Theorem 16.18).

Comparing all this data with ours, we see that

Lemma 10.1 Among all links of 8 and fewer crossings with known Sym(L) groups, the Whitten
symmetry group Σ(L) is not isomorphic to Sym(L) only for the links in Table 13.

Table 13. Among links with 8 or fewer crossings with known Sym(L) groups, precisely 10
have Σ(L) � Sym(L).

Link Σ(L) |Σ(L)| Sym(L) | Sym(L)|

623 D2 4 (Z2)
3 8

825 Z2 2 D2 4

824 D2 4 (Z2)
3 8

826 D2 4 (Z2)
3 8

827 D2 4 (Z2)
3 8

829 Z2 2 D2 4

8211 Z2 2 D2 4

8214 Z2 2 D2 4

8216 Z2 2 (Z2)
3 8

834 D2 4 D4 8
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Our results provide some data on symmetry groups of torus links as well.

Lemma 10.2 For the (2, 4), (2, 6) and (2, 8) torus links (42
1, 62

1, and 82
1), we have Sym(L) ' Σ(L) ' D2.

For the Hopf link, the (2, 2) torus link, we know that Sym(L) ' Σ(L) ' (Z2)
3.

Goldsmith computed [23] the “motion groups” M(S3, L(np,nq)) for torus knots and links in S3.
Combining her Corollary 1.13 and Theorem 3.7, we see that for the (np, nq) torus link L(np,nq), the
subgroup Sym+ of orientation preserving symmetries is homeomorphic to M(S3, L(np,nq)) if p + q is
odd, and an index two quotient group of M(S3, L(np,nq)) if p + q is even. The motion group itself is
either D2 or an 8-element quaternion group. But in either case Sym+ ' D2.

Now the motion group by itself does not provide any information about the orientation reversing
elements in Sym. However, any such element in Sym \ Sym+ would map to an element in Σ(L(np,nq))

which reversed orientation on S3. Since we have already shown that there are no such elements in
Σ(L(np,nq)) for n = 1, p = 1, q = 2, 3, 4, we see that for these links Sym = Sym+ = Σ. For the Hopf
link such an orientation reversing element does exist in Sym(L). So, Sym(L) is a Z2 extension of D2

and thus is isomorphic to (Z2)
3

By Proposition 4.9, the group Σ(L) is the image of Sym(L) under a homomorphism, and hence
a quotient group of Sym(L). Further, if Σ(L) has only orientation-preserving elements (on S3) then
Sym(L) does as well. Thus we know something about the Sym(L) groups of all our links; Table 14
summarizes the new information provided by our approach.

Table 14. New results about Sym(L) symmetry groups: we know from Proposition 4.9 that
Σ(L) is a quotient group of Sym(L). Among the links for which we have computed Σ(L) are
a collection of links for which we can find no information in the literature on Sym(L). Our
results imply that the unknown Sym(L) groups listed above must have a certain quotient.

Link | Sym(L)| divisible by Sym(L) has quotient

63
1 12 D6

63
3 12 D6

83
6 8 (Z2)

3

83
7 4 D2

83
8 4 D2

83
9 8 (Z2)

3

83
10 4 D2

11. Future Directions

We have now presented explicit computations of the Whitten symmetry groups for all links with 8 and
fewer crossings. In all the cases we studied, the most difficult part of the computation was obtaining
explicit isotopies to generate the symmetry group; ruling out the remaining elements of Γn was generally
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done by the application of classical invariants. The most difficult of these cases required us to use the
“satellite lemma” and study the classical invariants of satellites of our original link.

While we have presented conventional proofs of all our results, we used computer methods
extensively in determining the right line of attack for each link—our method was to use the Mathematica
package KnotTheory to systematically apply all possible Whitten group elements to each link and then
check the knot types of the components, the linking matrix, the Jones polynomial, and the HOMFLYPT
polynomial in an attempt to distinguish the new link from the original one. We then checked the computer
calculations by hand. This automated method clearly cannot compute Σ(L), but it does provide a
subgroup Σ′(L) of Γ(L) which is known to contain Σ(L). While we do not currently intend to generate
isotopies for links with higher crossing number, we intend to present our computationally-obtained Σ′(L)

groups for 9, 10, and 11 crossing links in a future publication.
Some of the most natural questions about the Whitten symmetry groups remain unanswered by this

type of explicit enumeration: which groups can arise as Whitten groups? Does every subgroup of a given
Γn arise as a Σ(L)? We have observed 6 different subgroups of Γ2, 11 different subgroups of Γ3, and
3 different subgroups of Γ4 so far. This subject is certainly worth further exploration: can one generate
a carefully chosen link with a given symmetry group?
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A. Guide to Link Isotopy Figures

The Appendices contain figures representing the 101 isotopies presented in our paper; they are
organized as follows.

• Appendix A explains the moves depicted in these isotopies.
• Appendix B exhibits 41 isotopies which can be found by simply rotating about one axis.
• Appendix C contains the remaining isotopies for 2-component links
• Appendix D contains the remaining isotopies for 3-component links
• Appendix E contains the remaining isotopies for 4-component links

For coordinates on our figures, we assume the diagrams appear in the xy-plane with the z-axis coming
out of the page. With this orientation, Figure A1 shows symbols for various rotations around lines. We
will also denote moves during an isotopy with arrows, as shown in Figure A2.

Figure A1. Rotation by π radians around various axes is denoted by the symbols above.

x-axis y-axis z-axis line y = x line y = −x

Figure A2. The left figure shows a “flip” move. In this move, we take the portion of the
link in the dotted box and flip it in the direction indicated by the curved arrows, resulting
in the diagram shown on the right. Arrows denote transitions between stages of the isotopy.
The right figure shows a simpler transformation. Here the arrow shows a portion of the link.
Whether this portion moves over or under intervening portions of the link should be clear
from the next drawing.

In all of our diagrams, the component numbered 1 is drawn with a thin (1 pt) line, while other
components are denoted by thicker (2, 3, or 4 pt lines). We also number the components explicitly
to prevent any confusion on this point. As usual, arrows denote orientation on the link components.

B. Isotopy Figures Found by Rotations

In this section, we display the simplest type of isotopies: mere rotation of a link about a coordinate
axis. Such a rotation suffices for 41 of the 101 isotopies we present in this paper.

We display these in three subsections. The first covers the pure exchange isotopies, which only
permute the components; these correspond to Whitten group elements γ = (1, 1, . . . , 1, p). The second
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subsection covers the pure invertibility isotopies, which only invert each components and correspond to
γ = (1,−1,−1, . . . ,−1, e). The third subsection contains 10 other isotopies found by rotating the figure.

B.1. Pure Exchange Isotopies Found by Rotation

Figure B1. Pure exchange isotopies found by rotation about the y-axis.

1 2

42
1

12

62
2

1

2

82
4

12

82
5

Figure B2. Pure exchange isotopies found by rotation about the z-axis. In the case of
links with more than two components, all possible exchanges are listed underneath the
respective figures.

1 2

22
1

1
2

62
1

1
2

82
1



Symmetry 2012, 4 179

Figure B2. Cont.

1

2

3

1

2

3

4

63
1, (123) 84

1, (1342)

B.2. Pure Invertibility Isotopies Found by Rotation

Figure B3. Pure invertibility isotopies found by rotation around the y-axis.
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Figure B3. Cont.
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11
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B.3. Other Isotopies Found by Rotation

Other Whitten group elements whose isotopy is a rotation. Group elements are listed under their
respective figure.

Figure B4. Other isotopies obtained by rotation around the y-axis.

1

2

72
3, (1,−1, 1, e)

1

2

72
8, (1,−1, 1, e)

1

23

83
2, (1, -1-1, -1, (23))

1
2 3

83
7, (1, -1, -1, -1, (23))

12 3

83
9, (1, -1, -1, -1, (23))

Figure B5. Other isotopies obtained by rotation around the z-axis.

1

2
1

2
1 2

3

52
1, (1, 1,−1, e) 72

8, (1, 1,−1, e) 63
2, (1,−1, 1,−1, (132))

C. Isotopy Figures for Two-Component Links

This appendix contains all of the isotopy figures for two-component links that are not contained
in Appendix B. Section C.1 contains the pure exchange isotopies. Section C.2 contains the pure
exchange isotopies.
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Figure C1. (22
1)
γ, γ = (−1, 1,−1, e).

1 2 1 2
1

2

Figure C2. (62
2)
γ, γ = (−1, 1,−1, e).

12

1

2

1

2

12

Figure C3. (72
4)
γ, γ = (1,−1, 1, e).
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1
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Figure C4. (72
6)
γ, γ = (1,−1, 1, e).
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Figure C5. (82
8)
γ, γ = (−1, 1,−1, e).
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12 2

1

21

21 12



Symmetry 2012, 4 184

Figure C6. (82
10)

γ, γ = (1,−1, 1, e).
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Figure C7. (82
12)

γ, γ = (1,−1, 1, e).
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Figure C8. (82
13)

γ, γ = (1,−1, 1, e).
1

2
1

2
1

2

1
2

1
21

2

Figure C9. (82
15)

γ, γ = (1, 1,−1, e).
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C.1. Isotopies Showing Pure Exchange Symmetries for Two-Component Links

Along with Appendix B.1, Figures C10-C16 demonstrate that each of the 17 two-component links
listed in Lemma 7.3 has pure exchange symmetry. We demonstrate in Section 7.2 that the 13 remaining
two-component links with ≤8 crossings do not admit this symmetry.

Figure C10. (72
1)
γ, γ = (1, 1, 1, (12)).

1

2

1

2

1

2

1

21

2

Figure C11. (72
2)
γ, γ = (1, 1, 1, (12)).
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Figure C12. (82
2)
γ, γ = (1, 1, 1, (12)).
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Figure C13. (82
3)
γ, γ = (1, 1, 1, (12)).
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Figure C14. (82
7)
γ, γ = (1, 1, 1, (12)).
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Figure C15. (82
8)
γ, γ = (1, 1, 1, (12)).
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Figure C16. The links 52
1, 62

3, 72
3 and 82

6 share the common form above, with 1, 2, 3, and
4 crossings replacing the dots in the central “twisted” region of component 2 above. The
pure exchange symmetry for each can be accomplished in a similar way, by shifting twists
from component 2 to component 1 as shown. Since the orientations vary between links, we
do not show arrows above. Some examples require a final flip or twist to match orientations,
but in each case it is not difficult to figure out the required move.
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2 1

2 1
2

1

2

C.2. Isotopies Showing Pure Invertibility for Two-Component Links

Along with the 21 isotopies exhibited in Appendix B.2, Figures C17–C24 demonstrate that, as stated
in Lemma 7.4, all 30 of the two-component links with eight or fewer crossings are purely invertible.
(To obtain invertibility for 72

8, combine the results of Figures B4 and B5, which show that each of its
components can be individually inverted.)

Figure C17. (62
2)
γ, γ = (1,−1,−1, e).
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Figure C18. (72
2)
γ, γ = (1,−1,−1, e).
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Figure C19. (82
2)
γ, γ = (1,−1,−1, e).
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Figure C20. (82
5)
γ, γ = (1,−1,−1, e).
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Figure C21. (82
8)
γ, γ = (1,−1,−1, e).
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Figure C22. (82
10)

γ, γ = (1,−1,−1, e).
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Figure C23. (82
12)

γ, γ = (1,−1,−1, e).
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Figure C24. (82
15)

γ, γ = (1,−1,−1, e).
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D. Isotopy Figures for Three-Component Links

This appendix contains all of the isotopy figures for three-component links that are not contained in
Appendix B.

Figure D1. (63
1)
γ, γ = (1,−1,−1,−1, e).
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Figure D2. (63
1)
γ, γ = (1, 1, 1, 1, (23)).
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Figure D3. (63
2)
γ, γ = (−1,−1, 1, 1, (13)).
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Figure D4. (63
2)
γ, γ = (−1, 1, 1, 1, e).
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Figure D5. (63
3)
γ, γ = (1, 1,−1, 1, (132)).
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Figure D6. (63
3)
γ, γ = (1,−1,−1,−1, (12)).
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Figure D7. (73
1)
γ, γ = (1, 1,−1, 1, (123)).
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Figure D8. (73
1)
γ, γ = (1, 1, 1, 1, (23)).
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Figure D9. (83
1)
γ, γ = (1,−1, 1, 1, (23)).
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Figure D10. (83
2)
γ, γ = (1, 1, 1, 1, (23)).

1

23

1

2
3

1

2

3

1

2

3

1

2
3

1

2

3

1

2

3
1

2

3

1

3

2



Symmetry 2012, 4 199

Figure D11. (83
3)
γ, γ = (1,−1,−1,−1, e) .
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Figure D12. (83
3)
γ, γ = (1, 1, 1, 1, (12)).
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Figure D13. (83
3)
γ, γ = (1, 1, 1, 1, (13)).
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Figure D14. (83
4)
γ, γ = (−1, 1, 1, 1, (12)).
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Figure D15. (83
5)
γ, γ = (1,−1, 1, 1, (23)).
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Figure D16. (83
5)
γ, γ = (1, 1,−1,−1, e).
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Figure D17. (83
6)
γ, γ = (1,−1, 1, 1, (23)).
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Figure D18. (83
6)
γ, γ = (−1, 1,−1,−1, e).
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Figure D19. (83
7)
γ, γ = (1, 1, 1, 1, (23)).
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Figure D20. (83
8)
γ, γ = (1,−1, 1, 1, (23)).
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Figure D21. (83
8)
γ, γ = (1, 1,−1,−1, (23)).
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Figure D22. (83
9)
γ, γ = (1, 1, 1, 1, (23)).
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Figure D23. (83
9)
γ, γ = (1,−1, 1, 1, e).
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Figure D24. (83
10)

γ, γ = (1, 1, 1, 1, (12)).
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E. Isotopy Figures for Four-Component Links

This appendix contains all of the isotopy figures for three-component links that are not contained in
Appendix B.

Figure E1. (84
1)
γ, γ = (1,−1,−1,−1,−1, e) .
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Figure E2. (84
1)
γ, γ = (1,−1,−1,−1,−1, (23)).
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Figure E3. (84
2)
γ, γ = (1, 1, 1,−1, 1, (14)).
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Figure E4. (84
2)
γ, γ = (1, 1, 1, 1, 1, (13)(24)).
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Figure E5. (84
3)
γ, γ = (1,−1,−1,−1,−1, e).
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Figure E6. (84
3)
γ, γ = (−1, 1, 1, 1, 1, (23)).
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Figure E7. (84
3)
γ, γ = (−1,−1, 1, 1,−1, e).
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Figure E8. (84
3)
γ, γ = (−1, 1, 1, 1, 1, (1342)).
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