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Abstract: This paper explores two-way relations between visualizations in mathematics
and mathematical art, as well as art in general. A collection of vignettes illustrates
connection points, including visualizing higher dimensions, tessellations, knots and links,
plotting zeros of polynomials, and new and rapidly developing mathematical discipline,
diagrammatic categorification.
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1. Introduction

The relation between mathematics and art is long lasting and constantly evolving, but it is usually
seen as one way: from mathematical objects to their visualizations. Numerous examples include fractals,
tessellations, knots and links, dynamical systems, and Platonic solids. On the other hand, visualizations
naturally lend themselves to mathematics and can be used to simplify long computations, develop the
intuition, and aid the proofs. Rob Kirby developed a diagrammatic calculus together with the finite set
of moves for visualizing 3-manifolds and smooth 4-manifolds by surgery on framed links [1].

A snapshot from the movie Visualizing Seven-Manifolds [2] by N. Johnson (Figure 1) illustrates
J. Milnor’s construction of two smooth seven-dimensional manifolds which are homeomorphic to the
standard seven-sphere. The one on the left, S7

1 is diffeomorphic to the standard seven-sphere, but the
one on the right, S7

3 , is not—such a manifold is said to be exotic. Both manifolds are obtained by
gluing two copies of S3 × D4 along their boundary via a map ξh,j : S3 → SO(3). The 3-sphere is
drawn, via stereographic projection, as a 3-dimensional ball. The large circles are fibers of the Hopf
fibration; at each point along these circles we see instructions for gluing two 4-dimensional balls into
a 4-sphere. These instructions are indicated by two reference circles in the standard 4-ball: at center
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we see the standard position of these two circles (blue and red). The gluing map ξh,j deforms them
to the corresponding circles shown along the Hopf fibers. One such deformation is drawn larger in
front of the others, and here we also draw the image of the equatorial two-sphere in S3. The difference
in configurations of these red and blue circles indicates the difference in diffeomorphism types of the
corresponding seven-spheres.

Figure 1. Snapshot from a short movie Visualizing Seven-Manifolds by Niles Johnson.

A new and rapidly developing area of mathematics, called categorification, relies on various kinds
of diagrams in low-dimensions: two, three and four. Recent examples include categorification of
various polynomial invariants for knots and links, such as Khovanov link homology [3] and Knot Floer
homology, independently developed by Ozsvath–Szabo and Rasmussen, which lift the Jones and the
Alexander polynomial, as well as categorification of quantum groups.

2. Modeling the Universe: Tessellations

The universe is an inexhaustible source of questions for scientists and mathematicians. The puzzle of
spiral galaxies was an excellent problem in 1963, according to R. Feynman, more than a hundred years
after Lord Rosse posed the following in 1850:

“Much as the discovery of these strange forms may be calculated to excite our curiosity, and to
awaken an intense desire to learn something of the laws which give order to these wonderful systems, as
yet, I think, we have no fair ground even for plausible conjecture.”

Recent work of H. Bray about density waves in dark matter and their relation to the observed spiral
density waves in spiral galaxies leads to the beautiful models of spiral galaxies. Figure 2 contains
the simulated image of the Spiral galaxy NGC3310 on the right obtained by running the Matlab
function spiralgalaxy [4] (1, 75000, 1, −0.15, 2000, 1990, 100000000, 8.7 × 10−13, 7500, 5000,
45000000, 50000) described in paper [5]. Left photo on Figure 2 is obtained by NASA and The
Hubble Heritage Team (STScI/AURA) in March 1997 and September 2000, telescope: Hubble Wide
Field Planetary Camera 2.
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Figure 2. Spiral galaxy NGC3310 on the left, simulation on the right.

A related question about the shape of the universe is a topic of Escher’s woodcut [6], see Figure 3.
Tessellations Heaven and Hell and Angels and Demons feature the same tiles, angels and demons, and
depict the dichotomy between the good and bad, heaven and hell. Viewed side by side these tessellations
emphasize the differences between the hyperbolic space of constant curvature minus one, and the flat
Euclidean plane, flat versus curved universe.

Figure 3. M.C. Escher Circle Limit IV (Heaven and Hell), 1960, Woodcut Printed from Two
Blocks and Angels and Demons.

The lack of intuition and the conviction that the V Postulate depends on first four groups of axioms
was so strong that no one recognized the basis for new geometry until the early 19th century. On 8
November 1824 C.F. Gauss commented:

“The assumption that the sum of three angles is less than 180◦ leads to some curious geometry, quite
different than ours, but thoroughly consistent.”

The founders of a “new geometry”, C.G. Gauss, J. Bolyai, and N. Lobachevski, were the first to deny
the absolute nature of Euclidean geometry and provide us with a theory based on axiomatic methods.
Visualizations of the hyperbolic plane and non-Euclidean geometry became possible with the discovery
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of their models within the Euclidean geometry. Three different tessellations, determined by their Schläfli
symbols (Schläfli symbols determine a tessellation by specifying the polygons around each vertex of the
tessellation. Notice that the correspondence between the symbol and the tessellations is one to many,
i.e., the symbol does not necessarily define the tessellation uniquely.) differ only in one polygon, elliptic
one has a pentagon, Euclidean a hexagon, and the hyperbolic has the heptagon, which can be informally
interpreted as the amount of space available in each of the geometries, see Figure 4. The correspondence
between the underlying tessellation by the regular polyhedra and the Escher-like tessellations is partially
revealed on Figure 5, picture on the right shows the (red) wire model of the polygonal tessellation. (All
of the tessellations in the rest of this section were created using Mathematica package Tess [7–11].)

Figure 4. Spherical or elliptic (3,3,3,3,5), Euclidean (3,3,3,3,6) and hyperbolic (3,3,3,3,7)
tessellations.

Figure 5. Escher-like tessellation determined by symbol (6,6,6,6), superimposed with the
wire model of the basic tessellation on the right.

There are several well-known methods for creating interesting 2-dimensional hyperbolic tessellation,
such as taking the dual tessellation by connecting the incenters of the polygons in the original tessellation,
superimposing, converting polygons into curvilinear domains while preserving the symmetries of the
tessellation, etc. One of the most interesting methods can be described in two steps:

• Mathematics: determine the fundamental domain (region) i.e., the smallest region in the
tessellation which can be used to recreate the tessellation by applying the symmetries of
the tessellation.



Symmetry 2012, 4 289

• Art: choose a pattern to insert into the fundamental domain, and map it onto the plane via
symmetries of the tessellation, along with the fundamental domain, and observe the pattern
it forms.

Hyperbolic twittering machine tessellation and its variations, see Figure 6, are based on the
tessellation (4, 4, 4, 6). They are constructed by inserting similar patterns with a different symmetries
into the fundamental domain. Patterns for two bottom tessellations differ by a reflection: the one on
the left is more symmetric, notice the dark blue triangles versus the dark blue and purple triangles on
the right. The Paul Klee tessellation on the top appears less symmetric because it is not centered within
the unit circle. Additional complexity comes with the use of colors, but we will not discuss the colored
symmetry in the paper.

Figure 6. Hyperbolic twittering machine tessellation and its variations, by R. Sazdanovic
and M. Sremcevic, 2000 [9].

Constructing the following tessellations involves disregarding the mathematical requirement of
introducing the pattern within the fundamental domain. Following the genius ideas in Persian art of
the medieval time and artisans creating kilims (Kilims are decorative flat tapestry-woven carpets or rugs
with ornaments full of symbolism from Byzantine, Greek, Chinese and Turkish tradition.) from Balkans
to Persia [12], we allow overlapping in creating the tessellations. The pattern for Poincare Berries
tessellation on Figure 7 consists of thin and thick triangles, as well as circles, which cover the region



Symmetry 2012, 4 290

a bigger than the fundamental domain. The effect of overlapping is reinforcing local four- and six-fold
rotational symmetry of the (4, 4, 4, 6) tessellation. The interplay of the white weave and the pattern
emphasizes the underlying structure.

Figure 7. Poincare Berries, R. Sazdanovic 2010.

Unlike Poincare Berries, tessellations in Figure 8 are inspired by Japanese tradition: pagodas for
the one on the right, and Japanese warriors on the left. Both tessellations are realized in classical
black, red and white color scheme on the black background, emphasizing local seven-fold and six-fold
symmetry, respectively.

Figure 8. Seven Towers and Moon Samurai, R. Sazdanovic 2011.

Digital print Sea Pearls, see Figure 9, by R. Sazdanovic is based on the hyperbolic tessellation
(7, 7, 7, 7) and realized in the Poincare disk model. The core pattern consists of red and white circles
of various sizes, and color intensities. It is extended to the whole hyperbolic plane under symmetries of
the original tessellation, yet with the overall effect of breaking the symmetry of the tessellation. Note
that there are infinitely many tessellations of the hyperbolic plane: all of them can be used for creating
aesthetically pleasing tessellations if you are willing to experiment. It is often very hard to predict the
final tessellation based on the pattern and the symmetries of the original one, especially if the pattern is
larger than the fundamental domain or covers only a part of it.
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Figure 9. Sea Pearls, R. Sazdanovic 2011.

3. Knot Theory: Knotting Mathematics and Art

Knots play the prominent role in art history, fine examples include the Chinese and Celtic knots,
Peruvian quipu, Leonardo da Vinci and Albrecht Dürer knots. Although they are intrinsically
three-dimensional objects, knots can be constructed from graphs (In order to obtain all knots we need to
consider signed graphs.), hence they can also be obtained from tessellations, see Figure 10.

Figure 10. Knot and a tessellation.

R. Scharein is the author of an infinite knot diagram whose part is shown on Figure 11. His knot is
created by applying the principles of Celtic knotting to an underlying aperiodic Penrose tiling (instead
of a rectangular grid). Although each individual string in the diagram has a five-fold symmetry about its
geometric center, the diagram as a whole has no rotational or translational symmetries.
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Figure 11. Infinite knot diagram by Rob Scharein.

R. Scharein’s computer program Knotplot enables visualization and manipulating mathematical knots
in three and four dimensions [13]. It was used to create Tying and untying, a short movie [14] that
addresses one of the principal questions in knot theory–unknotting and distinguishing knots. More
precisely, it illustrates J.H. Conway’s classification of knots and links into families. Mathematical ideas
permeate vivid animations and music, creating visual-acoustic symphony, Figure12.

Figure 12. Snapshot from a movie Tying and untying by R. Sazdanovic, V. Stipsic,
M. Vujic 2009.
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Figure 13. Link 101 ∗ 21.210.21.210.21.210.21.210.21.210 by S.Jablan, created using
LinKnot and Knotplot.

In addition to the classical approach to visualizing knots and links, see Figure 13, and their
symmetries [15–17], S. Jablan’s work introduces a new approach to featuring knots in visual art,
Figure 14 and Figure 15. Instead of visualizing knots and links directly, he is using their polynomial
invariants to create his artwork. Images on Figures 14 and 15, created via LinKnot [18], are plots of
zeros of the certain polynomials of classes of knot and links [17]. Alexander galaxy, on the left of
Figure 14, represents zeros of the Alexander polynomials of rational knots and links with at most 17
crossings, with zeros of knots plotted in green and of links in blue.

Figure 14. Alexander galaxy on the left and Blue Shark on the right, S. Jablan 2010.
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Figure 15. Zeroes of the Jones polynomials of pretzel knots and links with at most 25
crossings by S.Jablan, created using LinKnot and Knotplot.

This approach can be extended to the families of graphs corresponding to knot families, and the
polynomial invariants of graphs. Figure 16 contains plots of zeroes of the chromatic polynomial for the
n-pyramid graph (on the left) and the Jones polynomial of the corresponding polyhedral knot 2n∗, created
using Polynomiography, computer software for visualizing approximation of zeros of polynomials by
B. Kalantari [19,20].

Figure 16. Plots of zeroes of the chromatic and the Jones polynomial by R. Sazdanovic
using LinKnot and Polynomioraphy by B. Kalantari.

4. Diagrammatic Categorification

In this section we will describe a few research level results for which the visualizations are essential
and relevant to mathematics. A nice example where diagrammatics naturally lends itself to mathematical
concepts is the bijection (the bijection is between sets) between unoriented one dimensional topological
field theories over some field k and the finite dimensional k-vector spaces with a non-degenerate bilinear
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form. Moreover, finding the relations in a diagrammatically defined category is equivalent to finding the
atomic pieces in the next higher categorical level. As an illustration of this process we offer Scott
Carter’s drawing related to knotted foams, Figure 17: when the shape Y moves under an arc, in a movie,
the time-elapsed form becomes a foam in which a branch line is crossed by a transverse sheet [21].

Figure 17. Drawing by Scott Carter, 2012.

Categorification is a new area of mathematics introduced by I. Frenkel and L. Crane, and recently
popularized by D. Bar-Natan and M. Khovanov [3,22]. Categorification can be thought of as a process
which lifts numbers to vector spaces and vector spaces to categories. A prime example is turning Euler
characteristic of a topological space into its homology groups. More exotic examples include various
link homology groups which lift polynomial invariants of knots. For instance, Khovanov homology
lifts the Jones polynomial, and Ozsvath–Szabo–Rassmussen homology lifts the Alexander polynomial.
Motivated by categorification in knot theory and the relation of knots and planar graphs several graph
invariants have also been categorified, such as the chromatic and the Tutte polynomial.

Other recent examples of diagrammatic categorification include quantum groups, Heisenberg, Hecke,
Temperley–Lieb, and Schur algebras, Reshetikhin–Turaev link invariants of link, polynomial ring Z[x]
in the work of Cautis, Khovanov, Lauda, Licata, Sazdanovic, Stosic, Webster and many others. Figure 18
documents the creative research process: diagrams used in categorification of quantum groups and the
Casimir element by A. Lauda.
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Figure 18. Categorification of quantum groups and the Casimir element: notebook and
blackboard by A. Lauda.

Sometimes the choice of categorification diagrams is obvious:

• diagrams of knots and links for Khovanov link homology and the Knot Floer homology,
• graphs for the chromatic graph cohomology and the categorification of the Tutte polynomial.
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However, sometimes the process of finding appropriate diagrams is an integral non-trivial part of
categorification process. For example, in the categorification of classes of orthogonal polynomials the
choice of diagrams depends on the inner product, more precisely on the value of the inner product
between monomials. In the categorification of the Chebyshev polynomials [23,24] the inner product

(xn, xm) = 1
n+m

2
+1

n+m
n+m
2

 is equal to the n+m
2

th Catalan number, which is a hint that we can use

crossingless matchings on n + m points in our categorification. Similarly, in the case of the Hermite
polynomials, the inner product (xn, xm) is equal to the double factorial (n + m − 1)!!, which can be
interpreted as the number of all possible ways of connecting n + m points to each other when the
crossings are allowed. The details of the construction can be found in papers [23,24], and we will
describe the diagrams of basis elements in projective, big standard, and standard (Verma) modules in
categorification of the Hermite polynomials, see Figure 19. These diagrams will have a fixed number
of right endpoints and an arbitrary number of left endpoints. On the leftmost diagram corresponding to
the projective modules, all possible connections between left and right endpoints are allowed, and as we
are moving to the right, we introduce additional restrictions. The diagrams in the middle can not contain
right returns (arcs connecting one point on the right to another point on the same side), and the diagrams
on the very right also can not contain intersections between arcs connecting left to one of the endpoints
on the right.

Figure 19. Diagrams of basis elements in projective, standard, and simple modules in
categorification of the Hermite polynomials, respectively.

Inspired by different kinds of diagrams used in categorifications of the one-variable polynomial
ring with integer coefficients, the Aftermoon studio, Paris, created drawing Tryptique. In the realm
of mathematics, they represent elements of three distinct algebras: on the level of Grothendieck rings,
projective modules spanned by these diagrams correspond to Chebyshev polynomials, integer powers
of x and (x − 1), and Hermite polynomials. Taken out of the context, they can be reinterpreted in
different ways. Hiroko and Ritsuko Izuhara view them as traditional form of Japanese calligraphy,
based on ideas of Dirk Huylebrouck and drawings of R. Sazdanovic. Figure 20 shows their vision of
diagrams used in the categorification on Hermite polynomials drawn in ink (sumi) on mulberry paper
(washi). Diagrams in Figure 20 and 21 share the mathematical context with ones on Figure 19, with
the additional sophistication coming from the medium in which they were realized, and the artists’
take on them. Similar to the way clef and tempo modify the sound of the notes in a staff, the strokes
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and pressure add expressiveness and sensibility to diagrams. In words of A. Jorn commenting about
P. Alechinsky’s work:

“L’image est écrite et l’écriture forme des images... on peut dire qu’il y a une écriture, une
graphologie dans toute image de même que dans toute écriture se trouve une image.”

Figure 20. Ritsuko and Hiroko Izuhara, Ink/washi 2011.

Figure 21. Tryptique by Aftermoon Studio, Ink/brush 2010.

This analogy was taken a step further by S. Abramsky and B. Coecke [25]. They have developed a
diagrammatic language for quantum physics, which can be useful in computational linguistic for natural
language processing [26]. Their work relies on the well known diagrammatics calculi for category theory
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and provides “a diagrammatic high-level alternative for the Hilbert space formalism, one which appeals
to our intuition” [27,28]. Their graphical calculus simplifies proofs, derivations and computations in
quantum theory, and provides a natural framework for describing various phenomena such as quantum
entanglement, including quantum teleportation Figure 22. Lastly, notice a very strong visual similarity
between the work of Russian constructivist El Lissitzky in his 1919 lithographic poster Beat the Whites
with the Red Wedge [29] and a “diagrammatic system for doing quantum mechanics using only pictures
of lines, squares, triangles and diamonds” [27,28], when they are deprived of their cultural and scientific
connotations, see Figures 22 and 23.

Figure 22. Diagram of quantum teleportation by Bob Coecke.

Figure 23. Beat the Whites with the Red Wedge by El Lissitzky, 1919.
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