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Abstract: It is shown that the line graph transformation G   L(G) of a graph G preserves 

an isomorphic copy of G as the nerve of a finite simplicial complex K which is naturally 

associated with the Krausz decomposition of L(G). As a consequence, the homology of K 

is isomorphic to that of G. This homology invariance algebraically confirms several well 

known graph theoretic properties of line graphs and formally establishes the Euler 

characteristic of G as a line graph transformation invariant.  
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1. Introduction 

Because of its intrinsic interest, the line graph transformation G  L(G) of a graph G has been 

widely studied. The impetus for much of this research was provided by Ore’s discussion of line graphs 

and problems associated with them [1]. Line graphs are also interesting from a practical standpoint, 

since it has been shown that certain NP-complete problems for graphs are polynomial time problems 

for line graphs, e.g., [2]. Because of their utility for recognizing non-isomorphic graphs, graph 

invariants have also been the object of intensive research, e.g., [3].  

In this paper, a new topological invariance associated with the line graph transformation is found 

using the natural relationship between a Krausz decomposition of L(G) and an abstract simplicial 

complex K. In particular, it is shown that, under the line graph transformation, an isomorphic copy of 

G is preserved as the nerve of K. As a consequence, the homology of G is isomorphic to that of K and 

an application of the Euler-Poincare formula yields the Euler characteristic of G as a line graph 

transformation invariant. This invariance also algebraically confirms several well-known graph 

theoretic properties of line graphs.  
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The remainder of this paper is organized as follows: The relevant definitions and terminology are 

summarized in the next section. Required preliminary lemmas are provided in Section 3 and the main 

results are established in Section 4. A simple illustrative example is presented in Section 5. Closing 

remarks comprise the final section of this paper.  

2. Definitions and Terminology 

A graph G is a pair (V(G), E(G)), where V(G) is a finite non-empty set of vertices and E(G) is a set 

of doubleton subsets of V(G) called edges. G is a non-empty graph when V(G) ≠ Ø  ≠ E(G) and G is a 

(p,q) graph if |V(G)| = p and |E(G)| = q. A (1,0) graph is a trivial graph. The number of edges incident 

to a vertex v is the valency of v. A vertex of valency zero is an isolated vertex (only graphs without 

isolated vertices are considered here). A component of G is a maximally connected subgraph of G. A 

complete graph Kn on n vertices has every pair of vertices adjacent. When V(G) is partitioned into two 

sets V1 and V2 of cardinality m and n such that each vertex in V1 is adjacent to every vertex in V2, then 

G is the complete bipartite graph Km,n. If G is connected and has no cycles, then G is a tree. Graph G1 

is isomorphic to graph G2 (denoted G1   G2) if there is an adjacency preserving bijective map  

: V(G1)  V(G2). 

Associate with any non-empty graph G its line graph L(G) which has E(G) as its vertex set and has 

as its edge set those pairs in E(G) which are adjacent in G. A collection  of subgraphs of a graph F is 

a Krausz decomposition of F if (i) each member of  is a complete graph; (ii) every edge of F is in 

exactly one member of ; and (iii) every vertex of F is in exactly two members of . A nonempty 

graph is a line graph if, and only if, it has a Krausz decomposition and—provided that G1 and G2 are 

non-trivial connected graphs—L(G1)   L(G2) if, and only if, G1  G2 or {G1,G2} is (up to 

isomorphism) the unordered pair {K3,K1,3} [4].  

A hypergraph is a pair ( , ), where  is a finite set of vertices and  is a set of hyperedges 

which are non-empty subsets of . A Krausz hypergraph  of a line graph L(G) has V(L(G)) as its 

vertex set and the family of subsets of V(L(G)) that induce the members of  as its hyperedges. 

If S is a finite set, then the closure Cl(S) of S is the family of non-empty subsets of S. The closure 

Cl( ) of  is the union of the closures of its hyperedges, i.e., Cl( ) = E    C (E).  The number of 

sets of cardinality k in Cl( ) is hk and  is the maximum k for which hk  0.  

Let {a0,, ak} be a set of geometrically independent points in n. The k-simplex (or simplex) σ  k 

spanned by {a0,, ak} is the set of points x   n for which there exist non-negative real numbers 

λ0,,λk such that x = ∑0    i    k  λi ai and ∑0   i   k λi = 1. In this case {a0,, ak} is the vertex set of σ k. A 

face of σ k is any simplex spanned by a non-empty subset of {a0,, ak}. A finite geometric simplicial 

complex (or complex) K is a finite union of simplices such that: (i) every face of a simplex of K is in K; 

and (ii) the non-empty intersection of any two simplices of K is a common face of each. Here it is 

assumed that all simplicial complexes are finite. Consequently, the dimension of K is the largest 

positive integer m such that K contains an m-simplex. The vertex scheme of K is the family of all 

vertex sets which span the simplices of K. The n-skeleton of K is the set of all simplices in K with 

dimension n. K is connected if, and only if, its 1-skeleton is connected. If {Li} is a family of 

subcomplexes of K, then i Li and i Li ≠ Ø are subcomplexes of K.  
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A finite abstract simplicial complex (or abstract complex) is a finite family  of finite non-empty 

sets such that if A is in , then so is every non-empty subset of A. Thus, the vertex scheme of a 

complex is an abstract complex as are finite unions of set closures and finite intersections of set 

closures when they are non-empty. 

Two abstract complexes  and  are isomorphic if there is a bijection φ from the vertex set of  

onto the vertex set of  such that {a0,…, ak}    if, and only if, {φ(a0),…, φ(ak)}   . Every abstract 

complex  is isomorphic to the vertex scheme of some geometric simplicial complex K—in which 

case K is the geometric realization of  and is uniquely determined (up to linear isomorphism). An 

isomorphism between  and the vertex scheme of K is denoted    K.  

To each simplicial complex K there corresponds a chain complex, i.e., abelian groups p(K)  and 

homomorphisms ∂p+1 : p+1(K)  p(K), p ≥ 0. If K is finite and ηp(K) is the number of p-simplices in 

K, then the rank of p(K) is ηp(K) and p(K) is isomorphic to (here   denotes both group and graph 
isomorphism) the direct sum of ηp(K) copies of the additive group of integers . The pth homology 

group of K is the quotient group Hp(K)  ker ∂p/im ∂p 1 and its rank is the pth betti number bp(K). 

Complexes K and K  are homologically isomorphic when Hp(K)  Hp(K ), p  0, and K is 

homologically acyclic (or acyclic) if Hp(K)  0, p   1. The complex of a simplex is acyclic and if K is 

empty, then K is acyclic. The number of components of K is the betti number b0(K). 

A cover of a simplicial complex K is a family of subcomplexes  = {Lα : α  A} with K = α Lα, 

where A is an index set. The family  is an acyclic cover if each Lα and each finite intersection α Lα 

are acyclic. The nerve N( ) of  is the simplicial complex having A as its vertex set with  

∆ = {α0,…,αn} a simplex in N( ) if ∆ Lα  Ø.  

3. Preliminary Lemmas  

The following lemmas are required to prove the main results in the next section. The first four are 

well known and are stated without proof for completeness. 

Lemma 1. [5] (Euler-Poincaré) If K is a complex of dimension m, then 

∑0 ≤ p ≤ m (−1)pηp(K) = ∑0 ≤ p ≤ m (−1)pbp(K) (1)

Lemma 2. [6] A non-empty connected graph G is a tree if, and only if, G is homologically acyclic and 

H0(G)   . 

Lemma 3. [7] Let F be a graph. Then F   L(G) for some graph G if, and only if, the vertices of G can 

be placed into one-to-one correspondence with the members of a Krausz decomposition  of F such 

that two vertices of G are adjacent if, and only if, the corresponding members of  have a  

common vertex. 

Lemma 4. [8] (Folkman-Leray) If  is an acyclic cover of a simplicial complex K, then K and N( ) 

are homologically isomorphic. 

The closure operation C  is important for proving the main results of this paper. The required key 

properties of C  are provided by the next lemma. Since the proof is straight forward it is omitted. 
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Lemma 5. Let {Em : m  I } be a collection of non-empty finite sets. Then the following statements  

are true: 

(1) m Cl(Em) = C ( m Em) ; 

(2) A  B ≠ Ø  Cl(A)  C (B) ≠ Ø; and 

(3) A = Ø  Cl(A) = Ø. 

Lemma 6. Let  = ( , ) be a Krausz hypergraph. Suppose  = Cl( ) = E    C (E) is the abstract 

complex associated with  and its geometric realization is the Krausz complex K. If Ei, Ej, Ek   are 

distinct and the subcomplex Ki of K corresponds to the abstract complex Cl(Ei) of , then  

(1) | Ki  Kj | ≤ 1; and 

(2) Ki  Kj  Kk = Ø. 

Proof. Condition (1) follows since Ei and Ej are induced by a Krausz decomposition and have at most 

one vertex in common (apply (2) of Lemma 5 with A = Ei and B = Ej). Condition (2) follows since no 

three hyperedges of  have a common vertex (apply (3) of Lemma 5 with A = Ei  Ej  Ek = Ø and 

then (1) of Lemma 5 with m Em = Ei  Ej  Ek). 

4. Main Results 

The terminology and results of the previous sections are now used to prove the following main 

results of this paper. In what follows, it is assumed that: (i) K is a Krausz complex associated with a 

Krausz hypergraph  = ( , ) of a graph F  L(G); (ii) G is a non-trivial connected graph; (iii) G is 

not isomorphic to K3 or K1,3; and (iv)  = {Ki  K : Ki  C (Ei), Ei  }. 

Theorem 1. G  N( ). 

Proof. By definition of , | | = | |. Also, Ki  Kj ≠ Ø if, and only if, the corresponding pair of 

hyperedges in  have a common vertex. Since F  L(G), then Lemma 3 yields a correspondence 

between V(G) and  such that u adjacent to v in G if, and only if, corresponding hyperedges have a 

vertex in common. Therefore, it follows from the definition of nerve that G  N( ). (Recall that here G 

is assumed to not be isomorphic to K3 or K1,3).  

Lemma 7.  is an acyclic cover of K. 

Proof. By definition K = i Ki, where each Ki is the complex of a simplex. Thus,  covers K. Since 

each Ki and (via Lemma 6) every finite intersection of the Ki’s is acyclic, then  is an acyclic cover of K. 

Theorem 2. K and G are homologically isomorphic. 

Proof. K and N( ) are homologically isomorphic (Lemma 7 and Lemma 4). Since G  N( )  

(Theorem 1), then K and G are also homologically isomorphic.  

Corollary 1. If G is a (p,q) graph and F  L(G), then 

∑1 ≤ k ≤  (−1)k−1hk = p − q (2) 
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Proof. The left hand side of the Euler-Poincaré Formula (1), first for K = K and then for K = G, may be 

equated since, from Theorem 2, the corresponding right hand sides are equal. But when G = K, the left 

hand side of Equation (1) is p − q. Also, because of the one-to-one correspondence between the  

k − 1 dimensional simplices of K and the sets of size k in  = Cl( ) it is the case that the dimension of 

K is   − 1 and k−1(K) = hk. The validity of Equation (2) now follows from these observations and the 

appropriate K = K and K = G substitutions in the left hand side of Equation (1). 

Corollary 2. The graph G and corresponding line graph L(G) have the same number of components. 

Proof. From Theorem 2, b0(G) = b0(K) so that G and K have the same number of components. But 

L(G) and K also have an identical number of components since L(G) is isomorphic to the 1-skeleton of 

K. (This implies that L(G) is connected since it is assumed here that G is connected).  

Corollary 3. Let L(G) be a connected line graph. Then G is a tree if, and only if,  

∑1 ≤ k ≤ (−1)k−1hk = 1 (3) 

Proof. Since L(G) is connected, an application of Corollary 2 shows that G is connected. A connected 

(p,q) graph G is a tree if, and only if, p − q = 1. The result follows from Equation (2). 

5. Example 

In order to illustrate the theory developed above, consider the non-trivial connected (4,4) graph G, 

its line graph L(G), and a Krausz decomposition of L(G) shown in Figure 1. The associated Krausz 

hypergraph  has the sets E1 = {a,b}, E2 = {a,d}, E3 = {b,c,d}, and E4 = {c} as it hyperedges. Their 

closures are  

Cl(E1) = {{a,b},{a},{b}}, 

Cl(E2) = {{a,d},{a},{d}}, 

Cl(E3) = {{b,c,d},{b,c},{b,d},{c,d},{b},{c},{d}}, 

and 

Cl(E4) = {{c}}, 

so that  

 = {Cl(E1),Cl(E2),Cl(E3),Cl(E4)} 

and 

Cl( ) = {{b,c,d},{a,b},{a,d},{b,c},{b,d},{c,d},{a},{b},{c},{d}}. 

It is clear that  is an acyclic cover of the Krausz complex associated with Cl( ).  
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Figure 1. The line graph of a (4,4) graph and its Krausz decomposition. 
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The nerve N( ) of  has the set {1,2,3,4} of  hyperedge subscripts as its set of vertices. Since  

Cl(E1)  Cl(E2) ≠ Ø, Cl(E1)  Cl(E3) ≠ Ø, Cl(E2)  Cl(E3) ≠ Ø, Cl(E3)  Cl(E4) ≠ Ø 

and 

Cl(E1)  Cl(E4) = Ø, Cl(E2)  Cl(E4) = Ø 

then the doubleton subsets {1,2}, {1,3}, {2,3}, and {3,4} are N( ) edges (see Figure 2). It is obvious 

from Figure 1 and Figure 2 that − as required by Theorem 1 − G  N( ). 

Figure 2. The nerve of the acyclic cover of the Krausz complex associated with L(G). 
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Since G is a p = 4 = q graph, then p − q = 0. It is also readily determined from Cl( ) that h3 = 1,  

h2 = 5, h1 = 4, and  = 3, so that − as required by Corollary 1−  

∑ 1         = 4 − 5 + 1 = 0 = p − q 

6. Closing Remarks 

It has been shown that a Krausz decomposition of the line graph of a graph G defines both an 

abstract simplicial complex and an acyclic cover  of a geometric realization K of the complex such 

that: (i) the nerve of  is isomorphic to G (i.e., the line graph transformation of G preserves an 

isomorphic copy of G as the nerve of ); and (ii) K and G are homologically isomorphic (i.e., the line 

graph transformation of G preserves the homology of G as the homology of K). Item (ii) algebraically 
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confirms the graph theoretic fact that G and L(G) have the same number of components when G has no 

isolated vertices. Thus, it establishes the Euler characteristic of G as a line graph transformation 

invariant and provides Equation (3) as a condition that must be satisfied by the abstract simplicial 

complex Cl( ) associated with a Krausz decomposition of a line graph of G when G is a connected 

tree. It is also interesting to note that Corollary 3 is an algebraic analogue of Rao’s Theorem [9]. 
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