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Abstract: In the present paper we study subsolutions of the Dirac and
Duffin–Kemmer–Petiau equations in the interacting case. It is shown that the Dirac
equation in longitudinal external fields can be split into two covariant subequations
(Dirac equations with built-in projection operators). Moreover, it is demonstrated that the
Duffin–Kemmer–Petiau equations in crossed fields can be split into two 3× 3 subequations.
We show that all the subequations can be obtained via minimal coupling from the same
3 × 3 subequations which are thus a supersymmetric link between fermionic and bosonic
degrees of freedom.
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1. Introduction

Recently, several supersymmetric systems, concerned mainly with anyons in 2 + 1 dimensions [1–5]
as well as with the 3+1 dimensional Majorana–Dirac–Staunton theory [6], uniting fermionic and bosonic
fields, have been described. Furthermore, bosonic symmetries of the Dirac equation have been found in
the massless [7] as well as in the massive case [8]. Our results derived lately fit into this broader picture.
We have demonstrated that certain subsolutions of the free Duffin–Kemmer–Petiau (DKP) and the Dirac
equations obey the same Dirac equation with some built-in projection operators [9]. We shall refer to
this equation as supersymmetric since it has bosonic (spin 0 and 1) as well as fermionic

(
spin 1

2

)
degrees

of freedom. In the present paper we extend our results to the case of interacting fields.
The paper is organized as follows. In Section 2 relativistic wave equations as well as conventions

and definitions used in the paper are described. In particular, several classical and not-so-classical
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subsolutions of the free Dirac equation are reviewed in Subsection 2.2. The notion of supersymmetry
is invoked since some subequations arising in the context of the Dirac equation appear also in the
Duffin–Kemmer–Petiau theory of massive bosons. In Section 3 the Dirac equation in longitudinal fields
is split into two 3× 3 subequations which can be written as two Dirac equations with built-in projection
operators. In the next Section variables are separated in the subequations to yield 2D Dirac equations in
(x0, x3) subspace and 2D Pauli equations in (x1, x2) subspace. In Section 5 the Duffin–Kemmer–Petiau
equation for spin 0 in crossed fields is split into two 3× 3 subequations—these equations have the same
structure as subequations arising in the Dirac theory. It follows that the free 3 × 3 equations provide
a supersymmetric link between the Dirac and DKP theories—this is described in Section 6. In the last
Section we discuss our results in a broader context of supersymmetry and Lorentz covariance.

2. Relativistic Wave Equations

In what follows tensor indices are denoted with Greek letters: µ = 0, 1, 2, 3. We shall use the
following convention for the Minkowski space-time metric tensor: gµν = diag (1,−1,−1,−1) and
we shall always sum over repeated indices. For example, aµbµ = a0b0−~a ·~b. Four-momentum operators
are defined as pµ = i ∂

∂xµ
where natural units have been used: c = 1, ~ = 1. The interaction will be

introduced via minimal coupling,

pµ −→ πµ = pµ − qAµ (1)

with a four-potential Aµ and a charge q. In what follows we shall work with external fields of special
configuration, so-called crossed and longitudinal fields, non-standard but Lorentz covariant, see [10].
We shall also need elements of spinor calculus. Four-vectors ζµ =

(
ζ0, ~ζ

)
and spinors ζAḂ are related

by the formula ζAḂ =
(
σ0ζ0 + ~σ · ~ζ

)AḂ
:

ζAḂ =

(
ζ11̇ ζ12̇

ζ21̇ ζ22̇

)
=

(
ζ0 + ζ3 ζ1 − iζ2

ζ1 + iζ2 ζ0 − ζ3

)
(2)

where A, Ḃ number rows and columns, respectively, ~σ denotes vector built of the Pauli matrices and σ0

is the 2× 2 unit matrix. Spinor with lowered indices ζCḊ reads:

ζCḊ =

(
ζ11̇ ζ12̇
ζ21̇ ζ22̇

)
=

(
ζ0 − ζ3 −ζ1 − iζ2

−ζ1 + iζ2 ζ0 + ζ3

)
(3)

For details of the spinor calculus reader should consult [11–13].

2.1. The Dirac Equation

The Dirac equation is a relativistic quantum mechanical wave equation formulated by Paul Dirac in
1928 providing a description of elementary spin 1

2
particles, such as electrons and quarks, consistent
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with both the principles of quantum mechanics and the theory of special relativity [14,15]. The Dirac
Equation is [11,16,17]:

γµpµΨ = mΨ (4)

where m is the rest mass of the elementary particle. The γ’s are 4 × 4 anticommuting Dirac matrices:
γµγν +γνγµ = 2gµνI where I is the 4×4 unit matrix. In the spinor representation of the Dirac matrices
we have:

γ0 =

(
0 σ0

σ0 0

)
, γj =

(
0 −σj

σj 0

)
(j = 1, 2, 3) (5)

where σj are the Pauli matrices and σ0 is again the 2 × 2 unit matrix. The wave function is a bispinor,
i.e., consists of 2 two-component spinors ξ, η: Ψ = (ξ, η)T where T denotes transposition of a matrix.
Sometimes it is more convenient to use the standard representation:

γ0 =

(
σ0 0

0 −σ0

)
, γj =

(
0 σj

−σj 0

)
(j = 1, 2, 3) (6)

2.2. Subsolutions of the Dirac Equation and Supersymmetry

In the m = 0 case it is possible to obtain two independent equations for spinors ξ, η by application of
projection operators Q± = 1

2
(1± γ5) to Equation (4) since γ5 = −iγ0γ1γ2γ3 anticommutes with γµpµ:

Q±γ
µpµΨ = γµpµ (Q∓Ψ) = 0 (7)

In the spinor representation of the Dirac matrices [11] we have γ5 = diag (−1,−1, 1, 1) and thus
Q−Ψ = (ξ, 0)T , Q+Ψ = (0, η)T and separate equations for ξ, η follow:(

p0 + ~σ · ~p
)
η = 0 (8)(

p0 − ~σ · ~p
)
ξ = 0 (9)

Equations (8) and (9) are known as the Weyl equations and are used to describe massless left-handed
and right-handed neutrinos. However, since the experimentally established phenomenon of neutrino
oscillations requires non-zero neutrino masses, theory of massive neutrinos, which can be based on the
Dirac equation, is necessary [18–21]. Alternatively, a modification of the Dirac or Weyl equation, called
the Majorana equation, is thought to apply to neutrinos. According to Majorana theory, neutrino and
antineutrino are identical and neutral [22].

Although the Majorana equations can be introduced without any reference to the Dirac theory, they are
subsolutions of the Dirac Equation [18]. Indeed, demanding in Equation (4) that Ψ = CΨ where C is the



Symmetry 2012, 4 430

charge conjugation operator, CΨ = iγ2Ψ∗, we obtain in the spinor representation ξ = −iσ2η∗, η = iσ2ξ∗

and the Dirac Equation (4) reduces to two separate Majorana equations for two-component spinors:(
p0 + ~σ · ~p

)
η = −imσ2η∗ (10)(

p0 − ~σ · ~p
)
ξ = +imσ2ξ∗ (11)

It follows from the condition Ψ = CΨ that Majorana particle has zero charge built-in condition.
The problem whether neutrinos are described by the Dirac equation or the Majorana equations is still
open [18–21].

Let us note that the Dirac Equation (4) in the spinor representation of the γµ matrices can be also
separated in form of second-order Equations:(

p0 + ~σ · ~p
) (
p0 − ~σ · ~p

)
ξ = m2ξ (12)(

p0 − ~σ · ~p
) (
p0 + ~σ · ~p

)
η = m2η (13)

Such equations, valid also in the interacting case, were used by Feynman and Gell-Mann to describe
weak decays in terms of two-component spinors [23].

More exotic subsolutions of the Dirac equation, related to supersymmetry, are also possible. In the
massless case Simulik and Krivsky demonstrated that the following substitution,

Ψ = (iE3 −H0, iE1 − E2, iE0 −H3, −iH2 −H1)
T (14)

when introduced into the Dirac Equation (4), converts it for m = 0 and standard representation of
the Dirac matrices Equation (6) into the set of Maxwell equations [7]. In the massive case the Dirac
Equation (4) can be written as a set of two Equations:

γµpµP4Ψ = mP4Ψ (15)

γµpµP3Ψ = mP3Ψ (16)

with P4 = diag (1, 1, 1, 0), P3 = diag (1, 1, 0, 1) and spinor representation of the γµ matrices
Equation (5). Equations analogous to (15,16) appear also in the Duffin–Kemmer–Petiau theory of
massive bosons [9].

Let us note finally that as shown in [24] the square of the Dirac operator is indeed supersymmetric,
and this can be used for a convenient description of fluctuations around a self-dual monopole. Similar
behavior has also been observed in the Taub-NUT case, see [25].

2.3. The Duffin–Kemmer–Petiau Equations

The DKP equations for spin 0 and 1 are written as:

βµpµΨ = mΨ (17)

with 5 × 5 and 10 × 10 matrices βµ, respectively, which fulfill the following commutation
relations [26–29]:

βλβµβν + βνβµβλ = gλµβν + gνµβλ (18)
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In the case of 5 × 5 (spin 0) representation of βµ matrices Equation (17) is equivalent to the following
set of equations:

pµψ = mψµ

pνψ
ν = mψ

}
(19)

if we define Ψ in Equation (17) as:

Ψ = (ψµ, ψ)T =
(
ψ0, ψ1, ψ2, ψ3, ψ

)T (20)

Let us note that Equation (19) can be obtained by factorizing second-order derivatives in the
Klein–Gordon equation pµpµ ψ = m2ψ.

In the case of 10× 10 (spin 1) representation of matrices βµ Equation (17) reduces to:

pµψν − pνψµ = mψµν

pµψ
µν = mψν

}
(21)

with Ψ in Equation (17) defined as Ψ =
(
ψµν , ψλ

)T :

Ψ =
(
ψ01, ψ02, ψ03, ψ23, ψ31, ψ12, ψ0, ψ1, ψ2, ψ3

)T (22)

where ψλ are real and ψµν are purely imaginary (in alternative formulation we have
−∂µψν + ∂νψµ = mψµν , ∂µψµν = mψν , where ψλ, ψµν are real). Because of antisymmetry of ψµν we
have pνψν = 0 what implies spin 1 condition. The set of Equation (21) was first written by Proca [30,31]
and in a different context by Lanczos, see [32] and references therein. More on the history of the
formalism of Duffin, Kemmer and Petiau can be found in [33].

3. Splitting the Dirac Equation in Longitudinal External Fields

The interaction is introduced into the Dirac Equation (4) via minimal coupling Equation (1). We
consider a special class of four-potentials obeying the condition:

[
π0 ± π3, π1 ± iπ2

]
= 0 (23)

where [X, Y ] = XY − Y X is a commutator. The condition Equation (23) is fulfilled in the Abelian
case for

Aµ = Aµ
(
x0, x3

)
, Ai = Ai

(
x1, x2

)
, µ = 0, 3, i = 1, 2 (24)

This is the case of longitudinal potentials for which several exact solutions of the Dirac equation were
found [10].

The Dirac Equation (4) can be written in spinor notation as [11]:

π11̇η1̇ + π12̇η2̇ = mξ1

π21̇η1̇ + π22̇η2̇ = mξ2

π11̇ξ
1 + π21̇ξ

2 = mη1̇
π12̇ξ

1 + π22̇ξ
2 = mη2̇

 (25)
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where πAḂ, πAḂ are given by Equations (2) and (3) (note that π11̇ = π22̇, π12̇ = −π21̇, π21̇ = −π12̇,
π22̇ = π11̇). Obviously, due to relations between components of πAḂ and πCḊ the Equation (25) can be
rewritten in terms of components of πAḂ only. Equation (25) corresponds to Equation (4) in the spinor
representation of γ matrices and Ψ = (ξ1, ξ2, η1̇, η2̇)

T . We assume here that we deal with four-potentials
fulfilling condition Equation (23).

In this Section we shall investigate a possibility of finding subsolutions of the Dirac equation in
longitudinal external field, analogous to subsolutions found for the free Dirac equation in ([9]). For
m 6= 0 we can define new quantities:

π11̇η1̇ = mξ1(1), π12̇η2̇ = mξ1(2) (26)

π21̇η1̇ = mξ2(1), π22̇η2̇ = mξ2(2) (27)

where we have:

ξ1(1) + ξ1(2) = ξ1 (28)

ξ2(1) + ξ2(2) = ξ2 (29)

In spinor notation ξ1(1) = ψ11̇
1̇

, ξ1(2) = ψ12̇
2̇

, ξ2(1) = ψ21̇
1̇

, ξ2(2) = ψ22̇
2̇

.
The Dirac Equation (25) can be now written with help of Equations (26) and (27) as (we are now

using components πAḂ throughout):

π11̇η1̇ = mξ1(1)
π12̇η2̇ = mξ1(2)
π21̇η1̇ = mξ2(1)
π22̇η2̇ = mξ2(2)

π22̇
(
ξ1(1) + ξ1(2)

)
− π12̇

(
ξ2(1) + ξ2(2)

)
= mη1̇

−π21̇
(
ξ1(1) + ξ1(2)

)
+ π11̇

(
ξ2(1) + ξ2(2)

)
= mη2̇


(30)

It follows from Equations (26) and (27) and Equation (23) that the following identities hold:

π21̇ξ1(1) = π11̇ξ2(1) (31)

π22̇ξ1(2) = π12̇ξ2(2) (32)

Taking into account the identities Equations (31) and (32) we can decouple Equation (30) and write it as
a system of the following two Equations:

π11̇η1̇ = mξ1(1)
π21̇η1̇ = mξ2(1)

π22̇ξ1(1) − π12̇ξ2(1) = mη1̇

 (33)

π12̇η2̇ = mξ1(2)
π22̇η2̇ = mξ2(2)

−π21̇ξ1(2) + π11̇ξ2(2) = mη2̇

 (34)
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System of Equations (33) and (34) is equivalent to the Dirac Equation (25) if the definitions
Equations (28) and (29) are invoked.

Due to the identities, Equations (31–34) can be cast into form:
0 0 π11̇ π12̇

0 0 π21̇ π22̇

π22̇ −π12̇ 0 0

−π21̇ π11̇ 0 0




ξ1(1)
ξ2(1)
η1̇
0

 = m


ξ1(1)
ξ2(1)
η1̇
0

 (35)


0 0 π22̇ π21̇

0 0 π12̇ π11̇

π11̇ −π21̇ 0 0

−π12̇ π22̇ 0 0




ξ2(2)
ξ1(2)
η2̇
0

 = m


ξ2(2)
ξ1(2)
η2̇
0

 (36)

Let us consider Equation (35). It can be written as:

γµπµP4Ψ(1) = mP4Ψ(1) (37)

where P4 is the projection operator, P4 = diag (1, 1, 1, 0) in the spinor representation of the Dirac

matrices and Ψ(1) =
(
ξ1(1), ξ

2
(1), η1̇, η2̇

)T
. There are also other projection operators which lead to

analogous three component equations, P1 = diag (0, 1, 1, 1), P2 = diag (1, 0, 1, 1), P3 = diag (1, 1, 0, 1).
Acting from the left on Equation (37) with P4 and (1− P4) we obtain two Equations:

P4

(
γµµπ

)
P4Ψ(1) = mP4Ψ(1) (38)

(1− P4)
(
γµµπ

)
P4Ψ(1) = 0 (39)

In the spinor representation of γµ matrices, Equation (38) is equivalent to Equation (33) while
Equation (39) is equivalent to the identity Equation (31), respectively. The operator P4 can be written
as P4 = 1

4
(3+γ5 − γ0γ3 + iγ1γ2) where γ5 = iγ0γ1γ2γ3 (similar formulae can be given for other

projection operators P1, P2, P3, see [13] where another convention for γµ matrices was however used). It
thus follows that Equation (37) is given representation independent form and is Lorentz covariant (in [9]
subsolutions of form Equation (37) were obtained for the free Dirac equation).

Let us note finally that Equation (36) can be alternatively written as

γµπµP3Ψ(2) = mP3Ψ(2) (40)

where Ψ(2) =
(
ξ1(2), ξ

2
(2), η1̇, η2̇

)T
, P3 = 1

4
(3+γ5 + γ0γ3 − iγ1γ2), note that Ψ = P4Ψ(1) + P3Ψ(2).
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4. Separation of Variables in Subequations

It is possible to separate variables in Equations (33) and (34) following procedures described in [10].
Substituting ξ1(1) and ξ2(1) from the first two equations into the third in Equation (33) we get:

π22̇π11̇η1̇ − π12̇π21̇η1̇ = m2η1̇ (41)

Taking into account definition of πAḂ and property Equation (24) we obtain:

(
πµπ

µ + iqE
(
x0, x3

)
+ qH

(
x1, x2

))
η1̇ = m2η1̇ (42)

where E = ∂0A3 − ∂3A0, H = ∂2A1 − ∂1A2.
To achieve separation of variables we put:

η1̇ (x) = ϕ1̇

(
x0, x3

)
ψ1̇

(
x1, x2

)
(43)

ξ1(1) (x) = α1̇

(
x0, x3

)
ψ1̇

(
x1, x2

)
(44)

ξ2(1) (x) = ϕ1̇

(
x0, x3

)
β1̇
(
x1, x2

)
(45)

We now substitute Equation (43) into Equation (42) to get:((
π0
)2 − (π3

)2
+ iqE

(
x0, x3

))
ϕ1̇

(
x0, x3

)
=
(
m2 + λ2

1̇

)
ϕ1̇

(
x0, x3

)
(46a)((

π1
)2

+
(
π2
)2 − qH (x1, x2))ψ1̇

(
x1, x2

)
= λ2

1̇
ψ1̇

(
x1, x2

)
(46b)

where λ2
1̇

is the separation constant and we note that Equations (46a) and (46b) are analogous to
Equations (12.15) and (12.19) in [10].

Combining now Equation (46a) with the first of Equation (33) and rescaling,

α1̇ (x0, x3) =

√
1 +

λ2
1̇

m2 α̃1̇ (x0, x3), we obtain 2D Dirac Equation:

(
π0 + π3

)
ϕ1̇

(
x0, x3

)
= m̃α̃1̇

(
x0, x3

)
(47a)(

π0 − π3
)
α̃1̇

(
x0, x3

)
= m̃ϕ1̇

(
x0, x3

)
(47b)

with effective mass m̃ =
√
m2 + λ2

1̇
.

On the other hand, combining Equation (46b) with the second of Equation (33) we get equations:

(
π1 − iπ2

)
ψ1̇

(
x1, x2

)
= mβ1̇

(
x1, x2

)
(48a)(

π1 + iπ2
)
β1̇
(
x1, x2

)
=

λ2
1̇

m
ψ1̇

(
x1, x2

)
(48b)

which can be written as the Pauli Equation:

[((
π1
)2

+
(
π2
)2)

σ0 − qH
(
x1, x2

)
σ3
]( ψ1̇

β1̇

)
= λ2

1̇

(
ψ1̇

β1̇

)
(49)
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The same procedure applied to Equation (34) yields the equation for η2̇:(
πµπ

µ − iqE
(
x0, x3

)
− qH

(
x1, x2

))
η2̇ = m2η2̇ (50)

Carrying out separation of variables we get 2D Dirac Equation:

(
π0 − π3

)
ϕ2̇

(
x0, x3

)
= m̂α̂2̇

(
x0, x3

)
(51a)(

π0 + π3
)
α̂2̇

(
x0, x3

)
= m̂ϕ2̇

(
x0, x3

)
(51b)

with effective mass m̂ =
√
m2 + λ2

2̇
and α2̇ (x0, x3) =

√
1 +

λ2
2̇

m2 α̂2̇ (x0, x3) and equation:

(
π1 + iπ2

)
ψ2̇

(
x1, x2

)
= mβ2̇

(
x1, x2

)
(52a)(

π1 − iπ2
)
β2̇
(
x1, x2

)
=

λ2
2̇

m
ψ2̇

(
x1, x2

)
(52b)

which is written as the Pauli Equation

[((
π1
)2

+
(
π2
)2)

σ0 + qH
(
x1, x2

)
σ3
]( ψ2̇

β2̇

)
= λ2

2̇

(
ψ2̇

β2̇

)
(53)

where the following definitions were used:

η2̇ (x) = ϕ2̇

(
x0, x3

)
ψ2̇

(
x1, x2

)
(54)

ξ1(2) (x) = α2̇

(
x0, x3

)
ψ2̇

(
x1, x2

)
(55)

ξ2(2) (x) = ϕ2̇

(
x0, x3

)
β2̇
(
x1, x2

)
(56)

5. Splitting the Spin 0 Duffin–Kemmer–Petiau Equations in Crossed Fields

We introduce interaction into DKP Equation (19) via minimal coupling Equation (1). We consider
four-potentials obeying the condition:

[
π0, π3] = [π1, π2

]
= 0 (57)

The condition Equation (57) means that E3 = H3 = 0 and is fulfilled by crossed fields [10]:

~E · ~n = ~H · ~n = ~E · ~H = 0, | ~E |=| ~H | (58)

with ~n = [0, 0, 1].
Equation (19) in the interacting case can be written within spinor formalism (cf. Equations (2) and

(3)) as:

πAḂψ = mψAḂ

πAḂψ
AḂ = 2mψ

}
(59)
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Indeed, it follows from Equation (59) that πAḂψ
AḂ = 1

m
πAḂπ

AḂψ and πAḂπ
AḂψ = 2m2ψ. We

have πAḂπ
AḂ = π11̇π

11̇ + π21̇π
21̇ + π12̇π

12̇ + π22̇π
22̇ = 2πµπ

µ and the Klein–Gordon Equation
πµπ

µψ = m2ψ follows.
Let us note now that for fields obeying Equation (57), the following spinor identities hold:

π11̇π
11̇ + π21̇π

21̇ = πµπ
µ, π12̇π

12̇ + π22̇π
22̇ = πµπ

µ (60)

Due to identities Equation (60) we can split the last of Equation (59) and write Equation (59) as a set of
two equations:

π11̇ψ = mψ11̇

π21̇ψ = mψ21̇

π11̇ψ
11̇ + π21̇ψ

21̇ = mψ

 (61)

π12̇ψ = mψ12̇

π22̇ψ = mψ22̇

π12̇ψ
12̇ + π22̇ψ

22̇ = mψ

 (62)

each of which describes particle with mass m (we check this by substituting e.g. ψ11̇, ψ21̇ or ψ12̇,
ψ22̇ into the third equations). Equation (59) and the set of two Equations (61) and (62) are equivalent.
We described Equations (61) and (62) in non-interacting case in [34,35]. Equations (61) and (62) and
Equations (33) and (34) have the same structure (recall that π11̇ = π22̇, π12̇ = −π21̇, π21̇ = −π12̇,
π22̇ = π11̇). However these equations cannot be written in the form of the Dirac Equations (35) and (36)
because identities analogous to Equations (31) and (32) do not hold, i.e., π21̇ψ11̇ 6= π11̇ψ21̇, π22̇ψ12̇ 6=
π12̇ψ22̇.

Substituting first two equations into the third one in Equation (61), we get the Klein–Gordon equation
πµπ

µψ = m2ψ, which can be solved via separation of variables for the case of crossed fields, see
Chapter 3 in [10] (the same can be done in Equation (62)).

6. A Supersymmetric Link between Dirac and DKP Theories

We have shown that subsolutions of the Dirac equation as well as of the DKP equations for spin 0

obey analogous pairs of 3× 3 Equations (33–62), respectively.
More exactly, Equations (33) and (34) can be written as:

ρµπµΨ = mΨ, Ψ =
(
ξ1(1), ξ

2
(1), η1̇

)T
,

(
ξ1(1) = ψ11̇

1̇
, ξ2(1) = ψ21̇

1̇

)
(63)

ρ̃µπµΨ̃ = mΨ̃, Ψ̃ =
(
ξ1(2), ξ

2
(2), η2̇

)T
,

(
ξ1(2) = ψ12̇

2̇
, ξ2(2) = ψ22̇

2̇

)
(64)

with

ρ0 =

 0 0 1

0 0 0

1 0 0

 , ρ1 =

 0 0 0

0 0 −1

0 1 0

 , ρ2 =

 0 0 0

0 0 −i
0 −i 0

 , ρ3 =

 0 0 −1

0 0 0

1 0 0

 (65)

ρ̃0 = iρ2, ρ̃1 = ρ3, ρ̃2 = iρ0, ρ̃3 = iρ2 (66)
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and πµ = pµ − qAµ, Aµ obeying condition of longitudinality Equation (23).
On the other hand, Equations (61) and (62) can be written in analogous form:

ρµπµΦ = mΦ, Φ =
(
ψ11̇, ψ21̇, ψ

)T
(67)

ρ̃µπµΦ̃ = mΦ̃, Φ̃ =
(
ψ12̇, ψ22̇, ψ

)T
(68)

with the same matrices ρµ, ρ̃µ, cf. Equations (65) and (66), and πµ = pµ − qAµ, Aµ obeying condition
Equation (57)—fulfilled by crossed fields.

It thus follows that the 3× 3 free equations described in [34,35]:

ρµpµΘ = mΘ (69)

ρ̃µpµΘ̃ = mΘ̃ (70)

provide a link between solutions of the Dirac and DKP equations. Namely, Equations (69) and (70)
in the interacting case, pµ −→ πµ = pµ − qAµ, lead to subsolutions of the Dirac Equations (63) and
(64) in the case of longitudinal fields Equation (23), while for crossed fields Equation (57) yield DKP
subsolutions Equations (67) and (68).

7. Discussion

We have shown that the Dirac equation in longitudinal external fields is equivalent to a pair of 3 × 3

subequations (33) and (34) which can be further written as Dirac equations with built-in projection
operators, Equations (37) and (40). Furthermore, we have demonstrated that the Duffin–Kemmer–Petiau
equations for spin 0 in crossed fields can be split into two 3×3 subequations (61) and (62) (subequations
of the DKP equations for spin 1 were discussed in [36]). It was also shown that all the subequations
can be obtained via minimal coupling from the same 3 × 3 subequations (69) and (70), which are thus
a supersymmetric link between fermionic and bosonic degrees of freedom. It can be expected that for
a combination of crossed and longitudinal potentials these subequations should describe interaction of
fermionic and bosonic degrees of freedom. We shall investigate this problem in our future work.

Finally, we shall address problem of Lorentz covariance of the subequations. Let us have a closer
look at a single subequation of spin 0 DKP equation, say Equation (67). Although both equations,
Equation (67) and (68), are covariant as a whole, this subequation alone is not Lorentz covariant.
Moreover, it cannot be written as manifestly covariant Dirac equation, cf. the end of Section 5. There is
however another possibility of introducing full covariance. Let us consider left and right eigenvectors of
the operator ρµπµ:

ρµ−→πµΦR = mΦR (71a)

ΦLρ
µ←−πµ = mΦL (71b)

where symbols−→πµ,←−πµ mean action of πµ to the right or to the left, respectively (left solutions are actually
used in the Dirac theory, where they are denoted as Ψ̄, they are however related to the right solutions by
the formula Ψ̄ = Ψ†γ0 (symbol † denotes Hermitian conjugation) [11]).
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It turns out that Equation (71), with ΦR =
(
ψ11̇, ψ21̇, ψ

)T
and ΦL = (ψ11̇, ψ21̇, ψ), are equivalent

to Equations (61) and (62) respectively (note that ΦR ≡ Φ) and involve components of the whole spinor
ψAḂ since ΦL =

(
ψ22̇, −ψ12̇, ψ

)
. The same analysis applies to Equation (68), i.e., ρ̃µ−→πµΦ̃R = mΦ̃R,

Φ̃Lρ̃
µ←−πµ = mΦ̃L and Φ̃R =

(
ψ12̇, ψ22̇, ψ

)T
, Φ̃L = (ψ12̇, ψ22̇, ψ) =

(
−π21̇, π11̇, ψ

)
(note that Φ̃R

and ΦL, as well as Φ̃L and ΦR are algebraically related).
We shall now discuss problem of Lorentz covariance of subequations of the Dirac equation,

Equations (63) and (64). Let first note that Equations (69) and (70), as well as Equations (63)
and (64), can be written in covariant form as the Dirac equation with one zero component as
Equations (15,16,37,40), respectively. However, solutions of Equations (63) and (64) do not involve
the whole spinor ψAḂ

Ċ
. We might consider left eigensolutions of the operator ρµπµ again but this does

not change the picture—Equations (63) and (64) involve components ψ11̇
1̇

, ψ21̇
1̇

, ψ12̇
2̇

, ψ22̇
2̇

only as well
as the whole spinor ηĊ . It follows that in Equations (63) and (64) we deal with Lorentz symmetry
breaking—a hypothetical phenomenon considered in some extensions of the Standard Model [37–39].
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