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Abstract: An exciting subject in string theory is to consider some applications of the
AdS/CFT correspondence to realistic systems like condensed matter systems. Since most
of such systems are non-relativistic, an anisotropic scaling symmetry with the general value
of dynamical critical exponent z plays an important role in constructing the gravity duals for
non-relativistic field theories. Supersymmetric extensions of symmetry algebras including
the anisotropic scaling are very helpful to consider holographic relations accurately. We
give a short summary on the classification of superalgebras with the anisotropic scaling as
subalgebras of the following Lie superalgebras, psu(2,2|4), osp(8|4) and osp (8∗|4), which
appear in the study of AdS/CFT in type IIB string and M theories. It contains supersymmetric
extensions of Schrödinger algebra and Lifshitz algebra.
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1. Introduction

One of the most well-studied subjects in string theory is the AdS/CFT correspondence [1–3].
Although it has not been rigorously proven yet, it is supported by an enormous amount of evidence
and there is no doubt for the correspondence. Assuming that it surely holds, there are two important
assets. The one is that AdS/CFT provides us a powerful tool to study the unknown quantum gravity from
the well-known quantum field theory without gravity. The other is that the AdS/CFT correspondence is a
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strong/weak duality and it enables us to study strongly-coupled quantum field theories non-perturbatively
by using a description of classical gravitational theories.

Based on the latter aspect, many applications of AdS/CFT to realistic systems in nature like QCD and
condensed matter physics have been explored enthusiastically (for comprehensive reviews, for example,
see [4,5]). In this direction there is a motive to figure out the holographic description of non-relativistic
field theories because most condensed matter systems are non-relativistic. In particular, having some
applications of AdS/CFT to condensed matter systems in our mind, we are interested in non-relativistic
fixed points. For example, such fixed points appear in real experiments using ultra-cold atoms. The fixed
points exhibit an anisotropic scaling invariance defined by a dynamical critical exponent z like

t → λz t, xi → λxi (i = 1, . . . , d) (1)

where λ is a scaling constant and d is the number of spatial directions. The exponent z measures the
anisotropy in the time direction t. When z = 1, this is the usual scaling symmetry in relativistic field
theories. The case with z ̸= 1 does not respect the Lorentz symmetry any more and the system has
to be realized in a non-relativistic manner. The invariance under the anisotropic scaling (1) is a key
ingredient to construct the spacetime metrics of the gravity duals [6–8]. Then the spacetimes described
by these metrics are homogeneous and are represented by cosets [9]. Thus it is of importance to
consider symmetry algebras with an isotropic scaling invariance like conformal symmetries in conformal
field theories. (For example, the Schrödinger symmetry [10,11] fixes the behavior of two-point
functions [12,13].) The scaling symmetry provides us a first clue in looking for the holographic
description as in the usual study of AdS/CFT.

There are two typical examples of algebras including a non-relativistic scale invariance with z ̸= 1.
The former is the Schrödinger algebra [10,11] and the latter is the Lifshitz algebra (For the explicit
algebra, e.g., see [6,7,9,13]). The Schrödinger algebra comprises the centrally extended Galilean
(Bargmann) algebra and the dilatation with z ̸= 1 . (Rigorously speaking, the z = 2 case is called the
Schrödinger algebra and then the generator of special conformal transformation is contained. However,
for convenience, we will call the algebra with z ̸= 1 the Schrödinger algebra with z loosely as in most
of the recent works.) The Lifshitz algebra consists of time and spatial translations, spatial rotations and
the dilatation with z ̸= 1 (in particular, no Galilean boost). It is well known that the two algebras can
be realized as subalgebras of relativistic conformal algebras (z = 1) and it would be helpful to see a
schematic sequence of the algebras like

Lifshitz algebra ⊂ Schrödinger algebra ⊂ Relativistic conformal algebra .

Thus the non-relativistic algebras are intimately related each other from the point of view of the
algebraic structure.

The purpose of this review article is to give a short summary on the classification of superalgebras with
the anisotropic scaling (1) as subalgebras of the following Lie superalgebras (for other Lie superalgebras,
see earlier works [14,15]), psu(2,2|4), osp(8|4) and osp (8∗|4), which are concerned with AdS/CFT
in type IIB string and M theories. It contains supersymmetric extensions of Schrödinger algebra and
Lifshitz algebra. This classification is basically based on the previous works [16,17] but it contains
a generalization of the results [16,17] to the arbitrary z case and a new result on supersymmetric
Lifshitz algebras.
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This review article is organized as follows. In Section 2 we give general prescriptions to pick
up a subalgebra including an anisotropic scaling. In Section 3 possible superalgebras including the
anisotropic scaling invariance are classified as subalgebras of psu(2,2|4) . In Sections 4 and 5 we
classify superalgebras of osp(8|4) and osp(8∗|4) in the same way. Section 6 is devoted to summary.
In Appendices we summarize the notation and convention of psu(2,2|4), osp(8|4) and osp(8∗|4) utilized
in this article.

2. General Prescriptions

We explain general prescriptions to pick up a subalgebra with an anisotropic scaling in order to make
our discussion clear.

The first is a prescription to pick up subalgebras. As a warm-up, let us consider a relativistic conformal
algebra in four dimensions, that is a portion of the bosonic part of psu(2,2|4) ,

{Pµ, Lµν , D,Kµ} (µ, ν = 0, 1, 2, 3) (2)

Here Pµ describes a time translation and spatial translations, Lµν contains spatial rotations and Lorentz
boosts, D is a relativistic dilatation (z = 1) and Kµ describes special conformal transformations. For a
generator T , the dimension d(T ) is measured as

[D,T ] = d(T )T

It is easy to read the dimensions of the generators

d(Kµ, Lµν , D, Pµ) = (−1, 0, 0, 1)

from the commutation relations of conformal algebra. The dimensions of the generators in the subset

{Pµ, Lµν , D} (3)

are non-negative and the set (3) forms a subalgebra of (2). Thus we can find out a subalgebra by
eliminating negative-dimension generators. This is the case in general and hence should be regarded
as a general prescription to pick up a subalgebra, which is known as Borel subalgebra. In fact, this
prescription picks up less supersymmetric subalgebra, as we will see later.

Furthermore, a smaller subalgebra of (3) can be found because the dilatation D never appears in the
right-hand side of commutators of the generators in (3) . Therefore D can be removed and the reduced
set of the generators,

{Pµ, Lµν}

forms a subalgebra. This is nothing but the Poincaré algebra. This is also the case in general even if the
starting algebra contains many U(1) charges.

The last is how to introduce an anisotropic scaling generator with an arbitrary z. Indeed, the
Schrödinger and Lifshitz algebras are obtained from a relativistic conformal algebra by shifting the
relativistic dilatation D (z = 1) with a certain U(1) generator V like

Dz ≡ D + (z − 1)V (4)
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The anisotropic dilatation generator D̃z plays a central role in our discussions.
Furthermore, it would be convenient to introduce two charges dz and v of Dz and V defined

as, respectively,

[Dz, T ] = dz(T )T (5)

[V, T ] = v(T )T (6)

where T is a generator. The v charge enables us to figure out subalgebras pictorially, as we will see later.

3. Non-Relativistic Superalgebras from psu(2,2|4)

We first classify superalgebras with the anisotropic scaling (1) as subalgebras of psu(2,2|4) , following
the prescriptions described in Section 2. The notation and convention of psu(2,2|4) are summarized in
Appendix A.

Two su(2) subalgebras are contained in psu(2,2|4) like

su(2) + su(2) ⊂ su(2, 2) ⊂ psu(2, 2|4)

Thus there are two u(1) generators L1
1 and L̇1̇

1̇ , which are the Cartan generators of the two su(2)s. By
taking a linear combination of the two generators, a couple of new u(1) generators are defined as

V ≡ L1
1 − L̇1̇

1̇ , U ≡ L1
1 + L̇1̇

1̇

The V is used to shift D while U generates the two-dimensional space rotation.
The resulting v charges of the generators in psu(2,2|4) are summarized as follows:

L1
2, L̇

1̇
2̇ Qa

2, Q̇a2̇ U, V,D,Ra
b Qa

1, Q̇a1̇ L2
1, L̇

2̇
1̇

K11̇, P2̇2 S1
a, Ṡ

a1̇ K12̇, K21̇, P1̇2, P2̇1 S2
a, Ṡ

a2̇ K22̇, P1̇1

v −1 −1/2 0 1/2 1

(7)

The list of d and v charges enables us to represent the generators of psu(2,2|4) on the d-v plane as
depicted in Figure 1 (For d charges, see Appendix A). This d-v plane picture is very helpful to find out
subalgebras. For simplicity, it is convenient to introduce the following notation:

K = K11̇ , Gi = (L1
2, L̇

1̇
2̇) , H = P1̇1 , Pi = (P1̇2, P2̇1) , M = P2̇2

Then we shall give some examples of subalgebras of psu(2,2|4) .

(1) Schrödinger algebra with an arbitrary z and 24 supercharges (d− v ≥ 0)

To deduce the algebra, we have to use the new dilatation generator Dz defined in (4) , instead of the
relativistic dilatation D . Since the generator V appears in the right-hand side of commutators, V must
be included when z ̸= 2 . As we explain in detail as the next example, the z = 2 case is a bit special.

The charges dz and v of the generators are summarized in the following list:

K S1
a, Ṡ

a1̇ U,R,Dz, V Gi Qa
1, Q̇a1̇ Qa

2, Q̇a2̇ H Pi M

dz −z −z/2 0 1− z z/2 (2− z)/2 z 1 2− z

v −1 −1/2 0 −1 1/2 −1/2 1 0 −1
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Figure 1. The psu(2,2|4) generators on the d-v plane.
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Since dz of time translation generator H is z , the dynamical critical exponent also becomes z .
The resulting algebra is generated by the set of the charges,

{K,S1
a, Ṡ

a1̇, U,Ra
b, Dz, V,Gi, Q

a
1, Q̇a1̇, Q

a
2, Q̇a2̇, H, Pi,M} (8)

The set (8) contains 16 supertranslations and 8 superconformal generators. Hence the amount of
supercharges are 24 in total. Note that the generators in (8) are confined in the lower triangular
region (shaded) on the d-v plane (not dz but d!) as depicted in Figure 1. This region is specified
by the Schrödinger condition d − v ≥ 0 . Thus the d-v plane picture is very useful to understand a
subalgebra pictorially.

The commutation relations of the bosonic part are nothing but those of Schrödinger algebra with an
arbitrary z ,

[U, P1] = −P1 , [U, P2] = P2 (9)

[H,Gi] = −Pi , [Gi, Pj] = δijM , [U,G1] = −G1 , [U,G2] = G2 (10)

[K,H] = Dz − (z − 2)V , [K,Pi] = Gi (11)

The (anti-)commutation relations including fermionic generators are

{Qa
1, Q̇b1̇} = δabH , {Qa

2, Q̇b2̇} = δabM , {Qa
1, Q̇b2̇} = δabP2 , {Q̇a1̇, Q

b
2} = δbaP1 (12)

[G1, Q
a
1] = Qa

2 , [G2, Q̇a1̇] = Q̇a2̇ (13)

[H,S1
a] = −Q̇a1̇ , [H, Ṡa1̇] = −Qa

1 , [P1, Ṡ
a1̇] = −Qa

2 , [P2, S
1
a] = −Q̇a2̇

[K,Qa
1] = Ṡa1̇ , [K, Q̇a1̇] = S1

a , {S1
a, Ṡ

b1̇} = δbaK

{Qa
1, S

1
b } = Ra

b +
1

2
δab (Dz + U − (z − 2)V ) , {Qa

2, S
1
b } = δabG1
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{Q̇a1̇, Ṡ
b1̇} = −Rb

a +
1

2
δba (Dz − U − (z − 2)V ) , {Q̇a2̇, Ṡ

b1̇} = δbaG2 (14)

Here trivial (anti-)commutation relations have been omitted. In addition, u(1)2 and su(4) act on these
generators as (5), (6), and (40) in Appendix A.

(2) Schrödinger algebra with z = 2 and 24 supercharges (d− v ≥ 0)

As briefly mentioned before, the case with z = 2 is a bit special because V does not appear in the
right-hand side of the (anti-)commutation relations. It implies that the algebra may be closed without V .

Anyway, V can be eliminated in this case and thus the reduced algebra is generated by the following
set of the generators,

{K,S1
a, Ṡ

a1̇, U,Ra
b, D2, Gi, Q

a
1, Q̇a1̇, Q

a
2, Q̇a2̇, H, Pi,M}

The charge d2 is assigned as in the following list:

K S1
a, Ṡ

a1̇, Gi U,Ra
b, D2, Q

a
2, Q̇a2̇,M Qa

1, Q̇a1̇, Pi H

d2 −2 −1 0 1 2

This algebra contains 24 supercharges and this is nothing but the super Schrödinger algebra found
in [16,17]. This super Schrödinger algebra is realized in the AdS5×S5 background with a periodic
boundary condition for x−-direction corresponding to the generator M [18]. The periodic boundary
condition breaks 8 superconformal symmetries.

According to the prescription explained in Section 2, it is possible to find out a smaller subalgebra
without the dilatation D2 . This is nothing but a supersymmetric (centrally extended) Galilean algebra.

(3) Schrödinger algebra with an arbitrary z and 16 supercharges (d− v ≥ 0 and d ≥ 0)

This algebra is generated by the set of the generators,

{U,Ra
b, Dz, Gi, Q

a
1, Q̇a1̇, Q

a
2, Q̇a2̇, H, Pi,M} (15)

This is the Schrödinger algebra including 16 supercharges. The (anti-)commutation relations are given
by (5), (6), (9), (10), (12), (13) and (40). Note that V has been omitted because it does not appear in the
right-hand side of the commutators. This is usually referred as the Schrödinger algebra with an arbitrary
z in the literature. This subalgebra is specified by imposing an additional condition d ≥ 0 as well as
d − v ≥ 0 . The condition comes from the prescription to eliminate negative dimension generators as
explained in Section 2.

Before moving to Lifshitz examples, we would like to comment on gravity solutions preserving super
Schrödinger symmetry. Such solutions are reported in many literatures (For example, see [19–26]).
Basically, the Schrödinger symmetry is realized by adding a deformation term of pp-wave type to the
AdS spacetime. The deformation term breaks the relativistic superconformal algebra to a smaller one
like a super Schrödinger algebra discussed here. It is an open problem to construct gravity solutions
preserving the super Schrödingier symmetry including K and V , because the isometry seems to be
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enhanced to the full relativistic superconformal algebra by adding K and V . Less supersymmetric
Schrödinger symmetry also appears in this context. All of the symmetry can be found out by considering
smaller subalgebras.

(4) Lifshitz algebra with an arbitrary z and 16 supercharges (d− v ≥ 0 and d+ v ≥ 0)

It is a turn to consider a Lifshitz subalgebra. We consider Dz defined in (4) . The resulting algebra is
generated by the set of the generators,

{U,Ra
b, Dz, Q

a
1, Q̇a1̇, Q

a
2, Q̇a2̇, H, Pi,M} (16)

Note that V has been omitted because it does not appear in the right-hand side of the commutators. This
set contains the usual Lifshitz algebra but there is an additional generator M as the bosonic part, because
M is not a center of the algebra any more when z ̸= 2 . The case with z = 2 is a bit special as we will
explain in the next example. It also contains 16 supercharges and thus the resulting algebra should be
referred to as the super Lifshitz algebra. This subalgebra can be pictorially understood by imposing an
additional Lifshitz condition d+ v ≥ 0 as well as the Schrödinger condition d− v ≥ 0 .

The (anti-)commutation relations are given only by (5), (6), (9), (12) and (40).

(5) Lifshitz algebra with z = 2 and 16 supercharges (d− v ≥ 0 and d+ v ≥ 0)

The generator V may be omitted because it does not appear in the right-hand side of the commutators.
Then the subalgebra is generated by the set of the generators,

{U,R,D2, Q
a
1, Q̇a1̇, Q

a
2, Q̇a2̇, H, Pi,M} (17)

The dynamical critical exponent is given by z = 2 because d2(H) = 2 . The (anti-)commutation relations
are given by (5) with z = 2, (6), (9), (12) and (40). This is the Lifshitz algebra with 16 supercharges
and center M . In the bosonic case M does not appear in the right-hand side of commutators and
hence it can be eliminated to give the usual Lifshitz algebra. However, in the supersymmetric case, the
anti-commutator of Qa

2 and Q̇a2̇ gives rise to M . Thus, by restricting to representations with zero central
charge M , or by dropping Qa

2 and Q̇a2̇ , the generator M can also be removed. In the latter case, the
resulting 8 super Lifshitz algebra is generated by

{U,R,D2, Q
a
1, Q̇a1̇, H, Pi} (18)

Interestingly, gravity solutions of Lifshitz spacetime preserving 8 super Lifshitz symmetry are
found in the literatures [27–33]. The strategy to construct the solutions is the same as in the
Schrödinger spacetime.

Note that the original construction of Lifshitz spacetime with z = 2 starts from a Schrödinger
spacetime with z = 0 [27,28]. This construction can be explained algebraically by identifying the
dilatation D0 in the Schrödinger spacetime with z = 0 with the generator M in the Lifshitz spacetime
with z = 2 . That is, the Lifshitz algebra with z = 2 can also be obtained as a subalgebra of Schrödinger
algebra with z = 0 .
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Figure 2. The osp(8|4) generators on the d-v plane.
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4. Non-Relativistic Superalgebras from osp(8|4)

Next let us consider subalgebras of sp(4) ⊂ osp(8|4) . The detail of our convention and notation
for this superalgebra is summarized in Appendix B. The result is basically the same as in the case of
psu(2,2|4), up to small differences. Thus we will briefly mention the difference and do not try to repeat
the same explanation. For example, the relation to gravity solutions is omitted here.

First let us note that so(1,2) is contained as a subalgebra of osp(8|4) . Then the diagonal u(1) generator
is contained in so(1,2) and it is represented by

V ≡ J11̇

The charge v(T ) of a generator T can be measured with (6) . The values of v(T ) of the generators are
summarized in the list:

J21̇, P22, K1̇1̇ QI2, SI1̇ RIJ , J11̇, D, P12, K1̇2̇ QI1, SI2̇ J12̇, P11, K2̇2̇

v −1 −1/2 0 1/2 1

For d charges see Appendix B. The generators are expressed on the d-v plane (See Figure 2). For
simplicity, it is convenient to introduce the following notation,

K = K1̇1̇ , G = J21̇ , H = P11 , P = P12 , M = P22 (19)

As in the case of psu(2,2|4), it is possible to find out some subalgebras as follows.
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(1) Schrödinger algebra with an arbitrary z and 24 supercharges (d− v ≥ 0)

Let us consider the dilatation generator defined in (4) . The algebra is generated by the set of
the generators,

{K,SI1̇, RIJ , Dz, V,G,QI1, QI2, H, P,M} (20)

All of the generators are confined in the lower triangular region (shaded) on the d-v plane as depicted
in Figure 2. This region is specified by the Schrödinger condition d − v ≥ 0 again as in the case of
psu(2,2|4) . The set (20) contains 16 supertranslations and 8 superconformal symmetries. Hence 24
supercharges are included in total. The charges d̃z and v of the generators are summarized in the list,

K SI1̇ RIJ , Dz, V G QI1 QI2 H P M

dz −z −z/2 0 1− z z/2 (2− z)/2 z 1 2− z

v −1 −1/2 0 −1 1/2 −1/2 1 0 −1

It follows that the dynamical critical exponent is z because dz(H) = z. The commutation relations of
the bosonic subalgebra are given by

[H,G] = −2P , [P,G] = −M (21)

[P,K] = −2G , [H,K] = −4 (Dz − (z − 2)V ) (22)

The (anti-)commutation relations including fermionic generators are given by

{QI1, QJ1} = δIJH , {QI1, QJ2} = δIJP , {QI2, QJ2} = δIJM (23)

[G,QI1] = QI2 (24)

[H,SI1̇] = −2QI1 , [K,QI1] = 2SI1̇ , [P, SI1̇] = −QI2

{QI1, SJ 1̇} = δIJG , {QI1, SJ 1̇} = RIJδIJ (Dz − (z − 2)V )

Note that u(1)2 and so(8) act on the generators, following (5), (6), and (47) in Appendix B.

(2) Schrödinger algebra with z = 2 and 24 super charges (d− v ≥ 0)

The z = 2 case is a bit special and the generator V does not appear in the right-hand side of the
(anti-)commutation relations. This implies that V may be omitted. After eliminating V , the resulting
algebra generated by

{K,SI1̇, RIJ , D2, G,QI1, QI2, H, P,M} (25)

is the Schrödinger algebra with 24 supercharges originally found in [16,17]. Note that the bosonic part
is rigorously the Schrödinger algebra because V is not contained.

According to the prescription in Section 2, the set (25) contains a supersymmetric (centrally extended)
Galilean algebra as a subalgebra.
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(3) Schrödinger algebra with an arbitrary z and 16 supercharges (d− v ≥ 0 and d ≥ 0)

This algebra is generated by the set of the generators,

{RIJ , Dz, G,QI1, QI2, H, P,M} (26)

The region in the d-v plane where all of the generator are confined is specified by an additional condition
d ≥ 0 as well as the Schrödinger condition d − v ≥ 0 . This set contains 16 supercharges (only
supertranslations). The generator V has been omitted because it does not appear in the right-hand side of
the commutators. The (anti-)commutation relations are given by (5), (6), (21), (23), (24) and (47). The
generator M is now a center.

(4) Lifshitz algebra with an arbitrary z and 16 supercharges (d− v ≥ 0 and d+ v ≥ 0)

In the same way as in the case of psu(2,2|4) , it is possible to find out a super Lifshitz algebra. This
algebra is generated by the set of the generators,

{RIJ , Dz, QI1, QI2, H, P,M} (27)

All of the generators are confined the region specified by the Lifshitz condition d+ v ≥ 0 as well as the
Schrödinger condition d − v ≥ 0 . The generator V has been omitted again because it does not appear
in the right-hand side of the commutators. The (anti-)commutation relations are given by (5), (6), (23)
and (47) .

In a special case with z = 2 , the generator M becomes a center but it appears in the anti-commutator
of QI2’s. However, by restricting to representations with zero central charge M , or by removing
supercharges QI2 , the exact Lifshitz algebra is reproduced.

5. Non-Relativistic Superalgebras from osp(8∗|4)

Finally we consider the case of osp(8∗|4) . The notation and convention for osp(8∗|4) are summarized
in Appendix C. The result is basically the same as in the case of psu(2,2|4) and osp(8|4) again, up to
notational differences. We will briefly mention the differences as in the previous section.

Let us consider the diagonal u(1) generator defined as

V ≡ −J14̇ + J41̇ = −J23̇ + J32̇

which is contained in so(1,5) ⊂ so∗(8). Then the v charge is assigned to the generators as in the list:

K1̇4̇, J21̇, J31̇, Q2A, Q3A LAB, U
(1) Q1A, Q4A K2̇3̇, J12̇, J13̇,

P23, J24̇, J34̇ S1̇A, S4̇A, D, V, U (2) S2̇A, S3̇A, P14, J42̇, J43̇

v −1 −1/2 0 1/2 1

Here we have defined

U (1) ≡
{
U

(1)
0 =

1

2
(J14̇ + J41̇), U

(1)
− = J11̇, U

(1)
+ = J44̇

}
U (2) ≡

{
U

(2)
0 =

1

2
(J23̇ + J32̇), U

(2)
+ = J22̇, U

(2)
− = J33̇

}
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Figure 3. The osp(8∗|4) generators on the d-v plane.
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The U (I) with I = 1, 2 generate two su(2)’s , respectively,

[U
(I)
0 , U

(I)
± ] = ±U

(I)
± , [U

(I)
+ , U

(I)
− ] = −2U

(I)
0 (28)

This implies that {U (1), U (2)} generates an so(4) symmetry after all.
The generators are represented on the d-v plane as depicted in Figure 3 (For d charges see

Appendix C). For simplicity, it is convenient to introduce the following notation,

K = K1̇4̇ , Gi = (−J21̇,−J31̇, J24̇, J34̇)

H = P14 , Pi = (P12, P13, P24, P34) , M = P23

Let see some examples of subalgebras of osp(8∗|4) below.

(1) Schrödinger algebra with an arbitrary z and 24 supercharges (d− v ≥ 0)

We use the dilatation generator Dz defined in (4) . The algebra is generated by the set of
the generators,

{K,S1̇A, S4̇A, LAB, Dz, V, U
(1), U (2), Gi, QaA, H, Pi,M} (29)

All of the generators are confined in the lower triangular region (shaded) on the d-v plane as depicted
in Figure 3. This region is specified by the Schrödinger condition d − v ≥ 0 . The set (29) contains
16 supertranslations and 8 superconformal symmetries. Thus the total amount of supercharges is 24.
The charges dz and v are summarized in the list:

K S1̇A, S4̇A LAB, Dz, V, U
(1), U (2) Gi Q1A, Q4A Q2A, Q3A H Pi M

dz −z −z/2 0 1− z z/2 (2− z)/2 z 1 2− z

v −1 −1/2 0 −1 1/2 −1/2 1 0 −1
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It follows that the dynamical critical exponent is z because dz(H) = z . The commutation relations of
bosonic subalgebra are

[H,Gi] = Pi , [Pi, Gj] = αijM (30)

[Pi, K] = Gi , [H,K] = −Dz + (z − 2)V (31)

Here αij are defined as

α14 = α41 = 1 , α23 = α32 = −1 , others = 0

The (anti-)commutation relations including fermionic generators are

{Q1A, Q4A} = −JABH , {Q1A, Q2A} = −JABP1 , {Q1A, Q3A} = −JABP2

{Q2A, Q3A} = −JABM , {Q2A, Q4A} = −JABP3 , {Q3A, Q4A} = −JABP4 (32)

[G1, Q4A] = −Q2A , [G2, Q4A] = −Q3A , [G3, Q1A] = −Q2A , [G4, Q1A] = −Q3A (33)

[H,S1̇A] = Q1A , [H,S4̇A] = Q4A , [K,Q1A] = −S1̇A , [K,Q4A] = −S4̇A

[P1, S4̇A] = Q2A , [P2, S4̇A] = Q3A , [P3, S1̇A] = Q2A , [P4, S1̇A] = Q3A

{Q2A, S1̇B} = JABG1 , {Q3A, S1̇B} = JABG2 , {Q2A, S4̇B} = JABG3

{Q3A, S4̇B} = JABG4 , {S1̇A, S4̇B} = −JABK , {Q1A, S1̇B} = −JABU
(1)
−

{Q1A, S4̇B} = −LAB +
1

2
JAB

(
Dz − 2U

(1)
0 + (2− z)V

)
, {Q4A, S4̇B} = −JABU

(1)
+

{Q4A, S1̇B} = LAB − 1

2
JAB

(
Dz + 2U

(1)
0 + (2− z)V

)
(34)

Note that the bosonic symmetry generators of u(1)2, so(4) and so(5) act on the generators in the obvious
way, following (5), (6), (28), and (49) in Appendix C, respectively.

(2) Schrödinger algebra with z = 2 and 24 supercharges (d− v ≥ 0)

The case with z = 2 is a bit special again. Then V does not appear in the right-hand side of
commutators. It implies that V may be eliminated when z = 2 . The reduced algebra is generated
by the set of the generators,

{K,S1̇A, S4̇A, LAB, D2, U
(1), U (2), Gi, QaA, H, Pi,M} (35)

It contains 24 supercharges in total and is the same as the result found in [16,17]. A supersymmetric
(centrally extended) Galilean algebra can also be found as a subalgebra.

(3) Schrödinger algebra with an arbitrary z and 16 supercharges (d− v ≥ 0 and d ≥ 0)

The algebra is generated by the set of the generators,

{LAB, Dz, U
(1), U (2), Gi, QaA, H, Pi,M} (36)

The generators are confined in the region specified by an additional condition d ≥ 0 as well as the
Schrödinger condition d − v ≥ 0 . It contains 16 supercharges. The generator V has been omitted
because it does not appear in the right-hand side of the commutators. The (anti-)commutation relations
are given by (5), (6), (30), (32), (33), (28) and (49).
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(4) Lifshitz algebra with an arbitrary z and 16 supercharges (d− v ≥ 0 and d+ v ≥ 0)

This algebra is generated by the set of the generators,

{LAB, Dz, U
(1), U (2), QaA, H, Pi,M} (37)

The generators are in the region fixed by the Lifshitz condition d+ v ≥ 0 and the Schrödinger condition
d− v ≥ 0 . This set contains 16 supersymmetries. Again we have omitted V because it does not appear
in the right-hand side of the commutators. The (anti-)commutation relations are given by (5), (6), (28),
(32) and (49).

In the same way as in the case of psu(2,2|4) and osp(8|4) , it is possible to realize the exact Lifshitz
algebra when z = 2 , by restricting to representations with zero central charge M or by removing half of
supersymmetries.

6. Summary

We have presented a classification of superalgebras with the anisotropic scaling (1) as subalgebras
of the superalgebras: psu(2,2|4), osp(8|4) and osp (8∗|4), which are concerned with AdS/CFT in type
IIB string and M theories. Our method to extract subalgebras is basically to find Borel subalgebras
of these superalgebras. It enables us to derive non-relativistic scaling algebras systematically. In
particular, we have considered two u(1) charges, d and v, and supersymmetric extensions of Schrödinger
algebra and Lifshitz algebra have been obtained. This method provides us a pictorial understanding on
non-relativistic scaling superalgebras obtained in the previous works [16,17]. Furthermore, we have
extracted Schrödinger superalgebras and Lifshitz superalgebras with arbitrary z. We hope that our result
would be useful in constructing gravity solutions preserving superalgebras including the anisotropic
scaling and in discussing the relation to the field-theory side.
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A. psu(2,2|4)

Let us introduce the superalgebra, psu(2,2|4), following the notation of [34]. The number in a box
represents the number of independent generators.

We begin with u(2,2|4), in which the (anti-)commutation relations are given by

• su(2) Lα
β (L1

1 = −L2
2, L

1
2 and L2

1) 3

[Lα
β, Jγ] = δαγ Jβ −

1

2
δαβJγ , [Lα

β, J
γ] = −δγβJ

α +
1

2
δαβJ

γ (38)
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• su(2) L̇α̇
β̇ (L̇1̇

1̇ = −L̇2̇
2̇, L̇

1̇
2̇ and L̇2̇

1̇) 3

[L̇α̇
β̇, Jγ̇] = δα̇γ̇ Jβ̇ −

1

2
δα̇
β̇
Jγ̇ , [L̇α̇

β̇, J
γ̇] = −δγ̇

β̇
J α̇ +

1

2
δα̇
β̇
J γ̇ (39)

• su(4) Ra
b (a, b, c = 1, 2, 3, 4) 15

[Ra
b, Jc] = δacJb −

1

4
δabJc , [Ra

b, J
c] = −δcbJ

a +
1

4
δabJ

c (40)

• dilatation D 1

[D, J ] = d(J) J ,
K S, Ṡ L,R Q, Q̇ P

d −1 −1/2 0 1/2 1
(41)

• hypercharge B

[B, J ] = hyp(J) J , hyp(Q, Q̇, S, Ṡ) = (1
2
,−1

2
,−1

2
, 1
2
) (42)

• central charge C

• supertranslation Qa
β (its conjugate Q̇α̇b)

superconformal symmetry Sα
b (its conjugate Ṡaβ̇) 16 + 16

{Q̇α̇a, Q
b
β} = δbaPα̇β {Ṡaα̇, Sβ

b } = δabK
βα̇

{Sα
a , Q

b
β} = δbaL

α
β + δαβR

b
a +

1

2
δbaδ

α
β (D − C)

{Ṡaα̇, Q̇β̇b} = δab L̇
α̇
β̇ − δα̇

β̇
Ra

b +
1

2
δab δ

α̇
β̇
(D + C)

• translation Pα̇β and special conformal transformation Kαβ̇ 4 + 4

[Sα
a , Pβ̇γ ] = δαγ Q̇β̇a [Ṡaα̇, Pβ̇γ] = δα̇

β̇
Qa

γ

[Kαβ̇, Q̇γ̇c] = δβ̇γ̇S
α
c [Kαβ̇, Qc

γ] = δαγ Ṡ
cβ̇

[Kαβ̇, Pγ̇δ] = δβ̇γ̇L
α
δ + δαδ L̇

β̇
γ̇ + δαδ δ

β̇
γ̇D

We are interested in psu(2,2|4) and so we set B = C = 0 here.

B. osp(p|2q)

A superalgebra is a Z2-graded linear space g = g0 ⊕ g1 with multiplication, Lie superbracket [ , }:
g × g → g characterized by the three properties

[a, b} = −(−1)|a| |b|[b, a}
|[a, b}| = |a|+ |b| mod 2

[[a, b}, c} − (−1)|c|(|a|+|b|)[[c, a}, b} − (−1)|a|(|b|+|c|)[[b, c}, a} = 0
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where

|a| =

{
1 if a ∈ g1

0 if a ∈ g0

It follows from (1.2) that

[g0, g0] ⊂ g0 , [g0, g1] ⊂ g1 , {g1, g1} ⊂ g0

The elements in g0 (g1) are called even (odd) .
Let us consider the set of all (p+ 2q)× (p+ 2q) complex matrices

F =

(
Ap×p iBp×2q

C2q×p D2q×2q

)

which forms a superalgebra gl(p|2q;C). By imposing the condition that the supertrace should vanish,

strF ≡ trA− trD ≡ 0

the superalgebra reduces to sl(p|2q;C). The superalgebra osp(p|2q;C) is a subalgebra of sl(p|2q;C)
under an additional condition

F sT Ω + ΩF = 0 (43)

Here we have introduced the following quantities,

F sT =

(
AT −CT

iBT DT

)
Ω ≡

(
1p×p 0

0 iJ2q×2q

)
, J ≡

(
0 1q×q

−1q×q 0

)

Namely,

AT = −A , B = CTJ , DT J + J D = 0

which imply that A ∈ so(p) and D ∈ sp(2q) . Furthermore, one may impose the reality condition

F s∗ = F , F s∗ =

(
A∗ iB∗

C∗ D∗

)
(44)

This is compatible with (43) and then the superalgebra is osp(p|2q;R) with A∗ = A, B∗ = B, C∗ = C

and D∗ = D.
It is convenient to consider the following matrix,

M = FΩ =

(
A −BJ
C iDJ

)

where F ∈ osp(p|2q). It follows that

AT = −A , CT = −BJ , (DJ )T = DJ
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Let us denote the components of M like

MIJ = RIJ = −RJI , MAB = iLAB = iLBA , MIA = QIA = QAI

where I, J = 1, · · · , p and A = 1, · · · , 2q . Then the (anti-)commutation relations of osp(p|2q) are

[RIJ , RKL] = δJKRIL − δJLRIK − δIKRJL + δILRJK

[LAB, LCD] = −JBCLAD − JBDLAC − JACLBD − JADLBC

[RIJ , QKA] = δJKQIA − δIKQJA

[LAB, QIC ] = −JBCQIA − JACQIB

{QIA, QJB} = δIJLAB − JABRIJ

Example: osp(8|4)

As a concrete example, let us consider osp(8|4) . Its (anti-)commutation relations are given by

[RIJ , RKL] = δJKRIL − δJLRIK − δIKRJL + δILRJK

[LAB, LCD] = −JBCLAD − JBDLAC − JACLBD − JADLBC

[RIJ , QKA] = δJKQIA − δIKQJA

[LAB, QIC ] = −JBCQIA − JACQIB

{QIA, QJB} = δIJLAB − JABRIJ

where

• RIJ = −RJI (I, J = 1, · · · , 8) generates so(8) 28 ,

• LAB = LBA (A = 1, · · · , 4) generates sp(4) 10 , and JAB is the symplectic form .

Let us decompose A into (α, α̇) with α, α̇ = 1, 2 . Then the related quantities are rewritten as

LAB =

(
Pαβ Jαβ̇ +

2
q
Dδαβ̇

Jα̇β +
2
q
Dδα̇β Kα̇β̇

)
, QIA = (QIα, QIα̇) (45)

where we take q = 2 for osp(8|4) and δαβ̇ = δαβ Note that

trJaβ̇ = J11̇ + J22̇ = 0 (46)

and hence J11̇, J12̇ and J21̇ are regarded as independent generators. It is straightforward to rewrite the
(anti-)commutation relations of osp(8|4) in terms of these generators.

• so(8) 28

[RIJ , OK ] = δJKOI − δIKOJ (47)

• so(1,2) (J11̇ = −J22̇ , J12̇ and J21̇) 3

[Jαβ̇, Oγ] = δβ̇γOα − 1

q
δαβ̇Oγ , [Jαβ̇, Oγ̇] = −δαγ̇Oβ̇ +

1

q
δαβ̇Oγ̇
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• dilatation 1

[D,O] = d(O)O
Kα̇β̇ SIα̇ Jαβ̇, D,RIJ QIα Pαβ

d −1 −1/2 0 1/2 1
(48)

• supertranslation QIα and superconformal symmetry SIα̇ 16 + 16

{QIα, QJβ} = δIJPαβ , {SIα̇, SJβ̇} = δIJKα̇β̇

{QIα, SJβ̇} = δIJJαβ̇ + δαβ̇

(
2

q
δIJD −RIJ

)
• translation Pαβ (= Pβα) and special conformal transformation Kα̇β̇ (= Kβ̇α̇) 3 + 3

[Pαβ, SIγ̇] = −δβγ̇QIα − δαγ̇QIβ , [Kα̇β̇, QIγ] = δβ̇γSIα̇ + δα̇γSIβ̇

[Pαβ, Kγ̇δ̇] = −δβγ̇Jαδ̇ − δαγ̇Jβδ̇ − δβδ̇Jαγ̇ − δαδ̇Jβγ̇ −
4

q
(δβγ̇δαδ̇ + δαγ̇δβδ̇)D

C. osp(8∗|4)

We introduce here the superalgebra, osp(8∗|4) . Its bosonic part is

so∗(8)⊕ usp(4) ≃ so(2, 6)⊕ so(5) 28 + 10

It is convenient to work with matrices with spinor indices for so(2,6) below [35] . The (anti-)commutation
relations of osp(8∗|4) are given by

[RIJ , RKL] = CJKRIL − CJLRIK − CIKRJL + CILRJK

[LAB, LCD] = −JBCLAD − JBDLAC − JACLBD − JADLBC

[RIJ , QKA] = CJKQIA − CIKQJA

[LAB, QIC ] = −JBCQIA − JACQIB

{QIA, QJB} = CIJLAB − JABRIJ

where I, J = 1, · · · , 8 are spinor indices for chiral subspace of so(2,6) and thus (1 + 5)-dimensional
spinor indices [36]. The charge conjugation matrix CIJ is symmetric, CIJ = CJI . The indices
A,B = 1, · · · , 4 are for usp(4) and JAB is the symplectic form. The anti-symmetric matrix RIJ

generates so(2,6) . The symmetric matrix LAB generates usp(4).
Let us decompose the index I into (a, ȧ) with a = 1, · · · , 4 and ȧ = 1̇, · · · , 4̇ . Then the related

quantities are rewritten as [37].

RIJ =

(
Pab Jaḃ +

1
2
caḃD

Jȧb − 1
2
cȧbD Kȧḃ

)
, CIJ =

(
0 c

cT 0

)
D =

1

2
caḃRaḃ , QIA = (QaA, SȧA) , caḃJaḃ = 0

We use here the spinor basis in which

caḃ =

(
0 −ϵ

−ϵ 0

)
, ϵ =

(
0 1

−1 0

)
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Note that caḃcḃc = δac and cḃa = caḃ .

It is straightforward to rewrite the (anti-)commutation relations of osp(8∗|4) in terms of
these generators.

• so(1,5) Jaḃ (−J14̇ + J23̇ − J32̇ + J41̇ = 0) 15

[Jaḃ, Tc] = cḃcTa −
1

4
caḃTc , [Jaḃ, Tċ] = −caċTḃ +

1

4
caḃTċ

• usp(4)≃so(5) LAB 10

[LAB, TC ] = −JBCTA − JACTB (49)

• dilatation D 1

[D,T ] = d(T )T
Kȧḃ SȧA D, Jaḃ, LAB QaA Pab

d −1 −1/2 0 1/2 1
(50)

• supertranslation QaA and superconformal symmetry SȧA 16+16

{QaA, QbB} = −JABPab , {SȧA, SḃB} = −JABKȧḃ

{QaA, SḃB} = caḃLAB − JAB

(
Jaḃ +

1

2
caḃD

)

• translation Pab (= −Pba) and special conformal transformation Kȧḃ (= −Kḃȧ) 6+6

[Pab, SċA] = cbċQaA − caċQbA , [Kȧḃ, QcA] = cḃcSȧA − cȧcSḃA

[Pab, Kċḋ] = cbċJaḋ − caċJbḋ − cbḋJaċ + caḋJbċ + (cbċcaḋ − caċcbḋ)D
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