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Abstract: The structure of β-Mn crystallizes in space group P4132. The pseudo 8-fold 

nature of the 41 axes makes it constitute an approximant to the octagonal quasicrystals. In 

this paper we analyze why a five-dimensional super space group containing mutually 

perpendicular 8-fold axes cannot generate P4132 on projection to 3-d space and how this 

may instead be accomplished from a six-dimensional model. A procedure for generating 

the actual structure of β-Mn lifted to six-dimensional space is given. 
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1. Introduction 

The octagonal quasi crystals (oQC) discovered by Kuo and his co-workers [1,2], in the late 1980s 

are elusive for many reasons. They are difficult to make as attested to by the small number of oQCs 

found so far, and they are all, so far, produced by rapid quenching. Sample quality is therefore limited. 

The structural models suggested have been produced either by manually fitting distorted β-Mn 

structures to the observed electron diffraction pattern [3] or by simulations of the crystallization of a 

monoatomic liquid [4]. One further aspect that makes the structure of the oQCs difficult to analyse is 

the occurrence of one approximant, and one approximant only, namely β-Mn. The structure of β-Mn is 

shown in Figure 1. In this figure we have chosen to highlight the rod-packing aspect of the structure, 

showing how it may be decomposed into three mutually perpendicular helices of face-sharing 

tetrahedra. This aspect of the structure has been analysed fully by previously [5,6].  
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Figure 1. The structure of β-Mn represented as a packing of three mutually perpendicular 

sets of tetrahelices. Each tetrahelix has a symmetry close to 83. 

 

This approximant is enigmatic since β-Mn is acentric, cubic (P4132). By lifting β-Mn to higher 

space, we may generate a structure where the three mutually perpendicular, pseudo 8-fold axes are 

truly 8-fold. An axial QC would be expected to be describable as a projection from a  

five-dimensional, hyperspace. As it turns out, however, a simple analysis shows that this cannot be 

done for β-Mn. As we attempt to show in this paper, this conundrum is resolved by recourse to a  

six-dimensional, tri-iso-octagonal orthogonal super space group that contains both the five dimensional 

super space group that projects onto the oQC and the three dimensional cubic space group P4132 as 

sub periodic groups. The principle is simple: In six dimensional space, it is possible to generate three 

mutually perpendicular 8 fold axes, and on projection to a five dimensional subspace, one of these may 

be preserved, while a projection to three-dimensional space may preserve only 4 fold axis. The 

procedure we are using owns a lot to that used by Lee et al. in a paper dealing with the unexpected 

occurrence of mutually perpendicular 5 fold axis in large cubic intermetallic structures [7].  

2. Results and Discussion 

The purpose of this paper is to show why a five-dimensional space description of the oQC 

approximant β-Mn is unsatisfactory and why a six dimensional description much better captures the 

nature of this structure. We will do this by considering the implications of five- and six-dimensional 

descriptions on this structure  

2.1. Preliminary Considerations is Five Dimensional Space 

An 8-fold axis in five-dimensional space is most easily described as the operation that permutes 

positive and negative axial direction with respect to one invariant axis. This is perfectly analogous to 

the 4-fold rotation in three-dimensional space. Using the notation introduced by Deonarine and 
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Birman [8], where a permutation is simply given as a sequence of integers and a change of sign as a 

minus we may write the 4-fold rotation in 3 dimensions as 

13-2 => 1-2-3 => 1-32 => 123 

And the 8-fold rotation in five-dimensional space as 

1345-2 => 145-2-3 => 15-2-3-4 => 1-2-3-4-5 => 1-3-4-52 => 1-4-523 => 1-5234 => 12345 

There are obviously 5 independent and mutually perpendicular axes in five-dimensional space, and 

we may chose any set of three to attempt to generate the point group that will project onto  

three-dimensional space as 432. Interestingly, this turns out to be impossible, as we show below.  

Using two orthogonal 8-fold axes as generators induces a total of 1920 symmetry operators in  

five-dimensional space, a factor of 2 short of the five-dimensional hyper cubic holohedry 25 × 5! = 3840. 

This means that all permutations of indices are realized and half of the permutations of sign (those with 

even parity): 

12345; 

-1-2-3-45; -1-2-34-5; -1-23-4-5; -12-3-4-5; 1-2-3-4-5; 

-1-2345; -12-345; -123-45; -1234-5; 1-2-345; 1-23-45; 1-234-5; 12-3-45; 12-34-5; 123-4-5; 

Axial projection of these operators along any two axes will yield an inversion, e.g., dropping the 

last two indices yields: 

123; 

-1-2-3; -1-23; -12-3; 1-2-3; 

-123; 1-23; 12-3; 

and additionally some redundancies. Since all permutations in five-dimensional space are covered, the 

same will be true in three-dimensional space, and therefore the projection onto three-dimensional 

space of the five-dimensional superspace point group generated by two orthogonal 8-fold axes will be 

the cubic holohedry in three-dimensional space, m-3m. Thus we find that it is not possible to project 

the point group of β-Mn, 432 from a five-dimensional super space point group containing orthogonal 

8-fold axes and hence not the three-dimensional space group P4132 from any five-dimensional super 

space group containing orthogonal 8-fold axes.  

2.2. Preliminary Considerations is Six Dimensional Space 

The holohedral hypercubic point group in six dimensional space is a bit of a monster with an order 

corresponding to the full set of permutations of positions and signs of all six indices, amounting to  

26 × 6! possible symmetry operations (=46080), a rather unwieldy number. Nevertheless, a full 

analysis of the character table for this group has been published [8].   

The holohedral hypercubic six dimensional pointgroup B6 contains five distinct sets of 8 fold 

operations. Basically these are quite similar. The 8-fold operation in six dimensional space is a hyper 

rotation that permutes four indices out of six, and changes the sign of one of those to produce an  

8 fold operation. Simultaneously, the remaining two indices may be involved in another operation, 
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creating a double rotation. The different possibilities are classified in the paper by Deonarine and 

Birman [8] as shown in Table 1. 

Table 1. 8-fold hyper-rotations about the plane given by indices 1 and 2. 

Class 43 45 47 49 51 
Operation in 

12 plane 
Invariant Reflection 

in 1 or 2 
C2 rotation 

perp 12 
C2 rotation 
within 12 

C4 rotation 
within 12 

M1 1 2 4 5 6-3 1-2 4 5 6-3 -1-2 4 5 6-3 2 1 4 5 6-3  2-1 4 5 6-3 
M2 1 2 5 6-3-4 1 2 5 6-3-4  1 2 5 6-3-4 1 2 5 6-3-4 -1-2 5 6-3-4 
M3 1 2 6-3-4-5 1-2 6-3-4-5 -1-2 6-3-4-5 2 1 6-3-4-5 -2 1 6-3-4-5 
M4 1 2-3-4-5-6 1 2-3-4-5-6   1 2-3-4-5-6 1 2-3-4-5-6  1 2-3-4-5-6 
M5 1 2-4-5-6 3 1-2-4-5-6 3 -1-2-4-5-6 3 2 1-4-5-6 3  2-1-4-5-6 3 
M6 1 2-5-6 3 4 1 2-5-6 3 4  1 2-5-6 3 4 1 2-5-6 3 4 -1-2-5-6 3 4 
M7 1 2-6 3 4 5 1-2-6 3 4 5 -1-2-6 3 4 5 2 1-6 3 4 5 -2 1-6 3 4 5 
M8 1 2 3 4 5 6 1 2 3 4 5 6  1 2 3 4 5 6 1 2 3 4 5 6  1 2 3 4 5 6 

Projecting these operations into five dimensional space and three dimensional space, respectively, 

making the operations axial may be achieved using the projection matrices: 

 A B  0  0  0  0   

 0  0  1  0  0  0  A B  0  0  0  0 

P6->5 = 0  0  0  1  0  0 P6->3 0  0  A B  0  0 

 0  0  0  0  1  0  0  0  0  0  A B 

 0  0  0  0  0  1   

Now it can be shown by direct computation that a basis set consisting of three mutually 

perpendicular 8 fold axes from class 43, that is, the set will generate a group of order 3840 that 

contains a hyper space inversion centre -1-2-3-4-5-6: 

M1 = 1 2 4 5 6-3;  M2 = 2-5 3 4 6 1; M3 = 2 3 4-1 5 6; 

This is again incompatible with the point group 432. Since classes 45 and 47 generate the same 

inversion operation, all these cases may be discarded for our purposes. The remaining choices are class 

49 and 51. The projection matrix P6->5 should result in an axial 5 dimensional group with 8-fold 

rotational symmetry. For class 49 this requires that A + B = B + A, which is trivially true. For class 51, 

that requirement is instead A + B = B − A = − A − B = − B + A which is equally trivially incompatible 

with any other solution than A = B = 0, rendering the class 51 option unhelpful.  

The only remaining choice for a point group is that generated by a set of three mutually 

perpendicular 8 fold axes of class 49: 

M1 = 2 1 4 5 6-3; M2 = 2-5 4 3 6 1; M3 = 2 3 4-1 6 5; 

Direct computation yields a point group with only 576 elements. This group contains no axes of  

12- 10- or 5-fold symmetry. To generate the corresponding super space group that contains  

83 operations as reported for the oQC, we simply add a translational part to the point group operations 

so that the three generators become 
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M1 = 2 1 4 5 6-3 + (3/8 3/8 3/8 7/8 3/8 7/8); 

M2 = 2-5 4 3 6 1 + (3/8 7/8 3/8 3/8 3/8 7/8); 

M3 = 2 3 4-1 6 5 + (3/8 7/8 3/8 7/8 3/8 3/8); 

Again a direct computation shows that this yields a closed group with 576 elements. In the table 

below, the following information is given. The different classes of the rotational part of the super space 

group operations as defined by Deonarine and Birman, the general type of operation such as single 

rotation (Cx), double rotation (Cx, Cy), etc., the number of such operations in the group, the typical 

form from which the invariants are easily found, the translational part of the operations given as 

multiples of eighths along the six axes in super space, and finally a generation of the operation from 

the basic operations M1, M2, M3 are all given in Table 2 below. The generating form is a sequence of 

basis operations needed to generate a particular operation. Example: Since the 3-fold double rotation 

that permutes the even indices and the odd indices simultaneously, (class 39) is generated by the 

sequence of operations M2(M1(M1(M3))), the generating form of that operation is given as 2113.  

Table 2. Summary of the symmetry operators in the super space group. 

Deonarine-Birman 
class 

Type Number Typical form Translational 
part (* 1/8) 

Generating form 
M1, M2, M3 

50 C4, C4 144 2-1 4 5 6 3 3 7 3 3 3 7 111111212 
49 C8, C2 144 2 1 4 5 6-3 3 3 3 7 3 7 1 
39 C3, C3 64 3 4 5 6 1 2 0 0 0 0 0 0 2113 
35 C3, C2 48 1 4-3 6-5 2 4 0 4 0 0 0 2111 
31 C3 16 1 4 3 6 5 2 0 0 0 0 0 0 112112112111 
24 C2, C2 ,C2 36 -1-2 5 6 3 4 2 4 6 6 2 2 222113 
22 C4, C2, 　 72 1-2-5 6 3 4 2 4 2 6 6 2 212111 
20 C4, C4 36 1 2 5 6-3-4 6 6 2 2 2 4 11 
5 C2,C2 9 1 2-3-4-5-6 4 4 4 6 0 2 1111 
3 C2 6 1 2 3-4 5-6 0 4 0 6 0 2 21111121 
1 C1 1 1 2 3 4 5 6 0 0 0 0 0 0 11111111 

2.3. Projection to 3D 

The general projection matrix to 3D is given by 

 A B  0  0  0  0 

P6->3 0  0  A B  0  0 

 0  0  0  0  A B 

And the simplest alternative is A = 1, B = 0. Allowing this projector to act on the different classes 

of the 6D point group we find that those generate the much reduced set given in Table 3 below.  
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Table 3. Projected symmetry operations in three-dimensional space. 

Classes Typical form Translational part 
eights 

3D symmetry 

1,3,31 1 3 5 0 0 0 x y z 
5,35 1-3-5 4 4 0 ½ + x ½-y-z 
20 1 5-3 6 2 2 ¾ + x ¼ + z ¼-y  
22 1-5 3 2 2 6 ¼ + x ¼-z ¾ + y 
24 -1 5 3 2 6 2 ¼-x ¾ + z ¼ + y 
39 3 5 1 0 0 0 y z x 

49,50 2 4 6 3 3 3 Creation of a second 
independent position 

The 3D space group may be easily identified directly from this as P4132. Each position in 6D space 

will generate two separate orbits depending on the values of the odd and even coordinates respectively.  

For this case, it is trivial to determine the single position in 6D space that generates the β-Mn 

structure upon projection into 3D. The values of coordinates 1, 3 and 5 are given by the x, y and z 

coordinates of the first atomic position in β-Mn, i.e., (0.0635 0.0635 0.0635). The second position is 

generated by the action of the symmetry operator 2 1 4 5 6-3 + (3/8 3/8 3/8 7/8 3/8 7/8) on this 

position, and subsequent projection. The result of this procedure is 2 4 6 + (3/8 3/8 3/8), and since the 

second position in β-Mn is (0.125 0.20221 0.45221), we get immediately that values of coordinates 2, 

4 and 6 must be (−0.25 −0.17579 0.075221), and that the single position in 6d space may be specified 

as (0.0635, −0.25, 0.0635, −0.17579, 0.0635, 0.07721). This is not a general (576 fold) position in the 

super space group, but a special (192 fold) position, of 3 fold degeneracy. Specifically the operations 

that leave this position invariant are those of class 31 that permute the odd indices, keeping the even 

indices invariant: 

5 2 1 4 3 6 + (0 0 0 0 0 0) and 3 2 5 4 1 6 + (0 0 0 0 0 0). 

It is of course to be expected that the 3-fold degeneracy of position 8c in β-Mn must be generated 

by a 3-fold degenerate position in six-dimensional space.  

2.4. Projection to 5D 

To preserve the 8-fold nature of the unique axis, we need to fix the values A and B of the  

projection matrix: 

 A B  0  0  0  0 

 0  0  1  0  0  0 

P6->5 = 0  0  0  1  0  0 

 0  0  0  0  1  0 

 0  0  0  0  0  1 

Since the 8-fold rotation also permutes A and B, those must be equal, or the 8 fold axis will 

degenerate into two separate orbits. Putting A = B = 0.5 generates a projection according to Table 4. 
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Table 4. Preservation of the unique 8-fold axis upon projection into five-dimensional space. 

Operation 
Rotational 

part 
Translational 

part 
Projection 

rotation part 
Projection 

transational part 

M1
1 2 1 4 5 6-3 3 3 3 7 3 7 1' 4 5 6-3 3 3 7 3 7 

M1
2 1 2 5 6-3-4 6 6 2 2 2 4 1' 5 6-3-4 6 2 2 2 4 

M1
3 2 1 6-3-4-5 1 1 5 1 7 5 1' 6-3-4-5 1 5 1 7 5 

M1
4 1 2-3-4-5-6 4 4 4 6 0 2 1' -3-4-5-6 4 4 6 0 2 

M1
5 2 1-4-5-6 3 7 7 1 7 5 3 1' -4-5-6 3 7 1 7 5 3 

M1
6 1 2-5-6 3 4 2 2 2 4 6 6 1' 2-5-6 3 4 2 2 4 6 6 

M1
7 2 1-6 3 4 5 5 5 7 5 1 5 1'-6 3 4 5 5 7 5 1 5 

M1
8 1 2 3 4 5 6 0 0 0 0 0 0 1' 3 4 5 6 0 0 0 0 0 

This means that the 83 axis is preserved under the projection. Examining another 8-fold axis of 

rotation is enlightening. The orbit splits into 4 pairs of operations that leave the plane spanned by the 

basis vectors 3 and 4 invariant according to Table 5. It is notable that the translational part of the 

operations within that invariant plane is always ½ ½. Apart from this translational part, the operation 

contains an inversion of the other three indices. This means that the projection generates binary 

operations perpendicular to the unique axis in five-dimensional space.  

3. Conclusions  

Although the super space group of the oQC may be generated directly in five-dimensional space, 

without recourse to the procedure outlined above, we believe that it is useful to involve an analysis of 

the relationship between the octagonal QC and the structure of β-Mn in six-dimensional space if the 

cubic approximant is going to be used in the modelling of the structure of the oQC.  

Table 5. Orbit splitting of an 8-fold axis upon projection into five-dimensional space. 

Operation Rotational 
part 

Translational 
part 

Projection 
rotation part 

Projection 
translatinal part 

New orbit 

M2
1 2-5 4 3 6 1 3 7 3 3 3 7 1' 4 3 6 1 5 3 3 3 7 I 

M2
2 -5-6 3 4 1 2 2 4 6 6 2 2  2' 3 4 1 2 3 6 6 2 2 II 

M2
3 -6-1 4 3 2-5 7 5 1 1 5 1  3' 4 3 2-5 6 1 1 5 1 II 

M2
4 -1-2 3 4-5-6 0 2 4 4 4 6  4' 3 4-5-6 1 4 4 4 6 IV 

M2
5 -2 5 4 3-6-1 5 3 7 7 1 7  -1' 4 3-6-1 4 7 7 1 7 I 

M2
6 5 6 3 4-1-2 6 6 2 2 2 4  -2' 3 4-1-2 6 2 2 2 4 II 

M2
7 6 1 4 3-2 5 1 5 5 5 7 5  -3' 4 3-2 5 3 5 5 7 5 III 

M2
8 1 2 3 4 5 6 0 0 0 0 0 0 -4' 3 4 5 6  0 0 0 0 0 IV 
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