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Abstract: A sigma model with four-dimensional target space parametrized by chiral and
twisted chiral N =(2, 2) superfields can be extended to N =(4, 4) supersymmetry off-shell,
but this is not true for a model of semichiral fields, where the N = (4, 4) supersymmetry
can only be realized on-shell. The two models can be related to each other by T-duality.
In this paper we perform a duality transformation from a chiral and twisted chiral model
with off-shell N = (4, 4) supersymmetry to a semichiral model. We find that additional
non-linear terms must be added to the original transformations to obtain a semichiral model
with N =(4, 4) supersymmetry, and that the algebra closes on-shell as a direct consequence
of the T-duality.
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1. Introduction

It is a well-known fact that non-linear sigma models with extended supersymmetry have constrained
target space geometries. A two-dimensional N = (1, 1) supersymmetric sigma model without an
anti-symmetric tensor in the target space allows for N = (2, 2) and N = (4, 4) supersymmetry if
and only if the target manifold is Kähler and hyperkähler, respectively [1,2]. This interplay between
supersymmetry, sigma models and geometry has been used as a tool to investigate certain geometries;
for example, generalized Kähler geometry can be described locally by a manifestN=(2, 2) sigma model
with chiral, twisted chiral and semichiral superfields [3].
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Supersymmetric sigma models possess a rich variety of dualities that relate different superfields and
geometries [4,5]. When an isometry is present in the sigma model, the gauged isometry can be used to
perform a duality transformation.

A sigma model parametrized by N = (2, 2) manifestly supersymmetric chiral and twisted chiral
fields allows for additional off-shell N = (4, 4) supersymmetry if and only if the Lagrangian satisfies
a Laplace equation [6], as will be reviewed in Section 4. If this model possesses an abelian
translational isometry, it can be dualized to a sigma model parametrized by semichiral fields describing a
hyperkähler manifold [7].

But a sigma model parametrized by semichiral superfields cannot incorporate off-shell N = (4, 4)

supersymmetry if the target space is four-dimensional [8]. The extended supersymmetry can only occur
on-shell or if the target space is 4d-dimensional with d > 1 [9]. The explicit structure of on-shell
N=(4, 4) supersymmetry in four dimensions was investigated in a recent paper [10].

In this paper we investigate the nature of the N =(4, 4) supersymmetry under T-duality. Symmetries
that do not commute with the Killing vector field needed for T-duality transformations cannot be
manifest in the dual model, and rotational, i.e., not holomorphic, Killing vector fields are not compatible
with abelian T-duality [11,12]. But the Killing vector needed for the duality between a sigma
model parametrized by chiral and twisted chiral fields, and one parametrized by semichiral fields, is
translational and has constant components, so the isometry trivially commutes with the supersymmetry
transformations. In general, the geometry of a dual model of a N=(4, 4) chiral and twisted chiral model
is not necessarily hyperkähler [13], but if the isometry is translational, it is. Hence, we expect the dual
semichiral model to be hyperkähler.

Starting from a sigma model with N = (4, 4) supersymmetry, described by chiral and twisted chiral
fields, we dualize to a model described by semichiral fields and analyze the obstructions of the additional
supersymmetry on the dual model. We find that new non-linear terms must be added to the known [6]
linear transformations for the chiral and twisted chiral fields, in order to dualize into supersymmetry
transformations for the semichiral model. These terms vanish when the chiral and twisted chiral
constraints are imposed, but prove to be necessary when performing the Legendre transformation to
obtain the dual semichiral model.

The same transformations for the semichiral model as in the recent paper [10] are obtained, but the
partial differential equations governing the transformations take a more transparent form in the dual
framework, and the on-shell closure of the semichiral supersymmetry algebra follows directly from the
T-duality procedure.

The outline of the paper is as follows. In the next section, the preliminaries regarding N = (2, 2)

supersymmetric sigma models will be reviewed, and the notation will be set. Section 3 deals with the
duality of field equations and Bianchi identities under T-duality. The duality will be discussed for a
simple example of a bosonic sigma model. Section 4 treats extended N = (4, 4) supersymmetry on
sigma models and connects to results in [6] and [10]. In Section 5, a duality transformation between a
chiral and twisted chiral model, and a semichiral model will be performed and discussed in detail, and
constraints on Killing vectors preserving additional supersymmetry will be derived. Section 6 discusses
the supersymmetry transformations of the two dual models and contains the main results of the paper.
The models are reduced to N=(1, 1) superspace in Section 7 and two examples are given in Section 8.
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2. Preface

Consider a non-linear sigma model in N=(2, 2) superspace, described by the action

S =

∫
d2ξd2θd2θ̄ K(φ, φ̄, χ, χ̄,XL, X̄L,XR, X̄R) (1)

The generalized Kähler potential K is a function of chiral φ, twisted chiral χ and left/right semichiral
superfields XL,R and their complex conjugates. The superfields are defined by the constraints

D̄+φ = D̄−φ = 0

D̄+χ = D−χ = 0

D̄+XL = D̄−XR = 0 (2)

together with their complex conjugates. The covariant derivatives define the N = (2, 2) supersymmetry
algebra as

{D±, D̄±} = i∂++
=

(3)

Whereas the chiral and the twisted chiral fields are constrained in both chiralities, the semichiral fields
have only one differential constraint. This implies, for the chiral and twisted chiral fields, that half of the
16 original components fields are constrained to vanish, and another four are not independent. In total,
the chiral and the twisted chiral fields depend on only four component fields, or one single N = (1, 1)

superfield ϕ(x, θ±1 ),

φ(x, θ±1 , θ
±
2 ) = ϕ+ θ+

2 iD+ϕ+ θ−2 iD−ϕ+ θ+
2 θ
−
2 D+D−ϕ (4)

and analogously for the twisted chiral fields. The semichiral fields, on the other hand, depend on two
different N = (1, 1) superfields:

XL = XL + θ+
2 iD+XL + θ−2 ψL− − θ+

2 θ
−
2 iD+ψL− (5)

where XL(x, θ±1 ) is a bosonic superfield and ψL−(x, θ±1 ) a fermionic. The same is valid for the right
semichiral superfield XR.

The target space of the manifest N = (2, 2) supersymmetric sigma model (1) is generalized
Kähler [14], or bihermitian. This geometry is defined by two complex structures J (±), a metric g
hermitian with respect to the complex structures and an anti-symmetric b-field. The complex structures
are covariantly constant with respect to a connection with torsion,

∇(±)J (±) = 0, ∇(±) = ∇± 1
2
g−1db (6)

Whereas the chiral and twisted chiral fields parametrize the region where the two complex structures
commute [15] (bilinear product space, or BiLP-geometry), the semichiral fields parametrize the region
where they do not. In the semichiral section, the metric and b-field can be expressed in terms of the
complex structures as [7]
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g = 1
2
Ω[J (+), J (−)], b = 1

2
Ω{J (+), J (−)} (7)

where Ω is a certain symplectic structure. If further the target space is four-dimensional, the complex
structures anti-commute to a scalar function c times the identity [16],

{J (+), J (−)} = 2c · 11 (8)

Reducing the sigma model to N =(1, 1) formalism, the complex structures can be identified in terms of
second order derivatives of K, and the expression (8) can then be rewritten as

(1 + c)|KLR|2 + (1− c)|KLR̄|2 = 2KLL̄KRR̄ (9)

where the indices denote derivatives with respect to the semichiral fields. When c is a constant and
|c| < 1, the torsion vanishes and the manifold is hyperkähler [3]. For c = 0, this is equivalent to the
Monge–Ampère equation [17].

In this paper, a chiral and twisted chiral sigma model will be dualized along a translational isometry
to obtain a semichiral model, thus obtaining a duality between a BiLP- and a hyperkähler geometry.
Semichiral sigma models were first studied in [16] and further explored in several works, e.g., [7,17,18].
Recently, potentials for semichiral models describing hyperkähler manifolds have been constructed using
quotient [13] and twistor techniques [19].

3. Field Equations and Bianchi Identities

We review here how field equations and Bianchi identities for two sigma models can be related to
each other by T-duality. For a more extensive review, see, e.g., [4] and [20].

Consider a bosonic sigma model with Euclidean target space metric and no anti-symmetric b-field,

S =

∫
d2ξ ∂aφ · ∂aφ (10)

The coordinates of the two-dimensional world-sheet are ξa, where a = 1, 2. The action is invariant
under a constant shift, φ → φ + s. Now gauge this isometry, δφ = s(φ). In order to ensure invariance
of the action, a covariant derivative must be introduced, containing a gauge potential Va with the correct
transformation properties,

∇aφ = ∂aφ+ Va, δVa = −∂as (11)

The gauged action is invariant under the gauged isometry

Sg =

∫
d2ξ∇aφ∇aφ (12)

A gauge invariant field strength can be constructed as Wab = ∂[aVb]. By introducing an unconstrained
Lagrange multiplier Λab, a first order action takes the form
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S1st =

∫
d2ξ
[
VaV

a + ΛabWab

]
=

∫
d2ξ
[
VaV

a − ∂aΛ[ab]Vb
]

(13)

where in the second step integration by parts was performed.
Now varying this action with respect to the Lagrange multipliers gives a pure gauge condition

Wab = ∂[aVb] = 0, which is solved by Va = ∂aφ. Inserting this solution reproduces the original sigma
model (10). The field equations for this model are simply

0 = ∂a∂
aφ = ∂aV

a (14)

Defining the Hodge star operation in terms of the totally antisymmetric tensor εab, the Bianchi
identities are

0 = ∂a
∗V a = ∂aε

abVb = ∂[aVb] (15)

It is clear from the form of the potential, Va = ∂aφ, that the Bianchi identities are automatically satisfied,
since partial differentials commute.

Instead varying the first order action with respect to the gauge potentials Va, the resulting equation is

V a =
1

2
∂bΛ

[ba] (16)

which inserted into the action gives the dual action,

S̃ = −1

4

∫
d2ξ ∂bΛ[ba]∂cΛ

[ca] =

∫
d2ξ ∂[bVa]Λ

ba (17)

Varying this action with respect to Λab gives the field equations for the dual model,

0 = ∂[aVb] (18)

The Bianchi identities for the dual model are

0 = ∂a
∗V a = ∂a

(
εabε

1

2
∂cΛ[cb]

)
= ∂a

(
1

2
∂bΛ

[ba]

)
= ∂aV

a (19)

Again, from the expression of the potential in (16), one sees that the Bianchi identities are automatically
fulfilled, since partial derivatives commute.

Hence, we see that the field equations for the original model, (14), takes the same form as the Bianchi
identities for the dual model, (19), and that the Bianchi identities for the original model (15) are dual to
the field equations for the dual model, (18). To summarize, the dual models are related by

S =
∫

(∂φ)2 =
∫
V 2 ←→ S̃ =

∫
(∂Λ)2 =

∫
V 2

field equations ∂aV
a = 0 Bianchi identities

Bianchi identities ∂[aVb] = 0 field equations

These relations will be generalized and studied for a sigma model written in terms of manifestly
N=(2, 2) superfields in Section 5.
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4. The N=(4,4) “Paradox”

It is a well-known fact that a sigma model written in terms of one set of (anti-)chiral and twisted
(anti-)chiral N=(2, 2) superfields,

S =

∫
d2ξd2θd2θ̄K(φ, φ̄, χ, χ̄) (20)

can be extended to N = (4, 4) supersymmetry if the generalized Kähler potential K satisfies the
Laplace equation [6],

Kφφ̄ +Kχχ̄ = 0 (21)

The N=(4, 4) supersymmetry transformations in four-dimensional target manifold are [6]

δφ = ε̄+D̄+χ̄+ ε̄−D̄−χ

δφ̄ = ε+D+χ+ ε−D−χ̄

δχ = −ε̄+D̄+φ̄− ε−D−φ
δχ̄ = −ε+D+φ− ε̄−D̄−φ̄ (22)

The transformations close to a supersymmetry,

[δ(ε1), δ(ε2)]X = ε̄[2ε1]i∂X (23)

for all fields X = (φ, φ̄, χ, χ̄), and the action (20) is invariant if the Laplace equation is satisfied.
The situation completely changes for a sigma model parametrized by semichiral fields,

S =

∫
d2ξd2θd2θ̄K(XL, X̄L,XR, X̄R) (24)

Due to the chirality constraints on the semichiral fields, we can never find an ansatz for the semichiral
fields in four-dimensional target space that closes to a N=(4, 4) supersymmetry off-shell [21]. Instead,
an ansatz similar to (22), the supersymmetry of the chiral and twisted chiral superfields, can only close
to a pseudo-supersymmetry [8]

[δ(ε1), δ(ε2)]X = −ε̄[2ε1]i∂X (25)

In four dimensions, the supersymmetry is realized only on-shell; only when the target space is enlarged
to 4d dimensions with d > 1, an ansatz can be written down that closes to N = (4, 4) supersymmetry
off-shell [9].

Transformations that close to an on-shell N =(4, 4) supersymmetry for a set of semichiral fields can
be written as [10]

δXL = ε̄+D̄+f(XL, X̄L,XR, X̄R) + ε̄−D̄−XL − ε−D−XL

δX̄L = ε+D+f̄(XL, X̄L,XR, X̄R) + ε−D−X̄L − ε̄−D̄−X̄L

δXR = ε̄−D̄−f̂(XL, X̄L,XR, X̄R)− ε̄+D̄+XR + ε+D+XR

δX̄R = ε−D−
¯̂
f(XL, X̄L,XR, X̄R)− ε+D+X̄R + ε̄+D̄+X̄R (26)
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Invariance of the action relates the derivatives of the functions f and f̂ , implying that the algebra closes
when the field equations are imposed.

If the action possesses a certain abelian isometry, a chiral and twisted chiral model can be dualized
into a semichiral one. It is then an interesting question to ask what happens to the off-shell N = (4, 4)

supersymmetry in the chiral and twisted chiral sigma model, when dualized to a semichiral model, and
if the transformations for the semichiral fields (26) can be related to the transformations of the chiral and
twisted chiral fields (22). These questions will be explored in the next sections.

5. T-duality between Chiral/Twisted Chiral and Semichiral Fields

5.1. Duality Transformation

Consider a sigma model with chiral and twisted chiral superfields K(φ, χ) and an isometry defined
by the Killing vector

k = i(∂φ − ∂φ̄ − ∂χ + ∂χ̄) (27)

In combinations of coordinates adapted to this isometry, the action is of the form

K = K
(
φ+ φ̄, χ+ χ̄, i(φ− φ̄+ χ− χ̄)

)
(28)

Under the gauged isometry, the fields transform as

δφ = iΛ, δχ = iΛ̃ (29)

together with their complex conjugates, where Λ and Λ̃ satisfy chiral and twisted chiral chirality
properties, respectively. In order to keep invariance of the action under the gauged isometry, gauge
potentials must be introduced. The gauge potentials are real and transform as

δVφ = −i(Λ− Λ̄), δVχ = −i(Λ̃− ¯̃Λ), δV = Λ + Λ̄ + Λ̃ + ¯̃Λ (30)

This is the so called large vector multiplet (LVM) [22]. In [23], it was shown that the large vector
multiplet does not allow for off-shell N=(4, 4) supersymmetry. The gauged action takes the form

Sgauged =

∫
d2ξd2θd2θ̄K

(
φ+ φ̄+ Vφ, χ+ χ̄+ Vχ, i(φ− φ̄+ χ− χ̄) + V

)
(31)

Gauge invariant field strengths can be defined in terms of the gauge potentials as

W = iD−D̄+Vφ, W̃ = iD̄−D̄+Vχ (32)

together with their complex conjugates. The field strengths W and W̃ satisfy twisted chiral and chiral
constraints, respectively. To perform a T-duality transformation to a sigma model parametrized by
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semichiral fields, we will need to introduce field strengths satisfying semichiral constraints. To do this,
define two new complex gauge potentials as

VL =
1

2

(
V + i(Vφ + Vχ)

)
, δVL = Λ + Λ̃

VR =
1

2

(
V + i(Vφ − Vχ)

)
, δVR = Λ + ¯̃Λ (33)

The complex gauge potentials VL and VR transform into left- and right semichiral gauge parameters,
respectively, and they satisfy the reality condition

VL + V̄L = VR + V̄R (34)

From the transformation properties of the gauge potentials, it is clear that gauge invariant field strengths
can be constructed as

G+ = D̄+VL, G− = D̄−VR (35)

Introducing spinorial Lagrange multipliers X± and choosing gauge such that φ + φ̄ = 0, χ + χ̄ = 0

and i(φ− φ̄+ χ− χ̄) = 0, a first order action can be defined in terms of the gauge potentials as

S1st =

∫
d2ξd2θd2θ̄

[
K(Vφ, Vχ, V )− (X+G+ + X̄+Ḡ+ +X−G− + X̄−Ḡ−)

]
=

∫
d2ξd2θd2θ̄

[
K
(
− i

2
(VL − V̄L + VR − V̄R),− i

2
(VL − V̄L − VR + V̄R), VL + V̄L

)
− (X+G+ + X̄+Ḡ+ +X−G− + X̄−Ḡ−)

]
(36)

Varying this action with respect to the Lagrange multipliers implies that the field strengths vanish,
G+ = G− = 0. This pure gauge condition together with the reality constraint (34) imply that

VL = i(φ+ χ), VR = i(φ− χ̄) (37)

or, equivalently,

Vφ = φ+ φ̄, Vχ = χ+ χ̄, V = i(φ− φ̄+ χ− χ̄) (38)

For clarity we now rename the coordinates as Vφ = x, Vχ = y and V = z, and similarly

xL = VL =
1

2
(z + ix+ iy), xR = VR =

1

2
(z + ix− iy) (39)

Inserting this into the first order action, the orginal action (28) is recovered,

Soriginal =

∫
d2ξd2θd2θ̄K

(
φ+ φ̄︸ ︷︷ ︸

x

, χ+ χ̄︸ ︷︷ ︸
y

, i(φ− φ̄+ χ− χ̄)︸ ︷︷ ︸
z

)
(40)

On the other hand, integrating the first order action (36) by parts, new semichiral fields can be defined
as D̄+X

+ = XL and D̄−X− = XR. Using the reality constraint (34), the first order action takes the form
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S1st =

∫
d2ξd2θd2θ̄

[
K(x, y, z)− x̃x− ỹy − z̃z

]
(41)

where we defined combinations of the semichiral fields as

x̃ = i
2
(XL − X̄L + XR − X̄R)

ỹ = i
2
(XL − X̄L − XR + X̄R)

z̃ = 1
2
(XL + X̄L + XR + X̄R) (42)

Varying this action now with respect to the gauge potentials gives

∂K

∂x
= x̃,

∂K

∂y
= ỹ,

∂K

∂z
= z̃ (43)

which in turn implies

x = x(x̃i), y = y(x̃i), z = z(x̃i) (44)

where by x̃i we denote the three dual coordinates, x̃i = (x̃, ỹ, z̃). Inserting these relations into the first
order action (41) gives the dual model

Sdual =

∫
d2ξd2θd2θ̄

[
K
(
x(x̃i), y(x̃i), z(x̃i)

)
− x̃x(x̃i)− ỹy(x̃i)− z̃z(x̃i)

]
=

∫
d2ξd2θd2θ̄ K̃(x̃, ỹ, z̃) (45)

This duality procedure shows the equivalence between a sigma model written in terms of chiral and
twisted chiral fields, (28), with one written in terms of semichiral fields, (45). The dual model also
possesses an abelian isometry; coordinates adapted to this isometry are x̃, ỹ and z̃ in (42). The fourth
independent coordinate, parametrizing the isometry direction, is w̃ = 1

2
(XL + X̄L − XR − X̄R). The

chirality constraints of the semichiral fields imply the relation between w̃ and the other three coordinates
x̃i as D̄±w̃ = D̄±(±ix̃+ iỹ ∓ z̃).

5.2. Killing Vectors Preserving N=(4,4)

For a T-duality with Killing vector k to preserveN=(4, 4) supersymmetry of the twisted multiplet [6],
it must preserve the complex structures J (±)

1 , J (±)

2 generating the supersymmetry transformations, i.e.,

LkJµν = kρ∂ρJ
µ
ν − ∂ρkµJρν + ∂νk

ρJµρ = 0 (46)

In the coordinates (φ, φ̄, χ, χ̄) describing the N = (4, 4) twisted multiplet, the complex structures are
constant [6] and the first term vanishes. Therefore, ∂ρkµJρν = Jµρ∂νk

ρ needs to be satisfied. This
relation implies that the Killing vector is of the form

k = kφ(φ)∂φ + kφ̄(φ̄)∂φ̄ + kχ(χ)∂χ + kχ̄(χ̄)∂χ̄ (47)
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so that the matrix ∂µkν is diagonal,

∂µk
ν =


∂kφ

∂φ
0 0 0

0 ∂kφ̄

∂φ̄
0 0

0 0 ∂kχ

∂χ
0

0 0 0 ∂kχ̄

∂χ̄

 (48)

Further, the relation ∂ρkµJρν = Jµρ∂νk
ρ implies, for the complex structure J (+)

1 , that kφ,φ = kχ,χ, and for
the complex structure J (−)

1 that kφ,φ = kχ̄,χ̄ [24]. The complex structures J (±)

2 give the same conditions. In
total, the coefficients of the Killing vector must satisfy the constraints

∂kφ

∂φ
=
∂kφ̄

∂φ̄
=
∂kχ

∂χ
=
∂kχ̄

∂χ̄
(49)

The only solutions to this are either that all components in the Killing vector are constants, ∂µkν = 0,
or that they are linear with the same coefficient. That is, the only isometries preserving the N = (4, 4)

supersymmetry are [25]

translations: k = i(∂φ − ∂φ̄ − ∂χ + ∂χ̄) (50)

rescalings: k = φ∂φ + φ̄∂φ̄ + χ∂χ + χ̄∂χ̄ (51)

Previously in Section 4, we have seen that a sigma model written in terms of chiral and twisted
chiral fields can be extended to off-shell N = (4, 4) supersymmetry with the linear supersymmetry
transformations in (22), but that the analogue transformations (26) for the semichiral fields are non-linear
and can only close to a supersymmetry on-shell. Starting from a sigma model parametrized by chiral
and twisted chiral fields and having N=(4, 4) supersymmetry, we can find the dual model parametrized
by semichiral fields by the method discussed in this section. We have also seen that the translational
isometries needed for the duality should preserve the N = (4, 4) supersymmetry. The questions are:
What happens to the N = (4, 4) supersymmetry from the original model, can we write the non-linear
supersymmetry transformations of the semichiral fields in terms of the linear ones for the chiral and
twisted chiral, and how can we understand the on-shell condition?

We will in the next section show that the Bianchi identities of the original model are satisfied and
correspond to field equations in the dual model, such that the dual model can accomodate N = (4, 4)

supersymmetry on-shell. Further, we will relate the supersymmetry transformations of the dual models
and show how the non-linear terms in the transformations arise.

6. N=(4,4) Supersymmetry in the Two Dual Models

6.1. Supersymmetry in Original Model

Consider the original model (40). As expected, it is invariant under the supersymmetry
transformations (22) if and only if the generalized Kähler potential satisfies the analogue of the Laplace
Equation (21) for a sigma model with the isometry (27),
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Kxx +Kyy + 2Kzz = 0 (52)

The supersymmetry transformations on the coordinates that are combinations of chiral and twisted
chiral superfields,

xµ = (x, y, z) (53)

can be derived from the transformations on the chiral and twisted chiral fields given in Equation (22)
and read

δx = ε̄+D̄+y + ε̄−D̄−y + ε+D+y + ε−D−y

δy = −ε̄+D̄+x− ε̄−D̄−x− ε+D+x− ε−D−x (54)

δz = iε̄+D̄+(y − x) + iε̄−D̄−(y + x)− iε+D+(y − x)− iε−D−(y + x)

Note that due to the chirality constraints of the chiral and the twisted chiral fields, there is an ambiguity
in the expressions, as the Bianchi identities

D̄+xL = 1
2
D̄+(z + ix+ iy) = 0

D̄−xR = 1
2
D̄−(z + ix− iy) = 0 (55)

allow us to add terms to the transformations, for example δx = iαε̄+D̄+xL plus the complex
conjugate, where α is some arbitrary function. The terms might seem unnecessary since they vanish
due to the chirality constraints, but they will prove to be crucial when discussing the supersymmetry
transformations of the dual semichiral model later. Considering this ambiguity, the most general form of
the transformations on xµ is

δxµ = ε̄+U (+)µ
ν D̄+x

ν + ε̄−U (−)µ
ν D̄−xν + ε+V (+)µ

νD+x
ν + ε−V (−)µ

νD−xν (56)

where the transformation matrices take the form

U (+) =
1

2

 −α (2− α) iα

−(2 + γ) −γ iγ

−i(2 + ε) i(2− ε) −ε

 , U (−) =
1

2

 −β (2 + β) iβ

−(2 + δ) δ iδ

i(2− κ) i(2 + κ) −κ

 (57)

and V (±) are the complex conjugates of U (±). The parameters α, β, γ, δ, ε and κ are arbitrary functions
and will not appear in the transformations when the chirality constraints are used; the transformations
thus take the well-known form as in (54). The transformations close to a supersymmetry,

[δ(ε1), δ(ε2)]xµ = ε̄+[2ε
+
1]i∂++x

µ + ε̄−[2ε
−
1]i∂=x

µ (58)
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6.2. Field Equations and Bianchi Identities

The field equations of the original model (40) are obtained by varying the action with respect to the
unconstrained fields. The chiral and twisted chiral fields are constrained and can be written in terms of
some unconstrained fields as φ = D̄+D̄−λ and χ = D̄+D−λ̃. Varying the original action with respect to
λ and λ̃ gives the field equations

δλ : D̄+D̄−
[
Kz − iKx

]
= 0

δλ̃ : D̄+D−
[
Kz − iKy

]
= 0

(59)

For the dual model, the unconstrained fields are the Lagrange multipliers X±. Varying the action (45)
with respect to X± gives the equations of motion for the dual semichiral model,

δX+ : D̄+

[
K̃z̃ + iK̃x̃ + iK̃ỹ

]
= 0

δX− : D̄−
[
K̃z̃ + iK̃x̃ − iK̃ỹ

]
= 0

(60)

In terms of the original generalized Kähler potential K, the derivatives K̃x̃, K̃ỹ and K̃z̃ are simply
derived from (45),

K̃x̃ = Kxx
′(x̃i)− x(x̃i)− x̃x′(x̃i) = −x(x̃i)

K̃ỹ = Kyy
′(x̃i)− y(x̃i)− ỹy′(x̃i) = −y(x̃i)

K̃z̃ = Kzz
′(x̃i)− z(x̃i)− z̃z′(x̃i) = −z(x̃i) (61)

or in short, K̃i = −δiµxµ.
In the discussion of T-duality for the bosonic sigma model in Section 3, we saw that the Bianchi

identities in the dual models were automatically satisfied due to the expressions of the potentials, and
that the Bianchi identities in one model correspond to the field equations in the dual model, and vice
versa. The same is true here.

From the expression of the derivativesKx,Ky andKz in (42) and (43), one finds the Bianchi identities
in the dual model (45),

D̄+D̄−[z̃ − ix̃] = D̄+D̄−[XL + XR] = 0

D̄+D−[z̃ − iỹ] = D̄+D−[XL + X̄R] = 0 (62)

These correspond to the field equations of the original model, (59). Similarly, using the expressions
in (61) together with the form of the potentials in (43), the Bianchi identities in the original model, (55),
take the form

iD̄+[z + i(x+ y)] = 0

iD̄−[z + i(x− y)] = 0 (63)

These are automatically satisfied when (x, y, z) are identified as the combinations of chiral and twisted
chiral fields in (38), and are equivalent to the field equations of the dual model, (60).
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In summary, equations (59) are the field equations for the original model and the Bianchi identity for
the dual model, where they are automatically satisfied. Analogously, (60) are the equations of motion
for the dual model and the Bianchi identities for the original model.

6.3. Supersymmetry Transformations in the Dual Model

The coordinates of the original model (40) are xµ = (x, y, z) and the coordinates of the dual
model (45) are x̃i = (x̃, ỹ, z̃). Whereas xµ are combinations of chiral and twisted chiral fields, x̃i

are combinations of semichiral fields. The two coordinate systems are related by equation (43),

Kµ = δµix̃
i (64)

All models we will consider require that the 3 × 3 matrix ∂xµ∂xνK = Kνµ is invertible. Hence, the
relation (64) implies

Dxµ = (K−1)µνδνiDx̃i (65)

as well as

K̃ij = −δiµ(K−1)µνδνj (66)

With these relations and the supersymmetry transformations of the original coordinates given in (56),
the supersymmetry transformations of the dual coordinates can now be derived as

δx̃i = δiµKµνδx
ν

= δiµKµν

(
ε̄αU (α)ν

ρD̄αx
ρ + εαV (α)ν

ρDαx
ρ
)

= ε̄α
(
δiµKµνU

(α)ν
ρ(K

−1)ρσδσj
)
D̄αx̃

j + εα
(
δiµKµνV

(α)ν
ρ(K

−1)ρσδσj
)
Dαx̃

j

= ε̄αŨ (α)i
jD̄αx̃

j + εαṼ (α)i
jDαx̃

j (67)

where α = +,− is the spinorial index and we defined the matrices Ũ (α) and Ṽ (α) as

Ũ (α)i
j = δiµKµνU

(α)ν
ρ(K

−1)ρσδσj,

Ṽ (α)i
j = δiµKµνV

(α)ν
ρ(K

−1)ρσδσj (68)

where we can recall that V (α) = Ū (α).
In the related paper [10], the explicit on-shell N = (4, 4) supersymmetry transformations have been

written down for a model of semichiral fields in four-dimensional target space and take, after some
parameters have been absorbed in rescalings of the fields, the expression in (26). Using this result, an
ansatz for the dual coordinates x̃i can be written down as

δx̃ = i
2
ε̄+
[
D̄+f − D̄+(z̃ − ix̃)− D̄+(z̃ − iỹ)

]
+ i

2
ε̄−
[
D̄−f̂ + D̄−(z̃ − ix̃) + D̄−(z̃ + iỹ)

]
δỹ = i

2
ε̄+
[
D̄+f + D̄+(z̃ − ix̃) + D̄+(z̃ − iỹ)

]
− i

2
ε̄−
[
D̄−f̂ − D̄−(z̃ − ix̃)− D̄−(z̃ + iỹ)

]
δz̃ = 1

2
ε̄+
[
D̄+f − D̄+(z̃ − ix̃) + D̄+(z̃ − iỹ)

]
+ 1

2
ε̄−
[
D̄−f̂ + D̄−(z̃ − ix̃)− D̄−(z̃ + iỹ)

]
(69)
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plus the complex conjugate parts. The parameters f = f(x̃i) and f̂ = f̂(x̃i) are both functions of the
combinations of the semichiral coordinates, and the transformations are constructed as to satisfy the
Bianchi identities for the semichiral fields

D̄+D̄−
(
δ(z̃ − ix̃)

)
= 0, D̄+D−

(
δ(z̃ − iỹ)

)
= 0 (70)

The compact form of the transformations in (69) reads

δx̃i = ε̄αŨ (α)i
jD̄αx̃

j + εαṼ (α)i
jDαx̃

j (71)

where the transformation matrices take the form

Ũ (+) =
1

2

 ifx̃ − 1 ifỹ − 1 i(fz̃ − 2)

ifx̃ + 1 ifỹ + 1 i(fz̃ + 2)

fx̃ + i fỹ − i fz̃


Ũ (−) =

1

2

 if̂x̃ + 1 if̂ỹ − 1 i(f̂z̃ + 2)

−if̂x̃ + 1 −(if̂ỹ + 1) −i(f̂z̃ − 2)

f̂x̃ − i f̂ỹ − i f̂z̃

 (72)

and the indices denote derivatives; fx̃ = ∂
∂x̃
f . The relation between these expressions and the expressions

in (68) will be derived in the next subsection.
In [10], it was shown that the transformations on the semichiral fields close to a supersymmetry

on-shell and the semichiral action
∫
K(X) is invariant if and only if the transformation parameters are

certain functions of second order derivatives of K. In the next two subsections, we will show that the
same is valid here and that the on-shell algebra closure follows directly from T-duality.

6.4. Invariance of Action

The original chiral and twisted chiral action (40) is invariant under the supersymmetry
transformations (56) if the generalized Kähler potential satisfies (KµU

(α)µ
[ν)ρ]D̄αx

νD̄αx
ρ = 0.

Using the Bianchi identities for the chiral and twisted chiral fields, this is proportional to the
Laplace equation (52),

δS = 0 ⇐⇒ Kxx +Kyy + 2Kzz = 0 (73)

The Legendre transformation implies that the dual potentials are related by K = −K̃−1 (66), so the
linear Laplace equation corresponds to the following non-linear relation for the dual potential,

(K̃x̃x̃ + K̃ỹỹ)K̃z̃z̃ + 2K̃x̃x̃K̃ỹỹ − 2K̃2
x̃ỹ − K̃2

x̃z̃ − K̃2
ỹz̃ = 0 (74)

It is known from [7] that the Laplace equation is dualized into an equation equivalent to the
Monge–Ampère equation, if one performs a T-duality along a translational isometry. Therefore, (74)
is nothing but equation (9) with c = 0, which is equivalent to the Monge–Ampère equation, and so
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the dual target space is hyperkähler. It is interesting to recall that one can perform a T-duality along a
rescaling isometry, while still preserving N = (4, 4). In this case, the dual potential does not describe
a hyperkähler manifold and therefore the invariance of the original action does not correspond to the
Monge–Ampère equation [13].

Now we turn to invariance of the dual semichiral model and to the identification of the new
non-linear terms in U . If the chiral and twisted chiral constraints, i.e., the Bianchi identities in the
original model, were not to be used, Kµ[νU

(±)µ
ρ] = 0 would imply that some of the parameters α, β, γ, δ,

ε and κ in (57) could be solved in terms of the others and second derivatives of K. The invariance of the
U (+)-transformations relate the parameters α, γ and ε and the U (−)-transformations relate the parameters
β, δ and κ,

α = α(∂∂K, ε), β = β(∂∂K, κ), γ = γ(∂∂K, ε), δ = δ(∂∂K, κ) (75)

Now define the parameters to be

α = −i(K−1)1µfµ + 1 β = −i(K−1)1µf̂µ − 1

γ = −i(K−1)2µfµ − 1 δ = −i(K−1)2µf̂µ − 1

ε = −(K−1)3µfµ κ = −(K−1)3µf̂µ

(76)

for some arbitrary functions f and f̂ , where the indices denote derivative with respect to the coordinates
xµ. Defining the parameters in this way will ensure that the obtained transformations for the
combinations of semichiral fields agree with the transformations obtained in [10]. Hence, the parameters
depend on derivatives of some function and second order derivatives of K, and the constraints in (75)
applied to the expressions in (76) then implies that the functions f and f̂ must satisfy the following
partial differential equations,

fz + ifx = −(Kx +Ky)y − i(Kx +Ky)z

fz + ify = (Kx +Ky)x + i(Kx +Ky)z

f̂z + if̂x = −(Kx −Ky)y + i(Kx −Ky)z

f̂z − if̂y = −(Kx −Ky)x − i(Kx −Ky)z (77)

The dual transformation matrices Ũ (±) can now be calculated by the Legendre transformation

Ũ = (K)(U)(K−1) (78)

derived in the previous subsection. Using the partial differential equations for f and f̂ and rewriting the
expressions in the semichiral coordinates x̃i, the resulting matrices take precisely the form in (72). From
the equivalent formulation in (69), one sees that the transformations satisfy D̄±(δ̄(±)x̃i) = 0. Hence, the
invariance of the dual action implies

δS̃ = 0 ⇐⇒ K̃i[jŨ
(±)i

k] = 0 (79)

These partial differential equations are equivalent to the relations in (77), and thus we find that the dual
action is invariant under the supersymmetry transformations.
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To summarize, the original chiral and twisted chiral action is invariant under the N = (4, 4)

supersymmetry if and only if the potential satisfies the Laplace equation. The Laplace equation is dual to
Equation (74), which is equivalent to the Monge–Ampère equation. But this equation is not a sufficient
condition for the dual semichiral action to be invariant under the extra supersymmetry. Instead, the dual
action is invariant if the transformation parameters in U (±) satisfy certain constraints, equivalent to partial
differential equations for the transformation functions in Ũ (±).

6.5. Algebra Closure in the Dual Model

In [10], it was shown that the N = (4, 4) transformations on the semichiral fields close to a
supersymmetry on-shell provided that the transformation functions satisfy certain partial differential
equations. The calculations were straightforward but tedious. Here, we will see that the on-shell algebra
follows directly from the T-duality.

The transformations of the dual coordinates x̃i are derived in (67) and (68) from the transformations
of the original coordinates xµ. When discussing the dual action, the original coordinates xµ are
unconstrained. But since the field equations for the semichiral model are equivalent to the Bianchi
identities for the chiral and twisted chiral model, going on-shell by the field equations (60) is the
same as constraining the coordinates xµ by the Bianchi identites (63). The on-shell closure on
the dual coordinates thus follows from the fact that the supersymmetry transformations close on the
original coordinates,

[δ(ε1), δ(ε2)]x̃i = δiµKµν [δ(ε1), δ(ε2)]xν +Kµντδ[1x
τδ2]x

ν

= δiµKµν ε̄[2ε1]i∂x
ν

= ε̄[2ε1]i∂x̃
i (80)

As a summary, the linear supersymmetry transformations on the chiral and twisted chiral fields
close off-shell when using the Bianchi identities (63), as seen in Equation (58), whereas the
non-linear transformations on the semichiral fields close on-shell as seen when using the equivalent
field Equation (60).

7. Reduction to (1,1) Superspace

The original chiral and twisted chiral model reduced to (1, 1) superspace is

S =

∫
d2ξd4θK(xµ) −→

(1,1)
S = −1

4

∫
d2ξd2θD+X

aEabD−X
b (81)

where, using the same notation for the N = (1, 1) and N = (2, 2) superfields, φ
∣∣ = φ, the coordinates

are Xa = (φc, χt) = (φ, φ̄, χ, χ̄). The sum of the metric and the b-field, E = g + b, takes the
standard form [3]

Ecc = Kcc + JKccJ, Ect = −Kct − JKctJ

Etc = Ktc + JKtcJ, Ett = −Ktt − JKttJ
(82)
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but where the 4× 4 matrices in the metric and b-field are composed of the 3× 3 matrices Kµν as

Kcc = Ac
µKµνA

ν
c,

Kct = Ac
µKµνA

ν
t,

Ktc = At
µKµνA

ν
c,

Ktt = At
µKµνA

ν
t

Aµc =

 1 1

0 0

i −i

 , Aµt =

 0 0

1 1

i −i

 (83)

Hence, the metric and the b-field are independent of the coordinate w
∣∣ = i(φ− φ̄− χ+ χ̄).

Similarly, the semichiral dual model reduced to (1, 1) superspace is, after eliminating the
auxiliary fields,

S =

∫
d2ξd4θK(x̃i) −→

(1,1)
S = −1

4

∫
d2ξd2θD+X̃

aẼabD−X̃
b (84)

where the coordinates are X̃a = (XL, XR) = (XL, X̄L, XR, X̄R). The sum of the metric and the b-field
takes the standard form [3]

ẼLR = JKLRJ + CLLK
LRCRR, ẼRL = −KRLJK

LRJKRL

ẼLL = CLLK
LRJKRL, ẼRR = −KRLK

LRCRR
(85)

where the 4× 4 matrices in the metric and b-field are composed of the 3× 3 matrices K̃ij as

KLL = ÃL
iK̃ijÃ

j
L,

KLR = ÃL
iK̃ijÃ

j
R,

KRL = ÃR
iK̃ijÃ

j
R,

KRR = ÃR
iK̃ijÃ

j
R

ÃiL =

 i −i
i −i
1 1

 , ÃiR =

 i −i
−i i

1 1

 (86)

Again, the coordinate functions of the metric and the b-field are independent of the coordinate
parametrizing the direction of the isometry, w̃

∣∣ = 1
2
(XL + X̄L −XR − X̄R),

g ∼ gLL(x̃, ỹ, z̃)dXLdXL + gLL̄(x̃, ỹ, z̃)dXLdX̄L + . . . (87)

which does not alter the fact that the metric is non-degenerate.

8. Examples

8.1. Flat Space

To illustrate the results in Section 6, we consider the special case of a quadratic generalized Kähler
potential. The potential for flat space is

K(φ, χ) =
1

2
(φ+ φ̄)2 − 1

2
(χ+ χ̄)2 − r

2

(
(φ− χ̄)2 + (φ̄− χ)2

)
(88)
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where r is some arbitrary real constant. Gauging the translational isometry, we have

K =
1

2
(x2 − y2) +

r

4

(
z2 − (x− y)2

)
(89)

One can check that this potential satisfies the Laplace Equation (52) for any value of r.
Now we perform the duality to semichiral fields to get

K̃ = −1

2
(x̃2 − ỹ2)− r

4

(
(x̃+ ỹ)2 +

4z̃2

r2

)
(90)

In terms of the semichiral coordinates XL and XR, this reads

K̃ = − 1

2r
|XR|2 −

1

2r
(1 + r2)|XL|2

−1− r
2r

(XLXR + X̄LX̄R)− 1 + r

2r
(X̄LXR + X̄RXL) (91)

For any value of r, this potential satisfies (9) with c = 0, i.e., the Kähler potential will satisfy the
Monge–Ampère equation. Therefore, there is no b-field. This was to be expected since we have dualized
along a translational isometry by equal amounts on φ and χ.

We now turn to the supersymmetry transformations and follow the procedure developed in Section 6.
Make an ansatz for functions satisfying the partial differential equations in (77),

f = sxL − i(x+ y)

f̂ = txR + ir(x+ y) + i(x− y) (92)

where s and t are two arbitrary constants. The terms multiplying the integration constants s and t in f
and f̂ will vanish on-shell. This holds in general; a term s · g(xL) in f will transform the fields as

δx̃ = ε̄+D̄+(sg(xL)) = ε̄+sg′(xL)D̄+xL = −ε̄+ s
2
g′(xL)D̄+(K̃z̃ + iK̃x̃ + iK̃ỹ) =

on-shell
0 (93)

and the same is valid for a term t · h(xR) in f̂ . The parameters in U (±) are defined in (76) and take the
constant expressions

α = 1
2
(−2r + rs+ s) β = 1

2
(2r(r + 1) + t)

γ = 1
2
(−2r + rs− s) δ = 1

2
(2r(r − 1) + t)

ε = − s
r

κ = − t
r

(94)

The dual transformation matrices can then be derived by Legendre transform and take the form

Ũ (+) =
1

4

 2r − s− rs −4 + 2r − rs+ s 2i(−2 + s
r
)

4 + 2r − rs− s 2r − rs+ s 2i(2 + s
r
)

i(−2r + rs+ s) i(−2r + rs− s) 2 s
r

 (95)
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and

Ũ (−) =
1

4

 −2r(r + 1)− t −4 + 2r(1− r)− t 2i(2 + t
r
)

4 + 2r(r + 1) + t 2r(r − 1) + t 2i(2− t
r
)

i(2r(r + 1) + t) i(2r(r − 1) + t) 2 t
r

 (96)

The semichiral action (90) is invariant under these transformations. The field Equation (60) in flat space
defined by the generalized Kähler potential in (90) take the form

(r + 1)D̄+x̃+ (r − 1)D̄+ỹ − 2i
r
D̄+z̃ = 0

D̄−x̃+ D̄−ỹ − 2i
r
D̄−z̃ = 0 (97)

The integration constants s and t in the transformations multiply field equations and vanish when (97)
are used. Using the field equations, one can then check explicitly that the transformation defined by the
matrices in (95) and (96) close to a supersymmetry on-shell.

8.2. Non-Quadratic Potential

Non-flat generalized Kähler potentials can also be constructed. One example is [7]

K(x, y, z) = z·
(
F (x+ iy) + F̄ (x− iy)

)
(98)

The potential satisfies the Laplace Equation (52), hence the original chiral and twisted chiral sigma
model has N = (4, 4) supersymmetry off-shell. As the functions F , F̄ one can consider, for example,
F = (x+ iy)2, so that the original Lagrangian takes the qubic form

K(x, y, z) = z·
(
x2 − y2

)
(99)

The Legendre transform (43)–(45) gives

Kx = 2z · x = x̃

Ky = −2z · y = ỹ

Kz = x2 − y2 = z̃
(100)

where xµ = (x, y, z) are unconstrained. This implies that the dual generalized Kähler potential takes
the form

K̃(x̃, ỹ, z̃) = −
√
z̃(x̃2 − ỹ2) (101)

This potential satisfies (74), which is equivalent to the Monge–Ampère equation, hence the dual
describes hyperkähler geometry. The dual potential in semichiral coordinates reads

K̃(XL, X̄L,XR, X̄R) = −
√

1
2
(XL + X̄L + XR + X̄R)i(XL − X̄L)i(XR − X̄R) (102)
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The determinant of the Hessian corresponding to this Lagrangian is det K̃ = 1/(8z̃).
We now turn to the supersymmetry transformations. Making an ansatz for f and f̂ to be quadratic, in

order to satisfy the partial differential equations in (77) they must be of the form

f = 2
(
sx2

L + 2xy − i(x+ y)z
)

f̂ = 2
(
tx2
R + 2xy + i(x− y)z

)
(103)

where s and t are some arbitrary integration constants. Again, the terms multiplying s and t in the
transformations δx̃i will vanish on-shell. With these functions, the transformation parameters take the
form in (76). For clarity, we display here only the on-shell part of the transformations,

α = 2iy x2+y2

(x2−y2)z
β = 2iy x2+y2

(x2−y2)z

γ = 2ix x2+y2

(x2−y2)z
δ = 2ix x2+y2

(x2−y2)z

ε = − 4xy
x2−y2 κ = − 4xy

x2−y2

(104)

The supersymmetry transformations for the semichiral model can now be derived by the Legendre
transform Ũ = (K)(U)(K−1) and take the form

Ũ (+) =


2iỹ(x̃2+ỹ2)z̃

(x̃2−ỹ2)2 −1− 2ix̃(x̃2+ỹ2)z̃
(x̃2−ỹ2)2 −i− 2ix̃ỹ

x̃2−ỹ2

1 + 2iỹ(x̃2+ỹ2)z̃
(x̃2−ỹ2)2 −2ix̃(x̃2+ỹ2)z̃

(x̃2−ỹ2)2 −i− 2ix̃ỹ
x̃2−ỹ2

2ỹ(x̃2+ỹ2)z̃
(x̃2−ỹ2)2 −2ỹ(x̃2+ỹ2)z̃

(x̃2−ỹ2)2 −i− 2ix̃ỹ
x̃2−ỹ2

 (105)

and similar for Ũ (−). One can explicitly check that, for arbitrary values of the integration constants s
and t (not displayed in (105) since this is the on-shell part only), D̄±(δ̄(±)x̃i) = 0 and that the partial
differential equations K̃i[jŨ

(±)i
k] = 0 are satisfied, hence the semichiral action with generalized Kähler

potential (101) is invariant under these supersymmetry transformations.

9. Summary and Conclusions

In this paper, the T-duality between four-dimensional chiral and twisted chiral models and semichiral
models has been investigated. Whereas the chiral and twisted chiral model admits off-shell N = (4, 4)

supersymmetry if and only if the generalized Kähler potential satisfies the Laplace equation [6], the
semichiral model can only admit on-shell N=(4, 4) supersymmetry [9,10].

What happens when one starts with a chiral and twisted chiral model with off-shell N = (4, 4)

supersymmetry and dualize into a semichiral model? Will the transformations be satisfied on-shell, and
do we find additional constraints on the generalized Kähler potential? How can the non-linear on-shell
N=(4, 4) transformations of the semichiral fields be related to the linear off-shell transformations of the
chiral and twisted chiral fields? These were the main questions we wanted to address in this work.

We find that, in order to dualize into a semichiral model with N = (4, 4) supersymmetry, additional
non-linear terms must be added to the chiral and twisted chiral supersymmetry transformations. These
terms are of the kind that they vanish when the chirality constraints are used, and so do not appear for the
chiral and twisted chiral model. In other words, they vanish when the Bianchi identities are used in the
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original chiral and twisted chiral model, or, equivalently, when the field equations are used in the dual
semichiral model,

δ̄+x = ε̄+[D̄+y + iαD̄+xL] −→
Bianchi

ε̄+D̄+y (106)

The additional non-linear terms hence vanish when considering the on-shell supersymmetry algebra for
the semichiral fields, and the algebra closes on-shell as a direct consequence of the T-duality. But the
terms are crucial for the invariance of the semichiral action under the transformations.

The supersymmetry transformation matrices Ũ for combinations of the semichiral fields can be
calculated from the chiral and twisted chiral transformations U by Legendre transform,

Ũ = (K)(U)(K−1) (107)

Even though the underlying system is a four-dimensional target space parametrized by semichiral
fields (XL, X̄L,XR, X̄R), the T-duality only provides the supersymmetry transformations for the three
combinations (x̃, ỹ, z̃) of the semichiral fields. We define the parameters in U such that the resulting
transformations agree with the transformations on the semichiral fields obtained recently in [10], and we
check that the transformations close to a supersymmetry on-shell and leave the action invariant.
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Appendix

A. The Project in a Nutshell

Summarizing the most relevant equations and comparing the two dual models.

Original model: Dual model:

S =
∫
K(xµ) =

∫
K(x, y, z) S̃ =

∫
K̃(x̃i) =

∫
K(x̃, ỹ, z̃)

where


x = φ+ φ̄

y = χ+ χ̄

z = i(φ− φ̄+ χ− χ̄)

where


x̃ = i

2
(XL − X̄L + XR − X̄R)

ỹ = i
2
(XL − X̄L − XR + X̄R)

z̃ = 1
2
(XL + X̄L + XR + X̄R)

Kµ = δµix̃
i K̃i = −δiµxµ

Kµν = −δµi(K̃−1)ijδjν K̃ij = −δiµ(K−1)µνδνj

Dxµ = −δµiK̃ijDx̃j Dx̃i = δiµKµνDxν
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Bianchi identities: Bianchi identities:
D̄+(z + ix+ iy) = 0 D̄+D̄−(z̃ − ix̃) = 0

D̄−(z + ix− iy) = 0 D̄+D−(z̃ − iỹ) = 0

Field equations: Field equations:
D̄+D̄−(Kz − iKx) = 0 D̄+(K̃z̃ + iK̃x̃ + iK̃ỹ) = 0

D̄+D−(Kz − iKy) = 0 D̄−(K̃z̃ + iK̃x̃ − iK̃ỹ) = 0

Supersymmetry: Supersymmetry:
δxµ = ε̄αU (α)µ

ν D̄αx
ν + c.c. δx̃i = ε̄αŨ (α)i

jD̄αx̃
j + c.c.

U (α) constant 3× 3 matrices Ũ = (∂∂K)U(∂∂K)−1 not constant
susy algebra closes off-shell susy algebra closes on-shell
(using Bianchi identities) (using field equations)

Fourth coordinate: Fourth coordinate:
w = i(φ− φ̄− χ+ χ̄) w̃ = 1

2
(XL + X̄L − XR − X̄R)

Invariance of action: Invariance of action:
Kµ[νU

(α)µ
ρ]D̄αx

νD̄αx
ρ = 0 K̃i[jŨ

(α)i
k]D̄αx̃

jD̄αx̃
k = 0

⇔ Kxx +Kyy + 2Kzz = 0 ⇔ PDEs for f, f̂

Reduced to (1, 1): Reduced to (1, 1):
S =

∫
d2ξd2θD+X

aEabD−X
b S̃ =

∫
d2ξd2θD+X̃

aẼabD−X̃
b

Xa = (φc, χt) X̃a = (XL, XR)

Kab = Aa
µKµνA

ν
b K̃ab = Ãa

iK̃ijÃ
j
b.
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