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Abstract: The Taylor–Socolar tilings are regular hexagonal tilings of the plane but are
distinguished in being comprised of hexagons of two colors in an aperiodic way. We place
the Taylor–Socolar tilings into an algebraic setting, which allows one to see them directly as
model sets and to understand the corresponding tiling hull along with its generic and singular
parts. Although the tilings were originally obtained by matching rules and by substitution,
our approach sets the tilings into the framework of a cut and project scheme and studies how
the tilings relate to the corresponding internal space. The centers of the entire set of tiles of
one tiling form a lattice Q in the plane. If XQ denotes the set of all Taylor–Socolar tilings
with centers on Q, then XQ forms a natural hull under the standard local topology of hulls
and is a dynamical system for the action of Q. The Q-adic completion Q of Q is a natural
factor of XQ and the natural mapping XQ −→ Q is bijective except at a dense set of points
of measure 0 in Q. We show that XQ consists of three LI classes under translation. Two of
these LI classes are very small, namely countable Q-orbits in XQ. The other is a minimal
dynamical system, which maps surjectively to Q and which is variously 2 : 1, 6 : 1, and
12 : 1 at the singular points. We further develop the formula of what determines the parity
of the tiles of a tiling in terms of the coordinates of its tile centers. Finally we show that the
hull of the parity tilings can be identified with the hull XQ; more precisely the two hulls are
mutually locally derivable.

Keywords: monotile tiling; Taylor–Socolar tiling; model sets; pure point spectrum;
parity tiling
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1. Introduction

This paper concerns the aperiodic hexagonal mono-tilings created by Joan Taylor. We learned
about these tilings from the unpublished (but available online) paper of Joan Taylor [1], the extended
paper of Socolar and Taylor [2], and a talk given by Uwe Grimm at the KIAS conference on
aperiodic order in September, 2010 [3]. These tilings are in essence regular hexagonal tilings of
the plane, but there are two forms of marking on the hexagonal tile (or if one prefers, the two
sides of the tile are marked differently). We refer to this difference as parity (and eventually
distinguish the two sides as being sides 0 and 1), and in terms of parity the tilings are aperiodic. In
fact the parity patterns of tiles created in this way are fascinating in their apparent complexity, see
Figures 1 and 2.

Figure 1. A section of a Taylor–Socolar tiling showing the complex patterning arising from
the two sides of the hexagonal tile, here indicated in white and gray. Notice that there are
islands (Taylor and Socolar call the llamas) both of white and gray tiles.

The two Taylor–Socolar tiles are shown in Figure 3, the main features being the black lines, one of
which is a stripe across the tile, and the three colored diameters, one of which is split in color. (Note that
the two tiles here are not mirror images of each other, unless one switches color during the reflection.
In [2] there is an alternative description of the tiles in which the diagonals have flags at their ends,
and in this formulation the two tiles are mirror images of each other.) The difference in the two tiles
is only in which side of the color-split diameter the stripe crosses. In the figure the tiles are colored
white and gray to distinguish them, but it is the crossing-color of the black stripe that is the important
distinguishing feature.
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Figure 2. The figure shows a pattern of triangles emerging from the construction indicated
in Section 2, manifesting the rule R1. The underlying hexagonal tiling is indicated in light
and dark shades, which indicate the parity of the hexagons. The underlying diagonal shading
on the hexagons manifests the rules R2.

Figure 3. The two basic hexagonal tiles. One is a white tile and the other a light gray. These
are colored with red and blue diameters. The rotational position of the tiles is immaterial.
Note how the tiles are identical as far as the red diagonal and blue diagonal are concerned.
The distinction is in which color of the red-blue diagonal cuts the black stripe.

Taylor–Socolar tilings can be defined by following simple matching rules R1,R2 and can also be
constructed by substitution (the scaling factor being 2). In this paper it is the matching rules that are
of importance.

R1 the black lines must join continuously when tiles abut;

R2 the ends of the diameters of two hexagonal tiles that are separated by an edge of another tile must
be of opposite colors, Figure 4.

The paper [2] emphasizes the tilings from the point of view of matching rules, whereas [1] emphasizes
substitution (and the half-hex approach). There is a slight mismatch between the two approaches, see [3],
which we will discuss later.

If one looks at part of a tiling with the full markings of the tiles made visible, then one is immediately
struck by how the black line markings of the tiles assemble to form nested equilateral triangles, see
Figure 2. Although these triangles are slightly shrunken (which ultimately is important), we see that
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basically the vertices of the triangles are tied to the centers of the hexagons, and the triangle side-lengths
are 1, 2, 4, 8, . . . in suitable units. This triangle pattern is highly reminiscent of the square patterns that
underlie the famous Robinson tilings [4,5], which also appear in sizes that scale up by factors of 2.
These tilings are limit-periodic tilings and can be described by model sets whose internal spaces are
2-adic spaces. The Taylor–Socolar tilings are also limit-periodic and it seems natural to associate some
sort of 2-adic spaces with them and to give a model-set interpretation of the picture.

Figure 4. Rule R2: Two hexagon tiles separated by the edge of another hexagon tile. Note
that the diameter colors of the two hexagons are opposite at the two ends of the separating
edge. It makes no difference whether or not the diameters color-split—the diameters must
have different colors where they abut the separating edge.

One purpose of this paper is to do this, and it has the natural consequence that the tilings are pure
point diffractive. It is convenient to base the entire study on a fixed standard hexagonal tiling of the
coordinate plane R2. The centers of the hexagonal tiles can then be interpreted as a lattice in the plane
(with one center at (0, 0)). The internal space of the cut and project scheme that we shall construct is
based on a 2-adic completion Q of the group Q consisting of all translation vectors between the centers
of the hexagons. We shall show that there is a precise one-to-one correspondence between triangulations
and elements of Q. But the triangulation is not the whole story.

The set of all Taylor–Socolar tilings associated with a fixed standard hexagonal tiling of the plane
form a tiling hull XQ. This hull is a dynamical system (with group Q) and carries the standard topology
of tiling hulls. Each tiling has an associated triangulation, but the mapping ξ : XQ −→ Q so formed,
while generically 1 − 1, is not globally 1 − 1. What lies behind this is the question of backing up from
the triangulations to the actual tilings themselves. The question is how are the tile markings deduced
from the triangulations so as to satisfy the rules R1,R2? There are two aspects to this. The triangulations
themselves are based on hexagon centers, whereas in an actual tiling the triangles are shrunken away
from vertices. This shrinking moves the triangle edges and is responsible for the off-centeredness of the
black stripe on each hexagon tile. How is this shrinking (or edge shifting, as we call it) carried out? The
second feature is the coloring of the diagonals of the hexagons. What freedom for coloring exists, given
that the coloring rule R2 must hold?

In this paper we explain this and give a complete description of the hull and the mapping ξ, which
coordinatises members ofXQ throughQ, Theorem 6.9. There are numerous places at which ξ is singular
(not bijective); in fact the set of singular points in Q is dense. Two special classes of singular points
are those corresponding to the central hexagon triangulations (CHT) (see Figure 5) and the infinite
concurrent w-line tilings (iCw-L) (see Figure 6). In both cases there is 3-fold rotational symmetry of
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the triangulation and in both cases the mapping ξ is many-to-one. These two types of tilings play a
significant role in [2].

Figure 5. The (central part of a) central hexagon (CHT) tiling. Full (edge-shifted) triangles
of levels 0, 1, 2 are shown. At the outside edges one can see the beginnings of triangles of
level 3. The rays from the central hexagon in the six a-directions will have infinite a-lines in
them. However the edge shifting rules cannot be applied to them because they are of infinite
level—they are not composed of edges of finite triangles. In the end a full tiling is obtained
by placing a fully decorated tile into the empty central hexagon. There are 12 ways to do
this, and each way then determines the rest of the tiling completely. These tilings violate
both forms of generic condition.

Figure 6. The iCw-L tilings. The triangulation is generic-a but not generic-w. Of course the
partial tiling shown is perfectly consistent with generic tilings—in fact all Taylor–Socolar
tilings contain this type of patch of tiles. However, if the pattern established in the picture is
maintained at all scales, then indeed the result is a not a generic tiling since it fails generic-w.

The hull has a minimal invariant component of full measure and this is a single LI class. There are
two additional orbits, whose origins are the iCw-L triangulations, and although they perfectly obey the
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matching rules they are not in the same LI class as all the other tilings. On the other hand the CHT
tilings (those lying over the CHT triangulations) are in the main LI class and, because of the particular
simplicity of the unique one whose center is (0, 0), the question of describing the parity (which tiles are
facing up and which are facing down) becomes particularly easy. Here we reproduce the parity formula
for this CHT tiling as given in [2] (with some minor modifications in notation). We use this to give
parity formulas for all the tilings of XQ.

A couple of comments about earlier work on aperiodic hexagonal tilings are appropriate here.
D. Frettlöh [6] discusses the half-hex tilings (created out of a simple substitution rule) and proves that
natural point sets associated with these can be expressed as model sets. Half-hexes do not play an explicit
role in this paper, though the hull of the half-hex tilings is a natural factor of XQ lying between XQ and
Q [6–8]. They were important to Taylor’s descriptions of her tilings and are implicitly embedded in them.

In [9], Penrose gives a fine introduction to aperiodic tilings and then goes on to create a class of
aperiodic hexagonal tilings, which he calls 1 + ε + ε2-tilings in which there are three types of tiles that
assemble by matching rules. The main tiles are hexagonal, with keyed edges. The other two are a
linear-like tile with an arbitrarily small width (ε tiles) that fit along the hexagon edges, and some very
tiny tiles (ε2) that fit at the corners of the tiles. Further musings on Penrose’s approach to his hexagonal
tilings can be found in [10].

The Penrose hexagonal tilings are closely related to the Taylor–Socolar tilings, though a comparison
of the corresponding parity tilings, our Figure 1 and Figure 25 of [9], makes it clear that they cannot be
the same. In fact, extensive computational work of F. Gähler shows that the cohomology of their hulls
are different, so the two tilings are quite distinct from one another. Nonetheless both tiling hulls have the
half-hex hull and Q as factors, and amazingly both have the same dynamical zeta functions. A report on
this work appears in this same volume [11] of Symmetry, where the Penrose tiling and the Taylor tilings
are carefully compared. The approach there is based on the construction of the tilings through inflations,
and the complications of the singular points of the hull arise from observing the special symmetries
possessed by certain of the tilings. In our approach, which is more algebraic, we begin with Q and the
singularities arise as obstructions to the process of reconstructing a tiling from its corresponding pattern
of triangles.

There is an algorithmic computation for determining that certain classes of substitution tilings
have pure-point spectrum. This has been used to confirm in yet another way that the Taylor–Socolar
substitution tilings have pure point spectrum or, equivalently, are regular model sets [12].

2. The Triangulation

In principle the tilings that we are interested in are not connected to the points of lattices and their
cosets in R2, but are only point sets that arise in Euclidean space E as the vertices and centers of tilings.
However, our objective here is to realize tiling vertices in an algebraic context and for that we need to
fix an origin and a coordinate system so as to reduce the language to that of R2. Let Q be the triangular
lattice in R2 defined by

Q := Za1 + Za2
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where a1 = (1, 0) and a2 = (−1
2
,
√

3
2

). Then P := Zw1 + Zw2 where w1 = 2
3
a1 + 1

3
a2 and

w2 = 1
3
a1 + 2

3
a2 is a lattice containing Q as sublattice of index 3, see Figure 7. For future reference

we note that |a1| = |a2| = |a1 + a2| = 1 and |w1| = |w2| = |w2 − w1| = 1/
√

3.

Figure 7. The figure shows the standard triangular lattice Q (the red points) and the larger
lattice P (red and blue points) in which Q lies with index 3. The points of Q may be viewed
as the vertices of a triangularization of the plane by equilateral triangles of side length 1.
The blue points are the centres of these triangles. The color here has nothing to do with the
coloring of the diagonals of the tiles—it only distinguishes the two cosets.

Joining the points ofQ that lie at distance 1 from one another creates a triangular tiling. Inside each of
the unit triangles so formed there lies a point of P , and indeed P consists of three Q cosets: Q itself, the
centroids of the “up” triangles (those with a vertex above a horizontal edge), and the “down” triangles
(those with a vertex below a horizontal edge), see Figure 8. What we aim to do is to create a hexagonal
tiling of R2. When this tiling is complete, the points of Q will be the centers of the hexagonal tiles and
the points of P immediately surrounding the points of Q will make up the vertices of the tiles [13].

Figure 8. The generators a1, a2 ofQ and the generators w1, w2 of P , showing how the cosets
of Q in P split into the points of Q and the centroids (centers) of the up and down triangles.
Around the point 0 ∈ Q we see the hexagonal tile centered on 0 with vertices in P\Q.

Each of the hexagonal tiles will be marked by colored diagonals and a black stripe, see Figure 3. These
markings divide the tiles into two basic types, and it is describing the pattern made from these two types
in model-set theoretical terms that is a primary objective of this paper (see Figure 2). The other objective
is to describe the dynamical hull that encompasses all the tilings that belong to the Taylor–Socolar
tiling family.
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We let the coset of up (respectively down) points be denoted by S↑1 = w1 + Q and S↓1 = w2 + Q

respectively:
P = Q ∪ S↑1 ∪ S

↓
1

Remark 2.1 There are three cosets of Q in P . In our construction of the triangle patterns we have
taken the point of view thatQ itself will be used for triangle vertices and the other two cosets for triangle
centroids. However, we could use any of the three cosets as the triangle vertices and arrive at a similar
situation. This amounts to a translation of the plane byw1 orw2. We come back to this point in Section 9.

We now wish to re-triangularize the plane still using points of Q as vertices, but this time making
triangles of side length equal to 2 using as vertices a coset of 2Q in Q. There are four cosets of 2Q in
Q and they lead to four different ways to make the triangularization. Figure 9 shows the four types of
triangles of side length 2. The lattices generated by the points of any one of these triangles is a coset of
2Q and together they make up all four cosets of 2Q in Q.

Figure 9. Four superimposed triangles, each indicated by its circled bottom lefthand vertex.
The vertices of each triangle generate a different coset of Q modulo 2Q.

Choose one of these cosets, call it q1 + 2Q, where q1 ∈ Q, and thereby triangulate the plane with
triangles of side length 2. The centroids of the new triangles are a subset of the original set of centroids
and, in fact, together with the vertices q1 + 2Q they form the coset q1 + 2P . This is explained in
the Figure 10, which also explains the important fact that the new centroids, namely those of the new
edge-length-2 triangles of q1 + 2Q, make up two cosets of 2Q in q1 + 2P depending on the orientation
of the new triangles, and these orientations are opposite to those that these points originally had. Thus
we obtain S↑2 = q1 + 2w1 + 2Q (which is in w2 +Q !), S↓2 = q1 + 2w2 + 2Q (which is in w1 +Q), and
the coset decomposition

q1 + 2P = (q1 + 2Q) ∪ S↑2 ∪ S
↓
2

with S↑2 ⊂ S↓1 and S↓2 ⊂ S↑1 .
We now repeat this whole process. There are four cosets of 4Q in q1 + 2Q and we select one of them,

say q1 + q2 + 4Q, with q2 ∈ 2Q, and this gives us a new triangulation with triangles of side length 4.
Their centroids in q1 + q2 + 4P form 4Q-cosets S↑3 ⊂ S↓2 and S↓3 ⊂ S↑2 , and we have the decomposition

q1 + q2 + 4P = (q1 + q2 + 4Q) ∪ S↑3 ∪ S
↓
3
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Continuing this way we obtain q1, q2, q3, . . . with qk ∈ 2k−1Q, and sets S↑k , S
↓
k with S↑k+1 ⊂ S↓k and

S↓k+1 ⊂ S↑k for all k = 1, 2, . . . , and the partition

q1 + · · ·+ qk + 2kP = (q1 + · · ·+ qk + 2kQ) ∪ S↑k+1 ∪ S
↓
k+1 (1)

We have

S↑k+1 = q1 + · · ·+ qk + 2k(w1 +Q) (2)

S↓k+1 = q1 + · · ·+ qk + 2k(w2 +Q)

Explicit formulas for 2kw1 and 2kw2 are given in Lemma 3.2.

Figure 10. The figure shows how the centroids (indicated with solid blue dots) of the new
side-length-2 triangles (indicated with solid red dots) are obtained as vectors from q1 + 2P .
The two 2Q-cosets of q1 + 2P which are not q1 + 2Q itself indicate the centroids of the
new up and down triangles. Notice that the orientations of the new triangles, and hence the
orientations associated with the new centroids, are opposite to the orientations associated
with these points when they were viewed as centroids of the original triangulation. This
explains why S↑2 ⊂ S↓1 and S↓2 ⊂ S↑1 .

2w
w

2w

w1

1

2

2

We now carry out the entire construction based on an arbitrary infinite sequence

(q1, q2, . . . , qk, . . . )

where qk ∈ 2k−1Q for all k. This results in a pattern of overlapping triangulations based on triangles of
edge lengths 1, 2, 4, 8, . . . (these are referred to as being triangles of levels 0, 1, 2, 3, ...). In Section 4 we
shall make our tiling out of this pattern. But certain features of the entire pattern are clear:

• all points involved as vertices of triangles are in Q;

• all triangle centroids are in P\Q;

• there is no translational symmetry.

The last of these is due to the fact that there are triangles of all scales, and no translation can respect all
of these scales simultaneously.

A point x ∈ P\Q is said to have an orientation (up or down) if there is a positive integer k such that
for all k′ > k, x /∈ S↑k′ ∪ S

↓
k′ . Every element of P\Q is in S↑k or S↓k for k = 1, and some for other values

of k as well. For the elements x which have an orientation there is a largest such k for which this is true.
We call this k the level of its orientation. If there is no such k we shall say that x is not oriented. We
shall see below (Proposition 3.3) what it means for a point not to have an orientation [14].
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3. The Q-Adic Completion

In this section we create and study a completion of P under theQ-adic topology. TheQ-adic topology
is the uniform topology based on the metric on P defined by d(x, y) = 2−k if x − y ∈ 2kQ\2k+1Q and
d(x, y) := 2 when x, y are in different cosets of Q. This metric is Q-translation invariant. P is the
completion of P in this topology and Q is the closure of Q in P , which is also the completion of Q in
the Q-adic topology.
P may be viewed as the set of sequences

(b1, b2, . . . )

where bk ∈ P for all k and bk+1 ≡ bk mod 2kQ.
P is a group under component-wise addition and Q is the subgroup of all such sequences with all

components in Q. There is the obvious coset decomposition

P = Q ∪ (w1 +Q) ∪ (w2 +Q)

so Q has index 3 in P . We note that Q and P are compact topological groups.
We have i : P −→ P via

b 7→ (b, b, b, . . . )

We often identify P as a subgroup of P via the embedding i.
Note that the construction of expanding triangles of Section 2 depends on the choice of the element

(q1, q2, . . . ), where qk ∈ 2k−1Q. Then we can obtain the compatible sequence

q = (q1, q1 + q2, . . . , q1 + q2 + · · ·+ qk, . . . ) ∈ Q

and thus we can identify each possible construction with an element of Q. Let T (q) denote the pattern
of triangles arising from q ∈ Q.

Let µ denote the unique Haar measure on P for which µ(P ) = 1. The key feature of µ is that
µ(p + 2kQ) = 2−k/3 for all p ∈ P . We note that P ⊂ P is countable and has measure 0, and that
µ(Q) = 1

3
and µ(S↑k) = µ(S↓k) = 2−k+1/3.

Remark 3.1 We should note a subtle point here. In Q one can divide by 3. In fact, for all x ∈ Q,
− limk→∞(x + 4x + 42x + · · ·+ 4kx) exists since 4kx ∈ 22kQ, and

−3 lim
k→∞

(x+ 4x+ 42x+ · · ·+ 4kx) = lim
k→∞

(1− 4)(x+ 4x+ 42x+ · · ·+ 4kx) = lim
k→∞

(1− 4k+1)x = x .

Thus we can find an element w1 of Q corresponding to w1 = 2
3
a1 + 1

3
a2 and similarly w2 ∈ Q

corresponding to w2 . However, our view is that P = Q ∪ (w1 + Q) ∪ (w2 + Q) and P is the Q-adic
completion of this, with each of the three cosets leading to a different coset of Q in P . Thus w1−w1 6= 0

but 3(w1 −w1) = 0 and we conclude that P has 3-torsion.
Two examples of this are important in what follows. Define s(−1)

1 := 0 and s
(k)
1 := a1 + 4a1 +

42a1 + · · · + 4ka1) for k = 0, 1, . . . , and similarly s(k)
2 based on a2. Their limits are denoted by s1, s2

respectively. They lie in Q.
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Lemma 3.2 For all k = 0, 1, . . . ,

22kw1 = w1 + s
(k−1)
2 + 2s

(k−1)
1

22k+1w1 = w2 + s
(k)
1 + 2s

(k−1)
2 .

Similarly for 2mw2, interchanging the indices 1, 2.
In particular limk→∞ 22kw1 = w1 + s2 + 2s1 and limk→∞ 22k+1w1 = w2 + s1 + 2s2. Furthermore,

3(w1 + s2 + 2s1) = 0 = 3(w2 + s1 + 2s2).

Proof: From the definitions, 2w1 = w2 + a1 and 2w2 = w1 + a2. This gives the case k = 0 of the
Lemma. Now proceeding by induction,

22kw1 = 2(w2 + s
(k−1)
1 + 2s

(k−2)
2 ) = w1 + a2 + 2s

(k−1)
1 + 4s

(k−2)
2 = w1 + s

(k−1)
2 + 2s

(k−1)
1 ,

as required. Similarly

22k+1w1 = 2(w1 + s
(k−1)
2 + 2s

(k−1)
1 ) = w2 + a1 + 2s

(k−1)
2 + 4s

(k−1)
1 = w2 + s

(k)
1 + 2s

(k−1)
2 .

Taking the limits and using the formula for multiplication by 3 at the beginning of Remark 3.1, we find
that −3(s2 + 2s1) = a2 + 2a1 = 3w1 and similarly with the indices 1, 2 interchanged.

Consider what happens if there is a point x ∈ P\Q that does not have orientation. This means
that there is an infinite sequence k1 < k2 < · · · with x ∈ S↑kj ∪ S↓kj . Then from (2), x ∈(
(q1 + · · ·+ qkj−1 + 2kj−1(w1 +Q)

)
∪
(
(q1 + · · ·+ qkj−1 + 2kj−1(w2 +Q)

)
for each kj . This means

x = q + w1 + s2 + 2s1 or x = q + w2 + s1 + 2s2.

Proposition 3.3 T (q) has at most one point without orientation. A point without orientation can occur
if and only if q ∈ −s2− 2s1 +Q or q ∈ −s1− 2s2 +Q. These two families are countable and disjoint.

Proof: If x ∈ P\Q does not have an orientation, then either x = q + w1 + s2 + 2s1 and −w1 + x ∈ Q,
which gives one of the cases; or x = q+w2 + s1 + 2s2, which gives the other. Conversely, in either case
we have points without orientation. Since in one case x ∈ w1 +Q and in the other case x ∈ w2 +Q, we
see that the two families are disjoint.

Remark 3.4 We do not need to go into the exact description of the orientations of triangles, but confine
ourselves to a few remarks here. For any fixed q, define the sequence of sets W ↑

k and W ↓
k , k = 1, 2, . . . ,

inductively by W ↑
1 = S↑1 and

W ↑
k+1 = (W ↑

k \S
↓
k+1) ∪ S↑k+1 ,

and similarly for W ↓
k . In other words we put together into W ↑

k all the points which are oriented upwards
at step k, and likewise all that are oriented downwards at step k.

Since S↓k+1 and S↑k+1 have measure 2−k/3, we see that the sets W ↑
k change by less and less as k

increases. Furthermore it is clear that µ(W ↑
k ) = 1/3 for all k.

Proposition 3.5 For all k the sets W ↑
k and W ↓

k are clopen and disjoint. They each have measure 1/3. �

For each q ∈ Q we define W ↑(q) := {x : x which have up orientation}, and similarly for W ↓(q).
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Proposition 3.6 P = Q ∪W ↑(q) ∪W ↓(q) where Q is disjoint from W ↑(q) ∪W ↓(q), and

W ↑(q) ∩W ↓(q) = {q + w1 + s2 + 2s1,q + w2 + s1 + 2s2} .

W ↑(q) is the union of an open set and {q + w1 + s2 + 2s1,q + w2 + s1 + 2s2 .} The same goes for
W ↓(q). In particular W ↑(q) and W ↓(q) are the closures of their interiors. Both W ↑(q) and W ↓(q) are
sets of measure 1/3. �

4. The Tiles

Let us assume that we have carried out a triangulation T (q) as described in Section 2. We now have
an overlaid pattern of equilateral triangles of side lengths 1, 2, 4, . . . . Each of these triangles has vertices
in Q and its centroid in P\Q. The points of the two cosets of P different from Q (shown as blue points
in Figure 7) form the vertexes of a tiling of hexagons made from the triangulation, see Figure 11. This
tiling, with the tiles suitably marked, is the tiling that we wish to understand. Our objective is to give
each hexagon of the tiling markings in the form of a black stripe and three colored diagonals as shown
in Figure 3.

Figure 11. A partial triangulation of the plane overlaid on the basic lattice of hexagons which
will make up the tiles. The levels of the triangles are indicated by increasing thickness. One
can clearly see triangles of levels 0, 1, 2, 3, 4 and one can also see how triangle edges of level
k ultimately become edges passing through the interior of triangles of level k + 1. This will
be used to make the shifting of edges later on.

Apart from the lines of the triangulation (which give rise to short diagonals of the hexagons of the
tiling) we also have the lines on which the long diagonals of the hexagons lie and which carry the color.
To distinguish these sets of lines we call the triangulation lines a-lines (since they are in the directions
a1, a2, a1 + a2) and the other set of lines w-lines (since they are in the directions w1, w2, w2 − w1). We
also call the w-lines coloring lines, since they are the ones carrying the colors red and blue. The w-lines
pass through the centroids of the triangles of the triangulation. We say that a w-line has level k if there
are centroids of level k triangles on it, but none of any higher level. We shall discuss the possibility of
w-lines that do not have a level in this sense below. Note that every point of P\Q is the centroid of some
triangle, some of several, or even many!
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There are two steps required to produce the markings on the tiles. One is to shift triangle edges off
center so as to produce the appropriate stripes on the tiles. We refer to this step as edge shifting. The
second is to appropriately color the main diagonals of each tile. This we refer to as coloring. The two
steps can be made in either order. However, each of the two steps requires certain generic aspects of the
triangulation to be respected in order to be carried out to completion. We first discuss the nature of these
generic conditions and then finish this section by showing how edge shifting is carried out.

We need to understand the structure of the various lines (formed from the edges of the various sized
triangles) that pass through each hexagon. Let us say that an element ofQ is of level k if it is a vertex of a
triangle of edge length 2k but is not a vertex of any longer edge length. Similarly an edge of a triangle is
of level k if it is of length 2k, and an a-line (made up of edges) is of level k if the longest edges making it
up are of length 2k. All lines of all levels are made from the original set of lines arising from the original
triangulation by triangles of edge length 1, so a line of level k has edges of lengths 1, 2, . . . , 2k on it.

The word “level” occurs in a variety of senses in the paper. These are summarized in Table 1. There
are two types of generic assumptions that we need to consider.

Table 1. Uses of the word “level” k and section number where it is defined. If there is no
such k the level is infinite.

of a triangle Section 2 k if the side length is 2k,
where a side length 1 = 20 is the length of a1 and a2

of orientation of x ∈ P Section 2 k at which x stops switching between S↑k and S↓k
of a w-line Section 4 max. k of centroids of level k triangles on it
of a point of Q Section 4 max. k for which it is a vertex of a triangle of level k
of a triangle edge Section 4 k for which it is an edge of a level k triangle
of an a-line Section 4 max. k for k-edges on this line

Definition 4.1 A triangulation (or the value of q associated with it) in which every w-line has a finite
level is called generic-w. This means that for every w-line there is a finite bound on the levels of the
centroids (points of P\Q) that lie on that line. In this case for any ball of any radius anywhere in the
plane, there is a level beyond which no w-lines of higher level cut through that ball. See Figure 6 for an
example that shows failure of the generic-w condition.

A triangulation (or the value of q associated with it) is said to be generic-a if every a-line has a finite
level. This means for every a-line there is a finite bound on the levels of edges that lie in that line. In
this case for any ball of any radius anywhere in the plane, there is a level beyond which no lines of the
triangulation of higher level cut through that ball. See Figure 12 and Figure 6.

A tiling is said to be generic if it is both generic-w and generic-a. All other tilings (or elements
q ∈ Q) are called singular. One case of the failure of generic-w is discussed in Proposition 3.3 above.
The only way for one of our generic conditions to fail is that there are a-lines or w-lines of infinite level.
This situation is discussed in Section 6.

Every element of Q has a hexagon around it and three lines passing through it in the directions
±a1,±a2,±(a1 + a2). These lines pass through pairs of opposite edges of the hexagon at
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right-angles to those edges. We shall call these lines short diameters. These short diameters arise
out of the edges of the triangles of the triangulations that we have created. Each triangle edge is part of
a line which is a union of edges, all of the same level. As we have pointed out, the line (and its edges)
have level k if they occur at level k (and no higher). The original triangulation has level 0. One should
note that a line may occur as part of the edges of many levels of triangles, but under the assumption of
generic-a there will be a highest level of triangles utilizing a given line, and it is this highest level that
gives the line its level and determines the corresponding edges.

Figure 12. This shows a sketch of how a tiling with an infinite a-line (the horizontal line)
can be constructed so that it is generic-w. Here q = za1, where z is the 2-adic integer
(1, 1, 5, 5, 21, 21, 85, 85, . . . ) (the mod 2, 4, 8, 16, 32, 64, 128, 256, . . . values). Some
triangles of edge lengths 2, 8, 32 are shown. There are triangles of arbitrary large side lengths
on the horizontal line, but the triangulation does not admit a second infinite a-line and cannot
admit an infinite w-line since q is of the wrong form.

1-3 -1 215-11 0

In looking at the construction of level 1 triangles out of the original triangulation of level 0 triangles,
we note immediately that every point of Q has at least one line of level 1 through it (though by the time
the triangularization is complete this line may have risen to higher level), see Figure 9. The vertices of
the level 1 triangles have three lines of level 1 through them, and the rest (the mid-points of the sides
of the level 1 triangles) have just one of level 1 and the other two of level 0. Thus at this stage of the
construction each hexagon has either one short diameter from a level 1 line or it has 3 short diameters all
of level 1.

This is the point to remember: At each stage of determining the higher level triangles, we find that
the hexagon around each element of Q is of one of two kinds: It either has three short diameters of
which two have equal level and the third a higher level, or three short diameters all of the same level
k. The latter only occurs when the element of Q is a vertex of a triangle of level k. Since we are in
the generic-a case, there is no element of Q that is a vertex of triangles of unbounded scales, and the
second condition cannot hold indefinitely. Once an element of Q is not a vertex at some level then it
never becomes a vertex at any other higher level (all vertices of triangles at each level are formed from
vertices of triangles at the previous level).

We conclude ultimately that in the generic-a cases every hexagon has three short diameters of which
two are of one level and one of a higher level. See Figure 11.



Symmetry 2013, 5 15

Lemma 4.2 For q satisfying generic-a each hexagonal tile of T (q) has three short diameters of which
exactly one has the largest level and the other two equal but lesser levels.

We now describe edge shifting. Fix any ε with 0 < ε ≤ 1/4. This ε is going to be the distance by
which lines are shifted. It is fixed throughout, but it exact value plays no role in the discussion. Take a
tiling based on q.

Now consider any edge that has level k < ∞ but does not occur as part of an edge of higher level.
This edge occurs as an edge inside some triangle T of level k + 1, and this allows us to distinguish two
sides of that edge. The side of the edge on which the centroid of T lies is called the inner side of the
edge, and the other side its outer side. This edge (but not the entire line) is shifted inwards (i.e., towards
the centroid of T ) by the distance ε. Note that the shifting distance ε is independent of k. This shifted
edge then becomes the black stripe on the hexagonal tiles through which this edge cuts, see Figure 13.
Figure 14 shows how edge shifting works. At the end of shifting, each hexagon has on it a pattern made
by the shifted triangle edges that looks like the one shown in Figure 13.

Figure 13. The basic hexagon with its markings arising from shrunken triangles.

Figure 14. The figure shows how edge shifting is done. Part of a triangulation is shown
in thin black lines. The shifted edges are shown in thicker gray lines. The extended black
lines indicate that the largest (level 2) triangle sits in the top right corner of a level 3 triangle,
which is not shown in full. Note how the edges of the level 2 triangle shift.

In the case that q satisfies generic-a, the edges of every line of the triangulation are of bounded length.
Thus every edge undergoes a shift by the prescription above. Thus,
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Proposition 4.3 If T (q) satisfies the condition generic-a, then there is a uniquely determined edge
shifting on it. �

5. Color

So far we have constructed a triangulation from our choice of q, and have shown how edges can be
shifted to produce the corresponding hexagonal tiling with the tiles suitably marked by black stripes. We
wish now to show how the (long) diagonals of the hexagons are to be colored. This amounts to producing
a color (red, blue, or red-blue) for each of the long diagonals of each hexagon of the tiling. The only
requirement is that the overall coloring obey the rule R2 that is used to make Taylor–Socolar tilings.

As we mentioned above, coloring is made independently of shifting in the sense that the two processes
can be done in either order. In fact, in this argument we shall suppose that the stripes have not been
shifted, so they still run through the centroids of the tiles.

We shall show that for q ∈ Q in the generic case, there is exactly one allowable coloring.
Assume that we have a generic tiling (this means both a andw generic). Now consider any hexagon of

the tiling. We note from Lemma 4.2 that it has three short diameters, one of which is uniquely of highest
level, and it is this last short diameter that determines (after shifting) the black stripe for this hexagon.
We will refer to this short diameter as the stripe, even though in this discussion it has not been shifted.
The other two colored (long) diameters are a red one that lies at π/6 clockwise of the stripe and a blue
one that lies π/6 counterclockwise of the stripe. The red-blue diameter cuts the stripe at right-angles,
but which way around it is (red-blue or blue-red) is not determined yet.

Consider Figure 15 in which we see two complete level 1 triangles overlaid on the basic level 0

triangles. Tiles of the hexagonal tiling are shown on points of Q with the hexagons at the vertices of the
level 1 triangles shown in green. These latter are points of q1 + 2Q. At each point of Q there are three
edge lines running through it. But notice that at the midpoints of the sides of the level 1 triangles (white
hexagons), the edge belonging to the level 1 triangle has higher level than the other two. This is the edge
that will become the stripe for the hexagon at that point. This stripe forces the red and blue diameters for
this hexagon.

The idea behind coloring is based on extrapolating this argument tow-lines passing through midpoints
of higher level triangles. Consider Figure 16. The point u is the midpoint of an edge of a triangle T ′ of
level 3. Drawing the w-line L towards the centroid d of the top left corner triangle T of level 2 we see
first of all that the edge of the level 3 triangle through u is the highest level edge through u and hence the
coloring along the w-line L starts off red, as shown. Now the rule R2 forces the next part of the coloring
to be blue and we come to the hexagon center e. This has three edges through it, but the one that our
w-line crosses at right-angles has the highest level, and so will produce the stripe for the corresponding
hexagon. The color must switch at the stripe, and so we see the next red segment as we come to d.

And so it goes, until we reach the point v. Here L meets the midpoint of the edge of another level 3

riangle. This edge produces the stripe for the hexagon at v, but it is not at right-angles to L, so there is
no color change on L at v. Since v is the midpoint of this level 3 triangle, the same argument that we
used at u shows that the coloring should start off blue, as indeed we have seen it does. At this point one
can see by the glide reflection symmetry along L that the entire line L will ultimately be colored so as to
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fully respect the rule R2. For a full example where one can see the translational symmetry take over, the
reader can fill in the coloring on the gray line through y.

Figure 15. The figure shows some hexagonal tiles, each centered on a point of Q. The
point q is assumed to be in the coset q1 + 2Q and the gray hexagons are those in the picture
whose centers are in this coset. The white hexagons are centered at points from all three of
the remaining cosets of Q relative to 2Q. These are the midpoints of the edges of the level
1 triangles. Notice in each, the red and blue diagonals clockwise and counterclockwise of
the direction of the black stripes. At the bottom we see the three vectors a1, a2, a1 + a2.
The centers of the white hexagons are, reading left to right and bottom to top, q1 + a1, q1 +

3a1; q1 + a1 + a2, q1 + 2a1 + a2, q1 + 3a1 + a2; q1 + 3a1 + 2a2. The picture manifests the rule
R2 and shows that elements of the same coset carry the same orientation of diameters. Note
that from the rotational symmetry of the process and the fact that the hexagons centered on
q1 + a1 and q1 + 3a1 have identically aligned diagonals, we can infer that this property is
retained across each of the cosets q1 + a1 + 2Q, q1 + a2 + 2Q, q1 + a1 + a2 + 2Q.

Figure 16. Coloring of lines. Colors are forced on w-lines as they pass through the midpoint
of a triangle directed towards the centroid of one of its corner triangles.
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One can see a similar w-line coloring of the w-line passing through q and c. This time the point q is
the midpoint of an edge of a level 4 triangle and c is the centroid of one of the level 3 corner triangles
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of this level 4 triangle. The pair r, c produces another example, with this time the first color out of r
being blue.

Finally, we show part of a potential line coloring starting at s towards t. We say “potential” because
from the figure we do not know how the level 5 triangles lie. If s is a midpoint of an edge of a level 5

triangle, then the indicated w-line is colored as shown. If s is not a midpoint then this w-line is not
yet colorable.

We can thus continue in this way indefinitely. The important question is, does every tile get fully
colored in the process? Using condition generic-w, the answer is yes. To see this note that each element
of p of P\Q has three coloring lines through it. It will suffice to prove that the process described above
will color these three coloring lines.

Now assuming the condition generic-w we know that p has an orientation. This means that it is the
centroid of some triangle T of level k in the triangulation, and it is not the centroid of any higher level
triangle. The triangle T then sits as one of the corner triangles in a triangle T ′ of level k + 1. Up to
orientation, the situation is that shown in Figure 17. The colors of the two hexagons shown are then
determined because the edges of T ′ produces stripes on them. Thus the two corresponding coloring lines
that pass through p are indeed colored. Thus the colorings of these two coloring lines through p, the ones
that pass through the mid-points of two sides of T ′, are forced.

Figure 17. The figure shows how the centroid of the triangle T , which is in the top corner
of the main triangle, is on two coloring lines. The third coloring line through p is the dotted
line through v. This passes through the centroid p′ of T ′.

What about the third line l through p (shown as the dotted line in Figure 17)? We wish to see this as
a w-line through a midpoint of an edge, just as we saw the other two lines. We look at the centroid p′ of
T ′, since the coloring line l, which is through v and p, is the same as the line through v and p′ and the
centroid p′ is of higher level than p and also has an orientation. We can repeat the process we just went
through with p with p′ instead, to get a new triangle T ′′ of which p′ is the centroid, and a triangle T ′′′
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in which T ′′ sits as one of its corners (p′ is the centroid of T ′ but it may be the centroid of higher level
triangles as well).

If this still fails to pick up the line l then it must be that l still passes through a vertex of T ′′′ (as
opposed to through the midpoint of one of its edges) and the line l passes through the centroid p′′′ of
T ′′′. However, p′′′ is of higher level still than that of p′. The upshot of this is that if we never reach a
forced coloring of l (so that it remains forever uncolored in our coloring process) then we have on the
line l centroids of triangles of unbounded levels. This violates condition generic-w. Thus in the generic
situation the coloring does reach every coloring line and the coloring is complete in the limit.

This completes the argument that there is one and only one coloring for each generic triangularization.
If one is presented with a triangularization and wishes to put in the colors, then one sees that the

coloring becomes known in stages, looking at the triangles (equivalently cosets) of ever increasing levels.
Figure 18 shows the amount of color information that can be gleaned at level k = 2.

Figure 18. This figure shows how the coloring appears if one determines the coloring by
the information in increasing coset levels. This figure corresponds to the process at k = 2.
The triangle vertices and their corresponding hexagons are indicated at levels 0, 1, 2 and the
corresponding partial coloring is noted.

Proposition 5.1 Any generic tiling is uniquely colorable. �

We note that in the generic situation, the shifting and coloring are determined locally. That is, if one
wishes to create the marked tiles for a finite patch of a generic tiling, one need only examine the tiling in
a finite neighbourhood of that patch. That is because the shifting and coloring depend only on knowing
levels of lines, and what the levels of various points on them are. Because of the generic conditions, these
levels are all bounded in any finite patch and one needs only to look a finite distance out from the patch
in order to pick up all the appropriate centroids and triangle edges to decide on the coloring and shifting
within the patch. Of course the radii of the patches are not uniformly bounded across the entire tiling.

Here we offer a different proof of a result that appears in [2]:

Proposition 5.2 In any generic tiling and at any point p that is a hexagon vertex, the colors of the three
concurrent diagonals of the three hexagons that surround p are not all the same (where they meet at p).
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Proof: The point p is the centroid of come corner triangle of one of the triangles of the triangulation.
Figure 17 shows how the coloring is forced along two of the medians of the corner triangle and that they
force opposite colorings at p. See also Figure 19. �

Figure 19. In the figure the small circle indicates (0, 0). A vertical color line is shown,
which meets the a3 axis in the point p = (4,−4, 0). The points on this axis are all of the
form (u,−u, 0), u ∈ Z. In the CHT tiling set-up, D(u) indicates that the point is a vertex
of a level log2D(u) triangle, in this case D(4) = 4, so we are on a level 2 triangle (22 = 4).
We already saw that the color starts with a full blue diagonal at (4,−4, 0). Moving down
the line to the next point decreases x1 by 2 and increases x2, x3 by 1. We note that x3 − x2

remains constant, and D(x3 − x2) = 4. At the second step we cross, at right-angles into
another triangle of level 2, and the color proceeds without interruption. At the 4th step we
are at a vertex that is the midpoint of the side of a triangle of level 3 and looking up our
vertical line we can see that it is passing into a corner triangle of level 4—namely where we
just came from, and we see a forced full red diagonal. In the first three steps the diameters
are all red-blue (top to bottom), whereas after the red-red diagonal the next three steps are
blue-red diameters, so there is a switch that affects parity. We can ignore the points with full
diameters (they get sorted out in a different w-direction). We note that b x3

D(x3−x2)
c maintains

the value 0 on steps 1, 2, 3 and maintains the value 1 on steps 5, 6, 7, showing that the formula
notices the change of diameters correctly. If we continue b x3

D(x3−x2)
c = 2 on the next three

step sequence, but modulo 2 this is the same as 0.

5.1. Completeness

We have now shown how to work from a triangularization to a tiling satisfying the matching rules
R1,R2. Does this procedure produce all possible tilings satisfying these rules? The answer is yes,
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and this is already implicit in [2]. We refer the reader to the paper for details, but the point is that in
creating a tiling following the rules a triangle pattern emerges from the stripes of the hexagons. This
triangularization can be viewed as the edge-shifting of a triangulation T conforming to our edge shifting
rule. Thus we know that working with all triangulations, as we do, we are bound to be able to produce
the same shrunken triangle pattern as appears in T .

In the generic cases, the coloring that we impose on this triangulation is precisely that forced by R2.
When we discuss the non-generic cases in Section 6.2, we shall see that for non-generic triangulations
there are actually choices for the colorings of some lines, but these choices exhaust the possibilities
allowed by the rule R2. Thus the tiling T must be among those that we construct from T and so we see
that our procedure does create all possible tilings conforming to the matching rules.

When we determine the structure of the hull in Section 6.4 we shall also see that it is comprised of a
minimal hull and two highly exceptional countable families of tilings. The former contains triangulations
of all types and, as the terminology indicates, the orbit closure of any one of its tilings contains all the
others in the minimal hull, so in a sense if you have one then you have them all. (The two exceptional
families of tilings appear in the rule based development of the tilings, but do not appear in the inflation
rule description.)

6. The Hull

6.1. Introducing the Hull

Let XQ denote the set of all Taylor–Socolar hexagonal tilings whose hexagons are centered on the
points of Q and whose vertices are the points of P\Q. The group Q (with the discrete topology) acts on
XQ by translations. We let X be the set of all translations by R2 of the elements of XQ. We call XQ and
X the hulls of the Taylor–Socolar tiling system. We give XQ and X the usual local topologies—two
tilings are close if they agree on a large ball around the origin allowing small shifts. In the case of XQ

one can do away with “the small shifts” part. See [15] for the topology.
In fact it is easy to see that, although we have produced it out of XQ, X is just the standard hull that

one would expect from the set of all Taylor–Socolar tilings when they have not been anchored onto the
points of Q. Thus X is compact, and since XQ is a closed subset of it, it too is compact.

The translation actions of Q on XQ and R2 on X are continuous. We note that the hulls XQ and X
are invariant under six-fold rotation and under complete interchange of the two tile types. Our task is to
provide some understanding of XQ and X . Here we shall stick primarily to XQ since the corresponding
results for X are easily inferred. See also [11] the structure of the hull X is determined (in a totally
different way). The 2-adic group Q is then replaced by the two dimensional dyadic solenoid.

We let Xgen
Q denote the set of all the generic tilings in XQ.

Each element Λ ∈ XQ produces a triangularization of the plane, and the triangularizations are
parameterized precisely by elements in Q. In particular there is an element q(Λ) ∈ Q corresponding to
Λ, and we have a surjective mapping

ξ : XQ −→ Q (3)

Λ 7→ q(Λ)
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Proposition 6.1 The mapping ξ is continuous (with respect to the local topology on XQ and the Q-adic
topology on Q). Furthermore ξ is 1− 1 on Xgen

Q .

Proof: Any q ∈ Q is determined by its congruence classes modulo 2Q, 4Q, . . . , which are represented
equally well by the congruence classes of Q modulo 2Q, 4Q, . . . . These congruence classes are the sets
of vertices of the triangles of increasing sizes, starting with those of level 1. Now any patch of tiles
containing a ball BR, R > 2, will determine part of the triangulation with triangles of all levels 1, 2, . . . n

for some n = n(R), and we have n(R) → ∞ as R → ∞. The larger the patch the more congruence
classes we know, and this is the continuity statement.

In the case of a generic tiling Λ, q(Λ) already determines the entire markings of the tiles and hence
determines Λ. Thus ξ is 1− 1 on Xgen

Q . �

Below we shall see that with respect to the Haar measure on Q the set of singular (i.e.,
non-generic) q is of measure 0. A consequence of this is [16], Theorem 6:

Corollary 6.2 XQ is uniquely ergodic and the elements of Xgen
Q are regular model sets. �

We shall make the model sets rather explicit in Section 7.

6.2. Exceptional Cases

We now consider what happens in the case of non-generic tilings. To be non-generic a tiling must
violate either generic-a or generic-w. We consider these two situations in turn.

6.2.1. Violation of Generic-a

In the case of violation of generic-a, there is an a-line of infinite level (that is, it does not have a level
as we have defined it). Let Z2 be the Q-adic completion of Z.

Proposition 6.3 A tiling Λ, where ξ(Λ) = q, has an a-line of infinite level if and only if
q ∈ x + Z2a for some a ∈ {a1, a2, a1 + a2} and some x ∈ Q. Furthermore when this happens the
points of Q lying on the infinite-level-line are those of the set x+ Za.

Proof: All lines of the triangulation are in the directions ±a1,±a2,±(a1 + a2) and all lines of the
triangulation contain edges of all levels from 0 up to the level of the line itself. Thus the points of Q
on any line l of the triangulation are always a set of the form x + Za where a ∈ {a1, a2, a1 + a2} and
x ∈ Q ∩ l.

Suppose that we have a line l of infinite level and its intersection with Q is contained in x + Za.
The line l has elements y1, y2, . . . where yk is a vertex of a triangle of level k. This means that
y1 ∈ q1 + 2Q, y2 ∈ q1 + q2 + 4Q, . . . . We conclude that {yk} → q. Furthermore yk+1 − yk ∈
2kQ ∩ Za = 2kZa. This is true for all k ≥ 0 if we define y0 = x. Writing yk+1 − yk = 2kuka with
uk ∈ Z and u = (0, u1, . . . ,

∑k
j=1 uj2

j, . . . ), we have

yk+1 = x+

(
k∑
j=1

uj2
j

)
a → x+ ua
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where u ∈ Z2. Thus q = x+ ua. This proves the only if part of the proposition.
Going in the reverse direction, if q = x + ua then this is a prescription for a line of points in Q that

have vertices of all levels. Then the line is of infinite level. �

Proposition 6.4 If a tiling Λ ∈ XQ has an infinite a-line then it is in XQ\Xgen
Q and has either precisely

one infinite a-line or three infinite a-lines that are concurrent. The latter case occurs if and only if q ∈ Q,
where q = ξ(Λ).

Proof: Let Λ ∈ XQ have an infinite a-line l. We already know that Λ ∈ XQ\Xgen
Q and q = x + ua for

some x ∈ Q, u ∈ Z2, and some a ∈ {a1, a2, a1 + a2} from Proposition 6.3. If it has a second (different)
infinite line l′ then similarly q = y + vb where y ∈ Q, v ∈ Z2, and b ∈ {a1, a2, a1 + a2}. Certainly
a 6= b; otherwise the two lines are parallel and this leads to overlapping triangles of arbitrarily large
size, which cannot happen. But we have y − x ∈ Q ∩ (Z2a + Z2b) = Za + Zb. Since a, b are linearly
independent over Z2 and y − x = ua− vb we see that u and v are actually in Z. Then q ∈ Q. We will
indicate this by writing q for q.

In this case, since q ≡ q1 + · · · + qk mod 2kQ we find that q is a vertex of a level k triangle,
for all k. Since this is true for all k, q is a point through which infinite level lines in all three
directions {a1, a2, a1 + a2} pass. Thus the existence of two infinite lines implies the existence of
three concurrent lines.

In the other direction, if q ∈ Q, then as we have just seen there will be three concurrent infinite lines
passing through it. �

The case of a tiling with three concurrent infinite a-lines in Proposition 6.4 is called a central hexagon
tiling (CHT tiling) in [2] (see Figure 5). We also refer to them as iCa-L tilings. Edge shifting is not
defined along these three lines, and we shall see that we have the freedom to shift them arbitrarily to
produce legal tilings. The tilings in which there is one infinite a-line are designated as ia-L tilings.

6.2.2. Violation of Generic-w

The case of violation of generic-w is somewhat similar, though it takes more care. One aspect of this
is to avoid problems of 3-torsion in P , which we shall do by staying inside Q where this problem does
not occur. Thus in the discussion below the quantity 3w, where w ∈ {w1, w2, w2 − w1}, is of course
in Q, but when we see it with coefficients from Z2 we shall understand it as being in Q (as opposed to
being in P ). Another problem is that the violation of generic-w is not totally disjoint from the violation
of generic-a, as we shall see.

Proposition 6.5 Λ(q) has a w-line of infinite level if and only if q ∈ x + Z2 3w for some
w ∈ {w1, w2, w2 − w1} and some x ∈ Q. Furthermore when this happens the points of Q lying on
the infinite-level-line are those of the set x+ Z 3w.

Proof: All w-lines deriving from the triangulation are necessarily in the directions
w ∈ {±w1,±w2,±(w2 − w1)}. Of course 3w ∈ Q, and mw ∈ Q iff 3|m. It really makes no
difference which of the six choices w is, but for convenience in presentation we shall take herewith
w = w2 so that 3w = a1 + 2a2. This is in the vertical direction in the plane.
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Allw-lines contain centroids of levels up to the level of the line itself. Furthermore if aw-line contains
a centroid of level k then it also contains one of the vertices of the corresponding triangle and so also at
least one point of Q of level k. It follows that for any w-line l in the direction w there is an x ∈ Q so that
the set of points of Q on l is the set x+ Z 3w = x+ Z(a1 + 2a2).

Suppose that we have a w-line l of infinite level and its intersection with Q is x + Z(a1 + 2a2).
Then the line l has elements y1, y2, . . . where yk is a vertex of a triangle of level k. This means
that y1 ∈ q1 + 2Q, y2 ∈ q1 + q2 + 4Q, . . . . We conclude that {yk} → q. Furthermore
yk+1 − yk ∈ 2kQ ∩ Z(a1 + 2a2). This is true for all k ≥ 0 if we define y0 = x. Writing
yk+1 − yk = 2kuk(a1 + 2a2) with uk ∈ Z and u = (0, u1, . . . ,

∑k
j=1 uj, . . . ) ∈ Z2, we have

yk+1 = x+

(
k∑
j=0

uj2
j

)
(a1 + 2a2)→ x+ u (a1 + 2a2)

Thus q = x+ u (a1 + 2a2). This proves the only if part of the proposition.
Going in the reverse direction, if q = x + u (a1 + 2a2) then this is a prescription for a line of points

in Q that have vertices of all levels. The corresponding w-line has centroids of unbounded levels, so the
line is a w-line of infinite level. �

Proposition 6.6 If a tiling Λ ∈ XQ has an infinite w-line then Λ ∈ XQ\Xgen
Q and it has either precisely

one infinite w-line or three infinite w-lines that are concurrent. The latter case occurs if and only if the
point of concurrency is either a point of infinite level (discussed in Proposition 6.4) or a non-orientable
point (discussed in Proposition 3.3).

Proof: Let Λ ∈ XQ have an infinite w-line l. We again take this to be in the direction of w2. Then
q := ξ(Λ) = x+ u (a1 + 2a2) for some x ∈ Q, u ∈ Z2.

Suppose that it has a second (different) infinite line l′. Then similarly q = y + v 3w′ where y ∈ Q,
v ∈ Z2, and 3w′ ∈ {2a1 + a2, a1 + 2a2, a2 − a1}. As above, we note that w 6= w′ because if w = w′,
the two lines are parallel and each of the two lines contains vertices of arbitrarily large levels. But the
parallel lines through vertices and centroids of level k are spaced at a distance of 2k−1 apart. Thus no
two distinct parallel w-lines can both carry centroids of arbitrary level.

Again, for concreteness we shall take a specific choice for w′, namely w′ = w1 = 2a1 + a2. Other
choices lead to similar results.

There are two scenarios. Either the two lines l, l′ meet at a point of Q or not. Suppose that they meet
in a point of Q. Then we can choose x = y and obtain

x+ u (a1 + 2a2) = q = x+ v (2a1 + a2)

Since a1 and a2 are independent in Q over Z2, we obtain u = 2v and 2u = v. The only solution to this
in Z2 is u = v = 0. Thus q = x ∈ Q. This puts us in the situation of Proposition 6.4, the point of
intersection of the two lines is actually a vertex of infinite level, and this is a CHT tiling.

The alternative is that l, l′ meet at a point p of P\Q. In this case we go back to the discussion of
coloring given in Section 5. The point p is a centroid and it either has infinite level, in which case it
has no orientation and we go to Proposition 3.3, or it has a finite level in which two of the three w-lines
through it have forced color and finite level, which is a contradiction. This proves the result. �
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As shown in Table 2, infinite level a-lines occur if and only if q ∈ x + Z2a and infinite level
w-lines occur if and only if q ∈ x + Z2w, with a, w being in the basic a and w directions respectively.
Three concurrent a-lines occur if and only if q ∈ Q, whereupon the condition for three concurrent
w-lines also is true. These are the CHT tilings.

Table 2. Summary of infinite level a-lines and w-lines.

Type Single Three concurrent
infinite a-line q ∈ Q+ Z2a q ∈ Q CHT
infinite w-line q ∈ Q+ Z2w q ∈ Q CHT

q ∈ −s2 − 2s1 +Q or q ∈ −s1 − 2s2 +Q

Since the singular elements of Q lie on a countable union of lines, it is clear that their total
measure is 0.

Lemma 6.7 The set of singular q ∈ Q has Haar measure 0.

Lemma 6.8 If a triangularization T (q) has both an infinite level a-line and an infinite level
w-line, then their point of intersection is a point of concurrence of three infinite level w-lines and three
infinite level a-lines, and the tiling is a CHT tiling.

Proof: By Propositions 6.3 and 6.5,

q ∈ x1 + Z2a and q ∈ x2 + Z23w

for some x1, x2 ∈ Q and a ∈ {a1, a2, a1 + a2}, w ∈ {w1, w2, w2 − w1}. Putting these together,

q = x1 + z1a = x2 + z23w

for some z1, z2 ∈ Z2. However a and 3w are independent elements of Q (over Z), and hence are also
independent over Z2. Since x2 − x1 ∈ Q, this forces z1, z2 ∈ Z. Thus q ∈ Q, which is the condition for
simultaneous concurrency of three a-lines and three w-lines (Proposition 6.4). �

6.3. Coloring for the iCw-L Tilings

According to Proposition 3.3 we have a point of no orientation precisely when q ∈ −s2 − 2s1 + Q

or q ∈ −s1 − 2s2 + Q. In these cases, by Proposition 6.6, we have three concurrent w-lines and
their intersection is a point of no orientation. This point of intersection is x = q + w1 + s2 + 2s1 or
x = q + w2 + s1 + 2s2. The former can be anywhere in w1 + Q and the latter anywhere in w2 + Q.
The triangulation can be described as a set of nested triangles of levels 0, 1, 2, 3, . . . (and all the lesser
level triangles that occur within them) all of which have the centroid x. The level k = 0 triangle is an
up triangle in the w1 case and a down triangle in the w2 case. The infinite l-lines are in the directions
w1, w2, w2 − w1 through x and these three lines have no forced colorings.

We call these tilings the iCw-L tilings (infinite concurrent w-line tilings). We also refer to the
underlying triangulations with the same terminology. See Figure 6.
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The symmetry belongs to the triangulation, not necessarily to the tilings themselves. The colorings
of the three exceptional lines of an iCw-L tiling can be made in an arbitrary way without violating the
tiling conditions R1,R2 [2]. Of the 8 possible colorings the two truly symmetric ones (the ones that give
an overall 3-fold rotational symmetry—including color symmetry—to the actual tiling) are exceptional
in the sense that no other tilings in the Taylor–Socolar system have a point p ∈ P\Q (i.e., a tile vertex)
with the property that the three hexagon diagonals emanating from it are all of the same color (see
Proposition 5.2). These exceptional symmetric iCw-L tilings are called SiCw-L tilings. In [2] these
tilings are described as having a “defect” at this point, and indeed they are not LI to any other tilings
except other SiCw-L tilings.

Thus there are 2 exceptional colorings for any iCw-L triangulation. In the other 6 colorings there are
at each hexagon vertex two diameters of the same color and one of the opposite color, and we shall soon
prove that they all occur in XQ.

Tilings for which there is just one infinite w-line in the triangulation are called iw-L tilings.

6.4. The Structure of the Hull

In this subsection we describe the hull XQ in more detail. We note that the only symmetries of XQ

which we discuss are translational symmetries (not rotational). These translational symmetries are the
elements of Q. Of course none of the elements of XQ has any non-trivial translational symmetry; it is
only the hull itself that has them. When we discuss LI classes below we mean local indistinguishability
classes under translational symmetry.

Theorem 6.9 XQ consists of three LI classes, Xb
Q, Xr

Q, and X†Q. Of these Xb
Q is the countable set of

SiCw-L tilings with three blue-red (blue first) diameters emanating from some hexagon vertex q, which
form a single Q-orbit in XQ, and Xr

Q is the companion orbit with red-blue diameters. Both of these
orbits are dense in XQ.
X†Q is the orbit closure of Xgen

Q and contains all other tilings, including all the iCw-L tilings that are
not color symmetric. Restricted to the minimal hull X†Q, the mapping ξ defined in (3) is:

(i) 1 : 1 on Xgen
Q ;

(ii) 6 : 1 at iCw-L points except SiCw-L points;

(iii) 12 : 1 at CHT points;

(iv) 2 : 1 at all other non-generic points.

Remark 6.10 The images of ξ of the set of singular points (non-generic points) is dense in Q. For
instance, the triangulations with three concurrent a-lines are parameterized by Q, which is a dense
subset of Q, and these tilings produce the CHT tilings (or iCa-L tilings) described above. Both Xgen

Q

and X†Q are of full measure in XQ.

Proof: First, we consider generic tilings. Let Λ, where ξ(Λ) = q, be any generic tiling and let BR be the
ball of radiusR centered on 0. Let T (Λ) be the triangulation determined by Λ (with edges not displaced)
and let TR(Λ) be the part of the triangulation that is determined by BR.
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Because we are in a generic situation, to know how to shift an edge of level k we need only that edge
to appear as an inner edge of a triangle of level k + 1. To determine the coloring of a w-line we need
to know its level (which is finite). So to know all this information for TR we need only choose r large
enough so that Br contains all the appropriate triangles.

Now if generic Λ′, where ξ(Λ′) = q′, produces the same pattern of triangles in Br, then it is
indistinguishable from Λ in BR. In particular if q′ satisfies q′ − q ∈ 2kQ for large enough k then Λ

and Λ′ must agree (as tilings) on BR. This proves that convergence of q′ to q produces corresponding
convergence in XQ.

With this it is easy to see that any two generic elements of X are LI. Let ξ(Λ) = q and
ξ(Λ′) = q′ be generic. Let q correspond to q1, q2, . . . and q′ correspond to q′1, q

′
2, . . . . Then we can

construct the tiling sequence q′1 − q1 + Λ, q′1 + q′2 − (q1 + q2) + Λ, . . . and it converges to Λ′.
This same argument can be used to show that the orbit closure of any tiling contains all of Xgen

Q . Let
Λ be any tiling with q = ξ(Λ) and Λ′ be a generic tiling with q′ = ξ(Λ′). Then one simply forms a
sequence of translates of Λ that change q into q′. The convergence of the triangulation on increasing
sized patches forces convergence of the color and we see Λ′ in the orbit closure of Λ.

Second, we consider the iCw-L cases, where x := q+w2 +s1 +2s2 ∈ w2 +Q or x := q+w1 +s2 +

2s1 ∈ w1 + Q. In these cases x is a non-orientable point and there exists a nested sequence of triangles
of all levels centered on x. This sequence begins either with an up triangle of level 0 or a down triangle
of level 0. In either case everything about the triangulation is known and the entire tiling is determined
except for the coloring of the three w-lines through x. In fact all of the 8 potential colorings of these
three lines are realizable as tilings, as we shall soon see.

Of these iCw-L triangulations we have the SiCw-L tilings in which the colors of the diagonals of
the three hexagons of which x is a vertex start off the same—all red or all blue. This arrangement at
a hexagon vertex never arises in a generic tilings, and it is for this reason that these tilings produce
different LI classes than the one that the generic tilings lie in: one “red” LI class and one “blue” LI
class. As pointed out in [2] these SiCw-L tilings have the amazing property that they are completely
determined once the three hexagons around x have been decided (It is also pointed out in [3] that the
SiCw-L tilings do not arise in the substitution tiling process originally put forward in Taylor’s paper.
However, they do arise as legal tilings from the matching rule perspective, though they could be trivially
removed by adding in a third rule to forbid them. A similar situation has been shown to occur with the
Robinson tilings for which there is a matching rule and also a substitution scheme that result in a hull and
its minimal component [5]. As pointed out in [2], this is different from tilings like the Penrose rhombic
tiling where the matching rules determine the minimal hull). The form of the points xwith no orientation
shows that there are just two Q orbits of them, one for each of the two non-trivial cosets of Q in P .

What about the other 6 color arrangements around such a point x? Here we can argue that they all
exist in the following way. Since in any triangulation there are tile centroids of any desired level k, we
can start with any generic Λ and form a sequence of translates of it that have centroids of ever increasing
level at 0. The sequence has at least one limit point and this is an iCw-L tiling. Since each element of the
sequence has a unique coloring and coloring in generic tiles is locally determined by local conditions,
there must be a subsequence of these tilings that converges to one of some particular coloring. This
must produce a coloring of diameters with two diameters of one color and one of the other color since
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we are using only generic tilings in the sequence. Now the rotational three-fold symmetry and the color
symmetry of XQ shows that all 6 possibilities for the coloring will exist. This also shows that all these
tilings are in the orbit closure of Xgen

Q .
Third, the CHT/iCa-L triangulations have the form T (q) where q ∈ Q. They have three concurrent

a-lines and three concurrent w-lines at q and leave the central tile completely undetermined. This tile
can be placed in any way we wish, and this fixes the entire tiling. There are a total of 12 ways to place
this missing tile (6 for each parity), whence ξ is 12 : 1 over q.

Finally, apart from the iCw-L and CHT/iCa-L tilings, the remaining singular values of q correspond
to the ia-L and iw-L triangulations where there is either a single infinite level a-line or a single infinite
level w-line, Section 6.3. Fortunately these two things cannot happen at the same time, see Lemma 6.8.
That means that there is only one line open to question and there is only one line on which either the
shift or color is not determined. In the ia-L case there is an a-line for which edge shifting is un-defined
and we wish to show that all the two potentially available shifts lead to valid tilings. Likewise in the
iw-L case there is a w-line to which no color can be assigned, and we wish to prove that both coloring
options are viable.

Suppose one starts with a CHT tiling Λ centered at 0. If one forms a sequence {q1 + · · ·+ qk + Λ} of
CHT tilings and if {q1 + · · ·+ qk} converges to a point of on the line Z2a1 that is not in Q then the point
of CHT concurrence has vanished and one is left only with the x-axis as an single infinite level a-line,
and it will have the shifting induced by the original shifting along the x-axis in Λ (which can be either
of the two potential possibilities). Of course one can do this in any of the a directions. A similar type of
procedure works to produce all of the iw-L tilings. This concludes the proof of the theorem. �

7. Tilings as Model Sets

In this section we consider Taylor–Socolar tilings, and in particular the parity sets of such tilings,
from the point of view of model sets. There are a number of advantages to establishing that point sets
are model sets since there is a very extensive theory for them, including fundamental theorems regarding
their intricate relationship to their autocorrelation measures and their pure point diffractiveness [16–18].
In fact there are various ways in which one can establish that the vertices or the tile centres of a
Taylor–Socolar tiling always form a model set. We have already pointed out different ways in [12]
and Corollary 6.2. There are also other ways pointed out in [11]. The first is through the almost
everywhere one-to-one mapping from the minimal dynamical hull of the Taylor–Socolar tilings to the
minimal dynamical hull of half-hex tilings. It is known that the half-hex tilings give model sets [6], and it
follows that the Taylor–Socolar tilings do too. The second is through checking a modular coincidence on
a Taylor–Socolar tiling which is a fixed point of a substitution. One can observe that the Taylor–Socolar
tiling contains a periodic lattice of hexagons of type C and C (given in [2]) in different orientations. It
can be checked that for some order n of supertiling, all supertiles of C and C-type hexagons contain a
same type of hexagon at exactly the same relative position of these supertiles. This indicates the modular
coincidence introduced in [19,20]. In our present paper the set-up that we have created makes it easy to
see the model set construction rather explicitly, and this is the purpose of this section.

The basic pre-requisite for the cut and project formalism is a cut and project scheme. Most often,
especially in mathematical physics, the cut and project schemes have real spaces (i.e., spaces of the form



Symmetry 2013, 5 29

Rn) as embedding spaces and internal spaces. But the theory of model sets is really part of the theory of
locally compact Abelian groups [21]. In the case of limit-periodic sets, some sort of “adic” space is the
natural ingredient for the internal space. In our case the internal space is P , see [19].

7.1. The Cut and Project Scheme

Form the direct product of R2 and P . The subset P = {(x, i(x)) ∈ R2 × P : x ∈ P} is a lattice
in R2 × P (that is, P is discrete and ((R2 × P )/P is compact) with the properties that the projection
mappings

R2 π1←− R2 × P π2−→ P

∪
P

'←→ P
(4)

satisfy π1|P is injective and π2(P) is dense in P . The setup of (4) is called a cut and project scheme.
Then P = π1(P) ⊂ R2 and the “star mapping” (·)? : P −→ P defined by π2 ◦ (π1|P)−1 is none other

than the embedding i defined above.
Let W ⊂ P which satisfies W ◦ ⊂ W ⊂ W ◦ = W with W compact, we define

f(W ) := {x ∈ P : x? ∈ W}

This is the model set defined by the window W . Most often we wish to have the additional condition
that the boundary ∂W := W\W ◦ of W has Haar measure 0 in P . In this case we call f(W ) a regular
model set.

As an illustration of how the cut and project scheme is used to define the model sets, we give here a
model set interpretation for the sets W ↑({q}) and W ↓({q}) of Proposition 3.6:

f↑ ({q}) := {x ∈ P : x? ∈ W ↑({q})} (5)

f↓({q}) := {x ∈ P : x? ∈ W ↓({q})}

The windows W ↑(q) and W ↓(q) are compact and the closures of their interiors, so these two sets are
pure point diffractive model sets, and clearly they are basically the points of P\Q which have orientation
up and down respectively. In the case of values of q treated in Proposition 3.3 there will be one point
without orientation. It is on the common boundary of W ↑(q) and W ↓(q).

However, our intention here is not to interpret features of the triangulation in terms of model sets
(which is more or less obvious) but to understand parity, which is a more subtle feature depending on
edge-shifting and color, in terms of model sets. In this paper we will need only to deal with model
sets lying in Q, and for this it is useful to restrict the cut and project scheme above to the lattice
Q = {(x, i(x)) ∈ R2 ×Q : x ∈ Q} in R2 ×Q :

R2 π1←− R2 ×Q π2−→ Q

∪
Q

'←→ Q
(6)

Of course we shall not be looking for just one window and one model set, but rather two windows, one
for each of the two choices of parity.
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7.2. Parity in Terms of Model Sets: The Generic Case

Each tiling in XQ is composed of hexagons centered at points of Q that are of one of the two types
shown in Figure 3. We call them white or gray according to the coloring shown in the figure. At the
beginning we shall work only with the generic cases, since for them the tiling is completely represented
by its value in Q.

Let Λ be a generic tiling for which ξ(Λ) = q ∈ Q. We define Q(q)wh (resp. Q(q)gr) to be the set of
points of Q whose corresponding tiles in Λ are white (resp. gray), so we have a partition

Q = Q(q)wh ∪Q(q)gr

We shall show that each of Q(q)wh and Q(q)gr is a union of a countable number of 2kQ-cosets (for
various k) of Q. If this is so then since the closure of a coset x + 2kQ is x + 2kQ which is clopen in
Q, we see that Q(q)wh contains the open set Uwh consisting of the union of all the clopen sets coming
from the closures of the cosets of Q(q)wh, and Q(q)wh is the closure of Uwh. Similarly Q(q)gr contains
an open set U gr. We note that Uwh and U gr are disjoint since they are the unions of disjoint cosets, and
their union contains all of Q.

We also point out that Uwh is the interior of Q(q)wh since any open set in Q is a union of clopen sets
of the form x + 2kQ with x ∈ Q (they are a basis for the topology of Q) and each of these is either in
Uwh or U gr. But no point of U gr is a limit point of Uwh and so U gr ∩Q(q)wh = ∅. Similarly U gr is the
interior of Q(q)gr.

Evidently Q(q)wh ∩ Q(q)gr is a closed set with no interior, since Uwh and U gr are disjoint. Thus
Q(q)wh∩Q(q)gr lies in the boundaries of each set and contains no points of Q. Each of the sets Q(q)wh

and Q(q)gr is compact and each is the closure of its interior. The boundaries of the two sets are both
of measure 0 since Uwh and U gr can account for the full measure of Q. Finally, Q = f(Q(q)wh) ∪
f(Q(q)gr).

Theorem 7.1 Let Λ be a generic tiling for which ξ(Λ) = q ∈ Q, where q = (q1, q1 + q2, . . . , q1 + · · ·+
qk, . . . ) ∈ Q. We have the model-set decomposition for white and gray points of the hexagon centers
of Λ:

Q(q)wh = f(Q(q)wh) (7)

Q(q)gr = f(Q(q)gr)

Q = f(Q(q)wh) ∪f(Q(q)gr)

where Q(q)wh is the closure of the union of the clopen sets in Q. Thus these sets are regular model sets.

Proof: We have to show that Q(q)wh and Q(q)gr are each unions of a countable number of
2kQ-cosets (for various k) of Q. There are two components that enter into the white/gray coloring:
the diameter coloring of the tiles and the edge shifting. The generic condition guarantees that both
coloring and shifting are completely unambiguous. Our argument deals with coloring first, and shifting
second. Finally both parts are brought together.

Let Ω := {±w1,±w2,±(w2 − w1)} and Ω+ := {w1, w2, w2 − w1}. For w ∈ Ω and
k = 1, 2, . . . , define

Uk :=
⋃
w∈Ω

q1 + · · · qk + 2kQ+ Z3w
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Recall that for w ∈ Ω, 3w ∈ Q\2Q. The points of q1 + · · · + qk + 2kQ are the vertices of the level k
triangles and the sets Uk are composed of the points of Q on the w-lines that pass through such vertices.
We have Q = U1 ⊃ U2 ⊃ U3 ⊃ · · · .

A point of Q may be a vertex of many levels of triangles, but we wish to look at the highest level
vertex that lies on a given w-line. Thus we define Vk := Uk\Uk+1, k = 1, 2, . . . . The sets Vk are
mutually disjoint. See Figure 20.

Figure 20. The tiles associated with points of V1, V2, V3 are indicated by increasingly
dark shades.

The sets Uk are made up of various elements q1 + · · · qk + 2ku + 3nw where u ∈ Q and n ∈ Z.
However we can restrict n in the range 0 ≤ n ≤ 2k−1 since 3 2kw ∈ 2kQ and

q1 + · · · qk + 2ku+ 3 2k−1w = q1 + · · · qk + 2ku+ 3 2kw + 3 2k−1(−w)

which changes w to −w at the expense of a translation in 2kQ. To make things unique we shall assume
that w ∈ Ω+ in the extreme cases when n = 0 or n = 2k−1.

We claim that under the condition generic-w we haveQ =
⋃∞
k=1 Vk. The only way that x ∈ Q can fail

to be in some Vk is that x ∈ Uk for all k. Then x is on w-lines through vertices of arbitrarily high level
triangles. At least one w ∈ Ω occurs infinitely often in this. Fix such a w. The vertex of a level k triangle
is always the vertex of 6 such triangles around that vertex. So whenever the w-line passes through a
vertex of a level k triangle it also passes into the interior of one of the level k triangles of which this is
a vertex and then through the centroid of this level k triangle. Thus the w-line x + Zw has centroids of
arbitrary level on it, violating generic-w.

Let x = q1 + · · · qk + 2ku + 3nw = x0 + 3nw ∈ Vk for some k, where n satisfies our conventions
noted above on the values it may take. Then by the definition of Vk, x0 is not the vertex of any edge of a
triangle T of side length 2k+1 and so x0 is the mid-point of an edge f of such a T . In particular x0 /∈ Vk.
Figures 21 and 22 indicate, up to orientation, what all this looks like. The edge f is on the highest level
line through x0 and so determines the stripe of the hexagon at x0 and, more importantly, the coloring of
the w-line that we are studying. The coloring at x0 in the direction w starts red in the case of Figure 22a
and blue in the case of Figure 22b. The color then alternates along the line in the manner illustrated in
Figure 16.
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The color pattern determined here repeats modulo 2k+1Q (not 2kQ), so Vk splits into subsets, each of
which is a union of cosets of 2k+1Q in Q,

Vk = V r
k ∪ V b

k =
⋃
w∈Ω

2k−1⋃
n=0

V r
k (w, n) ∪ V b

k (w, n)

corresponding to the red-blue configurations and corresponding also to which w ∈ Ω is involved. Here
V r
k (w, n) is the set of points q1 + · · ·+ qk + 2ku+ 3nw ∈ Vk which start in the direction w with the color

red, where 0 ≤ n < 2k−1 with the boundary conditions on n established as above. The situation with
V b
k (w, n) is the same except red is replaced by blue. Notice that each V r

k (w, n)(or V b
k (w, n)) is a union

of 2k+1Q-cosets for various values of k.

Figure 21. Ω and a line through a vertex x in the direction w meeting the opposite edge at
3 2k−1w.

Figure 22. Showing x0 as a midpoint of an edge f of a triangle of level 2k+1 and the direction
of w from it.

Now we need to look at the other aspect to determining the white and gray tiles, namely edge shifting.
For this we assume the condition generic-a. Every x ∈ Q lies on an edge of level k for some k. Recall
that this means that x is on the edge of a triangle of level k but not one of level k + 1. The condition
generic-a says that such an edge must exist for x. Such an edge must then appear as the inner edge e of
a corner triangle of a triangle T of level k + 1. The edge e then shifts towards the centroid of T , say in
the direction w ∈ Ω, carrying corresponding diameters in along with it.

Let
Ll(w) := {x ∈ Q : x lies on an edge of level l which shifts in the direction w } .

Then Q =
⋃∞
l=1

⋃
w∈Ω Ll(w). As one sees from Figure 23, Ll(w) is a union of 2l+1Q-cosets (but not

2lQ-cosets).



Symmetry 2013, 5 33

Figure 23. Showing a level k edge inside a triangle T of level k + 1 and its corresponding
shift (dotted line). Note how edge shifting for edges of level k repeats modulo 2k+1.

We now put these two types of information together. We display the results in the form of two tables:
any x ∈ Q satisfies

x ∈ V c
k (w, n) ∩ Ll(w′) (8)

for some c ∈ {r, b}, k, l ≥ 1, w ∈ Ω, w′ ∈ Ω.
Notice that V c

k (w, n) ∩ Ll(w′) is a union of 2mQ-cosets for m = max{k + 1, l + 1}. So we finally
obtain that each of Qwh and Qgr is the union of such cosets. This is what we wanted to show and
concludes the proof of the theorem.

7.3. Parity in Terms of Model Sets: The Non-Generic Case

For non-generic sets there are two situations to consider. First of all, let us consider tilings of the
minimal hull. Any such tiling Λ′ can be viewed as the limit of translates of a generic tiling, Λ. Let
ξ(Λ) = q and let Wwh and W gr denote the two closed windows that define the parity point sets of the
tile centers of Λ. Translation t + Λ of Λ by t ∈ Q, amounts to translation by t? of Wwh and W gr. This
is in fact just translation by t but with t seen as an element of Q. Translation does not affect the type of
the tiling (iw-L, iCa-L, etc.).

Convergence of a sequence of translates t1 + Λ, t1 + t2 + Λ, . . . to Λ′ in the hull topology implies
Q-adic convergence of t1 + t2 + · · · , say to t ∈ Q. The translated sets then also converge to t + W c,
c = {wh, gr}. However, if t /∈ Q then we will not necessarily have Λ′ = f(t +W c).

Here is what happens. If u ∈ Λ′ then for large enough n, u ∈ t1 + t2 + · · · + tn + Λ and u? ∈
t1 + t2 + · · · + tn + W c. Thus u? ∈ t + W c and we have that Λ′ ⊂ f(t + W c). On the other hand we
have Λ′ ⊃ f(t + (W c)◦). For suppose that x ∈ f(t + (W c)◦)). Then x∗ ∈ (t + (W c)◦)∩Q∗ and using
the convergence t1 + t2 + · · · → t we see that for large n, x∗ ∈ (t1 + t2 + · · · + tn + (W c)◦)) ∩ Q∗.
Thus for large n, x ∈ f(t1 + t2 + · · ·+ tn +W c) = t1 + t2 + · · ·+ tn + Λ, and so x ∈ Λ′. We conclude
that Λ′ = f(Z) for some window Z satisfying t+ (W c)◦ ⊂ Z ⊂ t+W c. This shows that Λ′ is a model
set since Z lies between its interior and the (compact) closure of its interior. Also ∂Z ⊂ ∂(t +W c) has
Haar measure 0 as it was explained in the beginning of Section 7.2.

The remaining cases are the SiCw-L tilings. Let Λ be such a tiling, which we may assume to be
associated with ξ(Λ) = 0 ∈ Q. Comparing the SiCw-L tiling Λ with an iCw-L tiling Γ for which
ξ(Γ) = 0, we notice that the only difference between Λ and Γ is on the lines through 0 in the w-directions
where w ∈ Ω. The total index is introduced in [19]. Notice that it is enough to compute that the total
index of the set of all points off these w-lines is 1 (see cite[LM1]). Because the set of points off the lines
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of w-directions is the disjoint union of cosets Vk (we have seen this earlier), we only need to show that
the total index of ∪∞1 Vk is 1, i.e.,

∞∑
k=1

c(Vk) = 1

Following the construction of Vk, k ≥ 1, already discussed above, we compute the coset index of Vk.
Within each Vk we need to divide the point set Vk into two sets. One is the point set whose points are
completely within the (k + 1)-th level triangles and the other is the point set whose points are lying on
the lines of the (k + 1)-th level triangles. We note that

c(V1) =
6

4 · 22

c(V2) =
(21 − 1) · 2 · 3 · 2

4 · 22 · 22
+

6

4 · 22 · 22

c(V3) =
(22 − 1) · 2 · 3 · 2

4 · 22 · 22 · 22
+

6

4 · 22 · 22 · 22

...

c(Vk) =
(2k−1 − 1) · 2 · 3 · 2

4 · (22)k
+

6

4 · (22)k

So

∞∑
k=1

c(Vk) =
6

4

(
1

22
+

1

22 · 22
+ · · ·+ 1

(22)k
· · ·
)

+ 3

(
2

(22)2
+

22

(22)3
+ · · ·+ 2k−1

(22)k
+ · · ·

)
− 3

(
1

(22)2
+

1

(22)3
+ · · ·+ 1

(22)k
+ · · ·

)
=

6

4

(
1/4

1− 1/4

)
+ 3

(
1/8

1− 1/2

)
− 3

(
1/16

1− 1/4

)
= 1

8. A Formula for the Parity

In this section we develop formulae for tilings that determine the parity of each tile of a tiling from
the coordinates of the center of that tile. We begin with the formula for parity derived in [2] for the CHT
tilings centered at (0, 0). These correspond to the triangulation for q = 0. The parity formula for a tile
is based on the coordinates of the center of the hexagonal tile. Due to the non-uniqueness of the CHT
tilings along the 6-rays at angles 2πk/6 emanating from the origin, the basic formula is valid only off
these rays. Later we show how to adapt this formula to arbitrary q.

The parity of a tile depends on the relationship of its main stripe to the diameter at right-angles to
this stripe. In terms of the triangulation, the parity of a tile depends on two things: The way the triangle
edge on which the stripe is located is shifted and the order of the two colors of the color line as it passes
through the tile: red-blue or blue-red. Changing the shift or the color order changes the parity, changing
them both retains the parity. Thus the parity can be expressed as the modulo 2 sum of two binary, i.e.,
{0, 1}, variables representing the shift and the color order. Which parity belongs to which type of tile is
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an arbitrary decision. In our case we shall make it so that the white tile has parity 1 and the gray tile has
parity 0.

We introduce here a special coordinate system for the plane (which we really only use for elements
of Q). We take three axes through (0, 0), in the directions of a1, a2,−(a1 + a2) with these three vectors
as unit vectors along each. For convenience we define a3 := −(a1 + a2). Each x ∈ Q is given the
coordinates (x1, x2, x3) where x1 is the a2 coordinate where the line parallel to a1 through x meets the
a2-axis. Similarly x2 is the a3 coordinate where the line parallel to a2 through xmeets the a3-axis, and x3

is the a1 coordinate where the line parallel to a3 through x meets the a1-axis. This is shown in Figure 24.
Notice that x1 + x2 + x3 = 0. We call these coordinates the triple coordinates.

Figure 24. The three coordinate system of labelling points in the plane.

The redundant three label coordinate system that we use has the advantage that one can just cycle
around the coordinates to deal with each of the three w-directions. Counterclockwise rotation through
2π/3 amounts to replacing (x1, x2, x3) by (x3, x1, x2).

We note that x ∈ Q if and only if x1, x2, x3 ∈ Z. Let ν : Z −→ Z be the 2-adic valuation defined by
ν(z) = k if 2k||z, i.e., if 2k divides z but 2k+1 does not divide z. We define ν(0) =∞. Finally we define
D(z) = 2ν(z). Note that D(−z) = D(z). When levels appear, they are related to log2(D(z).

Now for x ∈ Q we note that, except for x = 0, exactly two of D(x1), D(x2), D(x3) are equal and the
remaining one is larger. This is a consequence of x1 + x2 + x3 = 0.

8.1. CHT Formula

In this section we derive the formula for parity for the CHT tiling [2]. The CHT tiling has the
advantage that all the shifting due to the choice of the triangulation is taken out of the way, and this
makes it easier to see what is going on. Our notation and use of coordinates is different from that in [2],
but the argument is essentially the same. Figure 25 shows how the CHT triangulation looks around its
center (0, 0). The formula for parity is made of two parts each of which corresponds to one the two
features which combine to make parity: edge shifting and the color.

First consider the shifting part of the formula. We consider a horizontal line of the CHT triangulation,
different from the a1-axis. This line meets the a3-axis at a point (n2k,−n2k, 0) for some non-negative
integer k and some odd integer n. This point is the apex of a level k triangle and is the midpoint of an
edge from a triangle of level k + 1 (though the a3-axis itself is of infinite level here). As such we see
that the horizontal edge to the right from (n2k,−n2k, 0) is shifted downwards. As the edge passes into
the next level k + 1 triangle we see that the shift is upwards. This down-up pattern extends indefinitely
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both to the right and to the left. In Figure 26 n = 1 and k is unspecified, but the underlying idea does
not depend on the value of n. We now note that the points along the horizontal edge rightwards from
(2k,−2k, 0) are (2k,−2k − 1, 1), (2k,−2k − 2, 2), . . . , or x = (2k,−2k − x3, x3) in general. Now we
note that

⌊
x3

D(x3 + x2)

⌋
=

0 if x corresponds to a shift down edge

1 if x corresponds to a shift up edge
(9)

Thus this is the formula for edge downwards (0) and edge upwards (1). This formula is not valid if
x3 ≡ 0 mod 2k. What distinguishes these bad values is that for these, and these only, D(x2) 6= D(x3).
We see that the fact that we are dealing with a horizontal line (in the direction of the a1 axis) is related to
the fact that D(x1) is the largest of {D(x1), D(x2), D(x3)}, and whenever that condition fails the above
formula fails. But then of course we should use the appropriate formula with the indices cycled.

Figure 25. Part of the triangulation corresponding to q centered at 0 (indicated by the dot).
Triangles of scales 1, 2, 4 are shown, as well as part of a triangle of scale 8.

Next we explain the color component of the formula. The underlying idea is much the same, but, as
to be expected, the details are a little more complicated. The color lines are the w-lines and are oriented
in one of the three w directions. We treat here the case of color lines that are in the vertical direction.
The formula utilizes the same three coordinate formulation above. For other w-directions one cycles the
three components around appropriately.

Consider the sector of the CHT tiling as indicated in Figure 27. The figure indicates how the color
must be on the a3-axis as we proceed in the vertical direction.

Most of the explanation for the color part of the formula appears in the caption to Figure 19. Although
that picture seems tied to the point of intersection of the vertical line and the a3-axis having the special
form (4,−4, 0), we note that the same applies wheneverD(x3−x2) = 4. It isD(x3−x2) that determines
the level of the triangle that we are looking at and thus how the stepping sequence will modify the
hexagon diameters. In the case where it is 4 here there are 3-step sequences of one diagonal type followed
by 3-step sequences of the other type. If D(x3 − x2) = 2k these become 2k − 1 step sequences, and still
b x3
D(x3−x2)

c changes by 1 each time we move from one 2k − 1 step sequence to the next. All sequences
start from the full blue diameter with x3 = 0 and x3 increases by 1 at each step.
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Figure 26. The horizontal line through the point (2k,−2k, 0) is seen as passing through
midpoints of consecutive 2k+1 triangles. The corresponding edges along this line shift
downwards and upwards alternately. The points (2k,−2k−m,m) withm = 1, 2, . . . , 2k−1

are on a shift-down edge. The next set for m = 2k + 1, . . . , 2k + 2k − 1 are on a shift-up
edge. The next set,m = 2.2k+1, . . . 2.2k+2k−1 are on a shift-down edge, etc. The formula
b x3
D(x3+x2)

c = bm/(2k)c accounts for this precisely, varying between 0 and 1 according to
down and up.

In putting the two formulas together, we note first of all that although the formulas have been derived
along specific a and w axes, the formulas remain unchanged if the same configurations are rotated
through an angle of±2π/3. Likewise the coloring and shifting rules depend on the geometry and not the
orientation modulo ±2π/3. The final formula is then effectively just the sum of the two formulas that
we have derived, and it is only a question of determining which color of tile belongs to parity 0.

Theorem 8.1 [2] In the CHT tilings centered at (0, 0), the parity of a hexagonal tile centered on
x = (x1, x2, x3) is

P(x) =

⌊
xj+2

D(xj+2 − xj+1)

⌋
+

⌊
xj+2

D(xj+2 + xj+1)

⌋
mod 2

provided that D(xj) is the maximum of D(xj), D(xj+1), D(xj+2) and xj+1± xj+2 6= 0 (subscripts j are
taken modulo 3). �

Proof: Referring to Figure 19, we check the parity of the tile at (2,−3, 1). In this case j of the theorem is
1 and the displayed formula gives the value 0. On the other hand, the edge shift is down at (2,−3, 1) and
the shifted edge meets the blue part of the hexagonal diameter, whence the tile is gray. This establishes
the parity formula everywhere. �

Remark 8.2 Recall that in the paper we have the convention that white corresponds to 1 and gray
corresponds to 0.

Remark 8.3 Notice that in the CHT triangulation centered at (0, 0) the hexagon diameters along the
three axes defined by a1, a2, a3 have no shift forced upon them and can be shifted independently either
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way to get legal tilings. These are the hexagons centered on the points excluded by the condition xj+1 +

xj+2 6= 0. Similarly the three w-lines through the origin have no coloring pattern forced upon them
and can independently take either. The centers of the hexagons that lie on these lines are excluded by
the condition xj+1 − xj+2 6= 0. In the CHT tiling, the central tile can be taken to be either of the two
hexagons and in any of its six orientations. Having chosen one of these 12 options for the central tile
the rest of the missing information for tiles is automatically completed. The parity function P can be
then extended to a function Pe so as to take the appropriate parity values on the 6 lines that we have
just described.

Figure 27. Vertical color lines start with a full blue diameter or full red diameter as shown.
The green triangle indicates why the second blue line segment up from the origin is in fact
blue. The vertical line is centered at the mid-point of an edge of a level 4 triangle and passes
into one of the level 2 corner triangles of this level 4 triangle. The discussion on color shows
that it must be blue. All the other blue line segments are explained in the same way. We
cannot assign color at the origin itself since the origin is not the mid-point of any edge.

8.2. Parity for Other Tilings

We can create a formula for arbitrary triangulations T (q) by the following argument. First of
all consider what happens if we shift the center of our triple coordinate system to some new point
c = (c1, c2, c3)0 ∈ Q (we are in the triple coordinate system centered at the origin and have
indicated this with the subscript 0). Then relative to the new center c, still using axes in the
directions a1, a2, a3, the triple coordinates of x = (x1, x2, x3)0 are (y1, y2, y3)c = (x1 − c1,

x2 − c2, x3 − c3). Thus, if consider q = c (or more properly q = (c, c, c, . . . )) so we are looking at
the CHT triangulation now centered at c, then the formulae above become

Pc(x) =

⌊
xj − cj

D(xj+2 − cj+2 − xj+1 + cj+1)

⌋
+

⌊
xj − cj

D(xj+2 − cj+1 + xj+1 − cj+2)

⌋
mod 2

Consider now an element q = limk→∞ q1 + q2 + · · ·+ qk and the corresponding sequence of
triangulations {T (q1 + q2 + · · ·+ qk)}. These converge to T (q), and with them also we get convergence
of edge shifting and color.
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It is also true that for any fixed x = (x1, x2, x3)0 in the plane the D-values of the three triple
components of y = (y1, y2, y3) := x − (q1 + q2 + · · · + qk), as well their various pairwise sums and
differences, do not change once k is high enough, since if the 2-content of a number n is 2m then so also
is the 2-content of n + 2p for any p > m. Thus P(x − (q1 + q2 + · · · + qk)) is constant once k is large
enough, and we can denote this constant value by Pq(x) := P(x−q). This defines the parity function Pq

for T (q). Although {T (q1 + q2 + · · ·+ qk)} is a CHT triangulation, its limit T (q) need not be. In fact
we know that the translation orbit of any of the CHT tilings centered at (0, 0) is dense in the minimal
hull, and so we can compute a parity function Pq of any tiling of the minimal hull in this way. In the
case of generic q this results in a complete description of the parity of the tiling. In the case that there
is convergence of either a-lines or w-lines (so one is not in a generic case) one can still start with one
of the extension functions Pe and arrive at a complete parity description Peq of any of the possible tilings
associated to T (q).

Corollary 8.4 The parity function for a generic tiling is Pq.

9. The Hull of Parity Tilings

A Taylor–Socolar tiling is a hexagonal tiling with two tiles (if we allow rotations). With the
appropriate markings (not the ones we use in this paper), the two tiles can be considered as reflections
of each other. If we just consider the tiling as a tiling by two types of hexagons, white and gray, then we
get the striking parity tilings, for example, of Figure 1. We may consider the hull YQ created by these
parity tilings. Evidently YQ is a factor of XQ. In this section we show that in fact the factor mapping is
one-to-one—in other words, when we discard all the information of the marked tiles except the colors
white and gray—no information is lost, we can recover the fully marked tiles if we know the full parity
tiling. The argument uses a tool that is central to the original work of Taylor, but has only played an
implicit role in our argument: The Taylor–Socolar tilings have an underlying scaling inflation by a scale
factor of 2. One form of this scaling symmetry is especially obvious from the point of view of theQ-adic
triangularization.

9.1. Scaling

Suppose that we have a Taylor–Socolar tiling with T (q), where q = (q1, q1 + q2, . . . , q1 +

· · · + qk, . . . ). Then q1 + 2Q is the set of triangle vertices of all triangles of level at least 1.
To make things quite specific, which we need to do to go on, we choose q1 ∈ {0, a1, a2, a1 +

a2}. In the same way we shall assume q2 ∈ 2{0, a1, a2, a1 + a2}, and so on. We can view
q1 + 2Q as being a new lattice (even though it may not be centered at 0) and then we note that
q′ := (0, q2, q2 + q3, . . . , q2 + · · · + qk, . . . ) is another triangularization (now of this larger scale lattice,
and taken relative to an origin located at q1) that determines a Taylor–Socolar tiling with hexagonal tiles
of twice the size. Each of these new double-sized hexagons is centered on a hexagon of the original
tiling which itself is centered at a vertex of a level 1 triangle.

The new triangularization has its own edge shifting, and since all that has happened is that all the
lines of the triangularization that do not pass through a vertex of a level 1 triangle have gone, we can see
that the shifting rules mean that the remaining lines still shift exactly as they did before. Also the whole
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process of coloring the new double-size hexagons goes just as it did before. Figure 28 shows why the
coloring of the new double-size hexagons is the same as the coloring of the original size hexagons on
which they are centered.

Figure 28. This shows how the scaled up hexagon inherits the colors of the smaller hexagons
on which they are centered. The coloring is carried out by the same procedure that was used
to color the original sized hexagons, though now the diameter sizes have doubled and only
the lines of level at least 1 are used.

What happens if the Taylor–Socolar tiling T (q) is non-generic? A tiling is non-generic if and
only if it has an a-line or a w-line of infinite level. From the definitions, one sees that just rescaling
so that the level 0 triangles vanish and all other triangles are now lowered in level by 1 still leaves
infinite level lines intact and so we are still in a non-generic case. We can also see this in detail.
Non-generic tilings happen if and only if q ∈ x + Z2 a or q ∈ x + Z2 3w for some x ∈ Q. Consider
q′ = (0, q2, q2 + q3, . . . , q2 + · · · + qk, . . . ) ∈ 2Q. For definiteness, take the second case. Then we
can write

q′ ∈ −q1 + x+ α3w + Z23(2w)

where α = 0 if −q1 + x ∈ 2Q and α = 1 if −q1 + x /∈ 2Q. This gives q′ ∈ x′ + Z23(2w) for some
x′ ∈ 2Q, and we are in the non-generic case again. The same thing happens in the other case.

This scaling self-similarity of the Taylor–Socolar tilings is an important part of Taylor’s original
construction of the tilings. Here we see self-similarity arise from the simple procedure of “left shifting”
the Q-adic number q. Geometrically, shifting means subtracting q1 and dividing by 2. We have
restricted q1, q2, . . . to be specific coset representatives so that this process of subtraction/division is
uniquely prescribed.

We can also work this process in the other direction. Given q there are four ways in which to choose a
coset from (1

2
Q)/Q and for each of these choices we get a new element of the Q-adic completion of 1

2
Q.

Thus reducing the scale by a factor of 2 we obtain new triangularizations and hexagonal tilings [22]. The
original tiling reappears via the scaling up by a factor of 2, as we have just seen. Also note that the new
tilings are non-generic if and only if the original tiling was since infinite a or w lines remain as such in
the new tilings. Thus we see that scaling has no effect on the generic or non-generic nature of the tilings
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in question. It is also clear that CHT tilings, iCw-L tilings, and even SiCw-L tilings all transform into
tilings of the same type.

9.2. From Parity to Taylor–Socolar Tilings

Creating a full Taylor–Socolar tiling from a parity tiling is carried out in two steps: first work out
the triangularization, then add the color. For generic tilings the second step is superfluous. Even for
non-generic tilings, the fact that the tiling is non-generic is an observable property of the triangularization
and then knowing the parity makes it straightforward to recover the colouring along the ambiguous line
or lines. The color is not a significant issue and we discuss only the recovery of the triangularization here.

So let us assume that we have a parity tiling TP that arises from some tiling T (q) which at this
point we do not know. To obtain the triangularization, i.e., q, we need to work out the translated
lattices q1 + 2Q, q2 + 4Q, . . . . These are the sets of vertices of the triangles of levels ≥ 1,
≥ 2, etc. Suppose that we have a method that can recognize the translated lattice q1 + 2Q (which is
a subset of the hexagon centers of the parity tiling). Then, in effect, we know q1 (at least modulo 2Q,
which is all we need to know about it). We can now imagine changing our view point to double the
scale by redrawing the parity tiling with double sized hexagonal tiles at the points of q1 + 2Q and while
retaining the color. We know that this new tiling will be the parity tiling of the scaled up tiling q1 +T (q′)

where q′ = (0, q2, q2 + q3, . . . , q2 + · · ·+ qk, . . . ).
At this point we can proceed by induction to determine q2 + 4Q, rescale again and get q3 + 8Q, and

so on. So what is needed is only to determine the vertices of the level ≥ 1 triangles, or equivalently
determine which hexagons of the parity tiling lie on such vertices.

Let us call a patch of 7 tiles which consists of a tile in the center and its 6 surrounding tiles a basic
patch of 7 tiles. The key observation is that in a Taylor–Socolar-tiling it never happens that a basic patch
of 7 tiles whose center tile is a corner tile of a triangle of level≥ 1 has 5 surrounding tiles all of the same
color. Thus in the parity tiling the hexagons centered on the (as yet unknown) vertices of the level ≥ 1

triangles, cannot appear as shown in Figure 29 or in any of their rotated forms. On the other hand, as
we shall see, for all the other cosets of Q modulo 2Q there are points around which such patches (up to
rotational symmetry) do occur. Furthermore we do not have to look far in any part of the tiling to find
such examples. This is the feature that allows us to distinguish the coset q1 + 2Q from the remaining
cosets of Q mod 2Q.

Figure 29. Patches of (parity) tiles in which the central tile has 5 of its surrounding tiles of
the same color.

The actual proof goes in three steps. In the first we show the “no five hexagons” rule for hexagons
centered on the vertices of triangles of level 1. Next we do the same for all the vertices of triangles of
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level ≥ 2. This deals with all hexagons centered on q1 + 2Q. Finally we show that for each of the other
cosets of Q mod 2Q the “no five hexagons” rule fails at least somewhere.

1. The vertices of 1-level triangles: We wish to show that around each hexagon centered on a point
of q1 + 2Q there are at least two different pairs of tiles with mismatched colors amongst its six
surrounding tiles (and hence the no five-hexagons rule is true). This is explained in the text below
and in Figure 30.

Figure 30. Examples are shown that demonstrate how we can see that around each hexagon
centered on a level 1 vertex of q1 + 2Q there are at least two different pairs of tiles with
mismatched colors amongst its six surrounding tiles. The two cases correspond to a level 1

vertex at the mid-point of a level 2 triangle and a level 1 vertex a non-midpoint of a higher
level triangle. As explained in the text, one pair is found in a uniform way in both cases. The
other pair is found by one method in the first case and another method in the other.

There are two different situations for a hexagon H centered on the vertex v of a 1-level triangle.
One is the case that v is at the midpoint of a 2-level triangle. This is indicated on the left side of
Figure 30. The other is the case that v is on the edge of a n-level triangle where n ≥ 3. This is
indicated on the right side of Figure 30. In both cases, we note that the two tiles on opposite sides
of H which share the long edge of a triangle of level ≥ 2 have different colors. The reason is the
following. Apart from the red-blue diameters, the long red and blue diameters and black stripes are
same for the both the Taylor–Socolar tile and the reflected Taylor–Socolar tile. However the red
and blue diameters of the middle tiles of 2-level triangles determine different red-blue diameters
for the two tiles, and so they have different parity.

Now we wish to find another pair of tiles with opposite colors for each of the cases. Let us look at
the first case (see the left side of Figure 30). Consider the corner of the level 3 triangle T that is
defined by H , and consider the two edges of T that bound this corner. The red and blue diameters
of the tiles at the mid-points of these two edges of T determine different red-blue diameters for
two neighbouring tiles in the surrounding tiles of H . This again results in different parities.

Finally consider the second case (see the right side of Figure 30). Notice that the long black stripe
of H is the part of the long edge of 3 or higher level triangle. If this long edge is from a level 4 or
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higher triangle, we consider just the part of it that is the level 3 triangle T whose edge coincides
with the stripe of H . The red and blue diameters of the tile centered on the mid-point of this edge
of T determine different red-blue diameters for two of the ring of tiles around H , as shown.

2. The vertices of level ≥ 2 triangles: Next we look at the six tiles surrounding the corner tiles of
level ≥ 2 triangles in a Taylor–Socolar tiling. Notice that the pattern of the colored diameters of
six surrounding tiles is same for every corner tile of a level 2 or higher triangle, Figure 31. So
what determines the basic patches of 7 tiles around the corner tiles of level 2 or higher triangles is
the pattern of black stripes on it. Furthermore, there is a one-to-one correspondence between these
basic patches of 7 tiles and the basic patches of 7 tiles of white and gray colors. This is shown in
Figure 32. The key point is that this means that the basic patches of 7 tiles around the vertices of
the level 2 or higher triangles already determine the coloring.

At this point we know that all the vertices of level ≥ 1 have at least two tiles of each color in the
ring of any basic patch of 7 tiles.

Figure 31. A figure showing that the pattern of the colored diameters of six surrounding tiles
is same for every corner tile of a level 2 or higher triangle.

3. Seeing how the other cosets of Q mod 2Q violate the “two tiles of each color in the ring of
any basic patch of 7 tiles” rule. From a given parity tiling, there are four choices in determining
the 1-level triangles. One of these is the coset q1 + 2Q, and we know that the 7 tile patches around
each of these points satisfy the “no five-hexagon” rule. However the three choices, corresponding
to the other three cosets of Q mod 2Q all have some 7 tile patches that violate the rule. We can
see violations to the rule for each of the other three cosets in Figure 33, which is a small piece from
the lower right corner of Figure 1. Since any parity tilings in the hull are repetitive, we observe the
patches frequently over the parity tiling. Furthermore, since there is only one way that is allowed
to determine 1-level triangles, it does not depend on where one starts to find the 1-level triangles.
They will all match in the end.

This finishes the discussion of how the coset q1 + 2Q is identified in the parity tiling TP . The scaling
argument shows that we can continue the process to identify q2 + 4Q, q3 + 8Q and so on. This finally
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identifies q. In fact, even stronger, once we identify q2 + 4Q, we can use the one-to-one correspondence
between these basic patches of 7 tiles and the basic patches of 7 tiles of white and gray colors as it is
shown in Figure 32 to determine the entire triangularization.

Figure 32. The edge and color patterns and corresponding parity patterns that can occur in
the hexagons surrounding the corners of triangles of level ≥ 2.

Figure 33. Here we see three violations to the five-hexagons rule, the rings of hexagons
being indicated by the circles. The shaded triangles show how the cosets determined by
the center look, and show that the violating hexagons are from three different cosets. The
hexagonal pattern comes from the lower right corner of Figure 1.

We note two things here: That this argument of this subsection has not required that the tiling
be generic, and that the process of reconstruction of the triangularization from a parity tiling is local
in character.

We conclude that the parity hull loses no color information, and hence the factor mapping from the
Taylor–Socolar hull to the parity hull that simply forgets all information about each tile except for its
parity, is in fact an isomorphism. In fact the two hulls are mutually locally derivable (MLD) in the sense
that each tiling in one is derivable from a corresponding tiling in the other, using only local information
around each tile (see [7]).
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Corollary 9.1 Each Taylor–Socolar tiling and its corresponding parity tiling are mutually
locally derivable. �

10. Concluding Remarks

The paper has developed an algebraic setting for the Taylor–Socolar hexagonal tilings. This approach
leads naturally to a cut and project scheme with a compact Q-adic internal space Q. We have determined
the structure of the tiling hull and in particular the way in which it lies over compact group Q. Each
tiling is a model set from this cut and project formalism. The corresponding parity tilings are in fact
completely equivalent to the fully decorated tilings. We have also reproved the parity formula of [2].

The tiling is both remarkably simple and remarkably subtle. The parity tilings remain fascinating and
inviting of further study.
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