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Abstract:



The colourful simplicial depth problem in dimension d is to find a configuration of [image: there is no content] sets of [image: there is no content] points such that the origin is contained in the convex hull of each set, or colour, but contained in a minimal number of colourful simplices generated by taking one point from each set. A construction attaining [image: there is no content] simplices is known, and is conjectured to be minimal. This has been confirmed up to [image: there is no content], however the best known lower bound for [image: there is no content] is ⌈[image: there is no content]22⌉. In this note, we use a branching strategy to improve the lower bound in dimension 4 from 13 to 14.
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A colourful configuration is the union of [image: there is no content] sets, or colours, [image: there is no content] of [image: there is no content] points in [image: there is no content]. Let [image: there is no content]. Without loss of generality we assume that the points in [image: there is no content] are in general position. We are interested in the colourful simplices formed by taking the convex hull of a set containing one point of each colour. The colourful simplicial depth problem is to find a colourful configuration, with each [image: there is no content] containing the origin [image: there is no content] in the interior of its convex hull, minimizing the number of colourful simplices containing [image: there is no content]. We denote this minimum by [image: there is no content]. We take the simplices to be closed and remark that the minimum should be attained.



Computing [image: there is no content] can be viewed as refining Bárány’s Colourful Carathéodory Theorem [1] whose original version gives [image: there is no content], and [image: there is no content] when strengthened to show that every point of the configuration generates at least one such simplex. The question of computing [image: there is no content] was studied in Deza et al. [2], which showed [image: there is no content], that [image: there is no content] for [image: there is no content] and that [image: there is no content] is even when d is odd. The lower bound has since been improved by Bárány and Matoušek [3] (who verified the conjecture for [image: there is no content]), Stephen and Thomas [4] and Deza et al. [5], which includes the current strongest bound of μ(d)≥⌈[image: there is no content]22⌉ for [image: there is no content].



One motivation for colourful simplicial depth is to establish bounds on ordinary simplicial depth. A point p∈[image: there is no content] has simplicial depth k relative to a set S if it is contained in k closed simplices generated by [image: there is no content] sets of S. This was introduced by Liu [6] as a statistical measure of how representative p is of S. See [7,8,9,10] for recent progress on this problem. We remark also that the colourful simplicial depth of a point is the number of solutions to a colourful linear program in the sense of [11] and [12].



Octahedral Systems


Call a [image: there is no content]-uniform hypergraph on S=∪i=1d+1[image: there is no content] a colourful hypergraph. A colourful configuration defines a colourful hypergraph by taking hyperedges corresponding to colourful simplices containing [image: there is no content] in their interior. We will call a colourful hypergraph that arises from a colourful configuration with [image: there is no content]∈∩i=1d+1conv([image: there is no content]) a configuration hypergraph. Our strategy, following [13], is to show that a particular configuration hypergraph whose hyperedges correspond to the colourful simplices containing [image: there is no content] in a configuration cannot exist. The Colourful Carathéodory Theorem gives that any configuration hypergraph must satisfy:



Property 1. 

Every vertex of a configuration hypergraph belongs to at least one of its hyperedges.





Fix a colour i. We call a set t of d points that contains exactly one point from each [image: there is no content] other than [image: there is no content] an i-transversal. That is to say, an i-transversal t has t∩[image: there is no content]=∅ and |t∩[image: there is no content]|=1 for [image: there is no content]. We call any pair of disjoint i-transversals an i-octahedron; these may or may not generate a cross-polytope, i.e., a d-dimensional octahedron, in the geometric sense that their convex hull is a cross-polytope with same coloured points never adjacent in the skeleton of the polytope.



A key property of colourful configurations is that for a fixed i-octahedron Ω, the parity of the number of colourful simplices containing [image: there is no content] formed using points from Ω and a point of colour i does not depend on which point of colour i is chosen. This is a topological fact that corresponds to the fact that [image: there is no content] is either inside or outside the octahedron, see the Octahedron Lemma of [3] for a proof. Figure 1 illustrates this in a two-dimensional case where [image: there is no content] is at the centre of a circle that contains points of the three colours.


Figure 1. Two-dimensional cross-polytopes Ω containing and not containing [image: there is no content].
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We carry the definitions of i-transversals and i-octahedra over to the hypergraph setting. Then any configuration hypergraph must satisfy:



Property 2. 

For any octahedron Ω of a hypergraph, the parity of the set of hyperedges using points from Ω and a fixed point [image: there is no content]for the ith coordinate is the same for all choices of [image: there is no content].





Consider a colourful hypergraph whose vertices are [image: there is no content] and whose hyperedges have exactly one element from each set. If the hypergraph satisfies Property 2 we call it an octahedral system, if it additionally satisfies Property 1 we call it an octahedral system without isolated vertex. A colourful configuration with [image: there is no content]∈∩i=1d+1conv([image: there is no content]) and k colourful simplices containing [image: there is no content] has a configuration hypergraph that is an octahedral system without isolated vertex with k hyperedges. Let [image: there is no content] be the minimum number of hyperedges in an octahedral system without isolated vertex with [image: there is no content] colours. Then [image: there is no content]. It is an interesting question whether there are any octahedral systems without isolated vertex not arising from any colourful configurations, and if not, whether [image: there is no content] for some d. This purely combinatorial approach was originally suggested by Bárány [14].





Octahedral systems have the advantage of being combinatorial and finite. In principle, for any particular d and k we can check if there exists an octahedral system without isolated vertex on [image: there is no content] with up to k hyperedges by generating all the—finitely many—hypergraphs with up to k hyperedges, each containing one element from each [image: there is no content] and then testing if they satisfy Properties 1 and 2. The difficulty lies in the sheer number of such hypergraphs, and in verifying Property 2 efficiently.



We obtain lower bounds for [image: there is no content] by trying to build an octahedral system without isolated vertex by adding one hyperedge at a time. We can reduce the search space by exploiting the many combinatorial symmetries in such hypergraphs and considering only configurations that satisfy certain normalizations. However, this alone is not sufficient to improve the known lower bounds even for [image: there is no content]. We thus turn our attention to how to use Property 2 effectively.



We use two strategies. The first is to look at a particular subset of parity conditions that are relatively independent. The second is to use the following lemma, proved in [15]. Call a hyperedge e of a colourful hypergraph isolated if there is no other hyperedge that differs from e only in a single coordinate. Then:



Lemma 1. 

An octahedral system with [image: there is no content]or fewer hyperedges must not contain any isolated hyperedges.






Enumeration Details


We begin by fixing an arbitrary colour as colour 0 and an arbitrary 0-transversal. We can label the points in each set from 0 to d and, without loss of generality, take the transversal to contain the 0 point of each set. For convenience we write hyperedges as a string of [image: there is no content] numbers and transversals as string of d numbers with * corresponding to the omitted colour. Thus the 0-transversal considered is [image: there is no content].



Consider the d octahedra generated by transversals [image: there is no content], for [image: there is no content]. Note that the initial numberings are arbitrary, and we may fix them as part of our search algorithm. Given a colourful hypergraph, we can form a [image: there is no content] binary table by writing down for each [image: there is no content] the parity of the number of edges using vertices from the octahedron formed by [image: there is no content] and [image: there is no content] with initial coordinate s. We call this the parity table. If a colourful hypergraph satisfies Property 2, its parity table has constant rows.



The advantage of focusing on this table is that the entries are relatively independent. Only hyperedges of the form [image: there is no content] can change more than one entry of this table. After accounting for such hyperedges, each entry can only be affected by the [image: there is no content] hyperedges that are on the relevant octahedron with the given initial coordinate.



We now use the results of [5] to break the problem into several cases based on ℓ, the number of hyperedges containing [image: there is no content], b, the number of the parity table octahedra that have odd parity, and j, the minimum number of transversals covering any point of colour 0.



It is clear that for any octahedral system without isolated vertex and with [image: there is no content] or fewer hyperedges we must have [image: there is no content] and that the number of hyperedges is at least [image: there is no content]. Further, [5] shows that we must have [image: there is no content], and that the number of hyperedges must be at least [image: there is no content], as well as at least [image: there is no content] assuming that the colour 0 is chosen to minimize ℓ and that [image: there is no content]. This last fact allows us to assume that [image: there is no content].



To rule out possible octahedral systems without isolated vertex of size 13, it is sufficient to consider cases where [image: there is no content] or [image: there is no content], which in turn means [image: there is no content] or [image: there is no content]. In the case [image: there is no content], we have at least [image: there is no content] simplices, so [image: there is no content] or [image: there is no content], and in the case [image: there is no content], we have [image: there is no content] so [image: there is no content]. In summary, we need to rule out systems where the triple [image: there is no content] is one of [image: there is no content].



By reordering the points of colour 0, we can take the hyperedges [image: there is no content] to be in the system for [image: there is no content], and not in the system for [image: there is no content]. Consider the parity table after including these hyperedges with [image: there is no content], illustrated in Table 1.



Table 1. The parity table with [image: there is no content].
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[image: there is no content]
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[image: there is no content]
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[image: there is no content]
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1

	
1

	
0
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Now if [image: there is no content], then we are requiring that the parity table be comprised entirely of 1’s. So in this case the entries in the first three columns are correct, while the entries in the last two columns are incorrect.



For [image: there is no content] we proceed to enumerate configurations as follows. Since [image: there is no content], we include initial hyperedges [image: there is no content]. We then add hyperedges to correct each of the eight entries of Table 1, which must be fixed to get the correct parity table for [image: there is no content]. As previously remarked, adding any hyperedge not of the form [image: there is no content] will change only a single entry in the parity table. For instance, the entry in the first row and fourth column can be changed only by a hyperedge of the form [image: there is no content] where [image: there is no content]. Given that that 30000 cannot be added to the configuration without changing ℓ, there remain only 15 possible hyperedges that change the entry, and one must be in our configuration. In fact, by reordering the colours we can take it to be one of 31000, 31100, 31110 and 31111.



We could continue to exploit symmetries in this way—for instance depending on which of the previous 4 hyperedges is chosen, the next hyperedge could be one of 4 to 7 hyperedges fixing the next table entry. However, we did not do this so as to avoid extensive case analysis. Instead, we began branching on all 15 possible hyperedges that switch a given table entry until the table is correct and the partial configuration has 11 hyperedges.



As we branch we check two simple predictors that may indicate that the configuration requires several more hyperedges. First, we look for points that are not currently included in any hyperedge. If some colour still has k uncovered points, then we require k additional hyperedges. Second, since any vertex of colour 0 must be covered by at least j hyperedges, we examine which points of colour 0 are not contained in sufficiently many hyperedges, and get a score [image: there is no content] by summing up the undercounts. At the same time, we may find that all vertices of colour 0 are already covered by more than j hyperedges (especially when [image: there is no content]), in which case the partial configuration no longer belongs to this subcase and can be excluded. Again, we require [image: there is no content] additional hyperedges. If either k or [image: there is no content] is sufficiently large (in this case 3), then the current partial configuration cannot extend to an octahedral system without isolated vertex with less than 14 hyperedges and is abandoned.



Otherwise, we examine the configuration to see if it has an isolated hyperedge. If it contains an isolated hyperedge e, then by Lemma 1, if the configuration is to extend to an octahedral system without isolated vertex with less than 17 hyperedges, it must include a hyperedge adjacent to e. That is, it must contain [image: there is no content] differing from e only in a single coordinate. There are only 20 such hyperedges so we can branch on them. We then repeat the process of applying predictors and looking for an isolated hyperedge until we either find an octahedral system without isolated vertex with less than 14 hyperedges, or all partial configurations with fewer hyperedges are exhausted.



If we do arrive at a partial configuration with no isolated hyperedges, then as a last resort we may have to branch on all possible hyperedges. However, this happens infrequently enough that the enumeration ends in a reasonable time.



The remaining cases, where [image: there is no content] is [image: there is no content] or [image: there is no content] are similar. Having exhausted all these cases, we conclude that [image: there is no content], and hence [image: there is no content].




Final remarks


This strategy was implemented by Xie [16] in Python version 2.6 on an AMD Opteron Processor 8356 core (2.3G Hz) and is able to prove that [image: there is no content] in about 30 days of CPU time. This improves by 1 the bound of Deza et al. [5], from [image: there is no content] to [image: there is no content]. Since this article was written, Deza et al. [17] have introduced a different approach that shows [image: there is no content] and improves the bounds in higher dimension as well.



We note that are [image: there is no content] colourful hypergraphs on 5 points in each of 5 colours with 13 edges that we need to exclude. In our search strategy, after choosing [image: there is no content], the first l hyperedges are determined, and the next [image: there is no content] hyperedges are chosen to fix entries in the parity table. Without considering isolated edges, this leaves a search space of size 15[image: there is no content]5513-5b-5l+2bl; in our detailed example with [image: there is no content], this is [image: there is no content]. A space of this size is still slightly beyond the modest computational resources we used. Considering isolated edges further reduces the space substantially, allowing each case to be solved in a few days.



We conclude by mentioning that many aspects of colourful simplices are just beginning to be explored. For instance, the combinatorial complexity of a system of colour simplices is analyzed in [18]. As far as we know, the algorithmic question of computing colourful simplicial depth is untouched, even for [image: there is no content] where several interesting algorithms for computing the monochrome simplicial depth have been developed. See for instance the survey [19].
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