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Abstract: In this paper, we formulate a supersymmetric extension of the Euler system of
equations. We compute a superalgebra of Lie symmetries of the supersymmetric system.
Next, we classify the one-dimensional subalgebras of this superalgebra into 49 equivalence
conjugation classes. For some of the subalgebras, the invariants have a non-standard
structure. For nine selected subalgebras, we use the symmetry reduction method to find
invariants, orbits and reduced systems. Through the solutions of these reduced systems, we
obtain solutions of the supersymmetric Euler system. The obtained solutions include bumps,

kinks, multiple wave solutions and solutions expressed in terms of arbitrary functions.
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1. Introduction

Supersymmetric generalizations of fluid dynamical equations have recently generated much interest
among mathematicians and physicists. Such extensions have been constructed recently for certain
hydrodynamic-type models (see, e.g., [1-4]). A study of polytropic supersymmetric models has also
been performed by Das and Popowicz [5] in the specific case when p = kp”. Euler-type systems have

also been analyzed from the Grassmann variable point of view by Fatyga, Kostelecky and Truax [6].
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Certain solutions were found in terms of infinite series. In addition, supersymmetric versions of the
Chaplygin gas in (1 + 1) and (2 + 1) dimensions, derived from the action for a superstring and a
Nambu-Goto supermembrane, respectively, were proposed by Jackiw ef al. (see [7] and references
therein). It was suggested that non-Abelian fluid mechanics may describe a quark-gluon plasma [7]. In
this context, we propose to investigate the Euler equations for a one-dimensional compressible fluid flow.

The purpose of this paper is to formulate a supersymmetric version of the Euler system of equations
describing the nonstationary one-dimensional ideal (non-viscous) compressible fluid flow and construct
their invariant solutions. To our knowledge, a supersymmetric extension of the Euler system has not been
formulated before. The symmetry group transformations of the classical version of the Euler system
of equations:

pus + putly + pr =0
Pt + up, + kpu, =0

has been investigated by Ovsiannikov [8], where u is the flow velocity, p and p are the pressure and
density of the fluid flow, respectively, and £ is the polytropic exponent. Under the above assumptions,
the examined system of Equations (1) forms a quasilinear hyperbolic system. It was proven [8,9]
that the basic system (1) is invariant under the Galilean similitude group, sim(2) (when k # 3),
and under the Galilean-projective group, simPr(2) (i.e., the Galilean-similitude group extended by the
projective transformation when £ = 3). The Lie algebra of infinitesimal symmetries of fluid dynamics

Equations (1) is spanned by:

P():at, Plzam, B:taz—i—au, D:tﬁt—b—xaz,
F = —t0; +u0, — 2p0,, G = p0, + pOp, (2)
C =20, + tx0, + (v — tu)o, — tpd, — 3tpo,, when k = 3

The infinitesimal operators, Fy and Py, are translation operators in the directions of ¢ and x, respectively.
The operator, B, corresponds to the Galilean transformation, and operators [, F' and G are dilation
operators. Operator C' corresponds to the projective conformal transformation, when the specific value
of the polytropic exponentis & = 3. The Lie algebra, £, generated by (2) can be decomposed in the form:

£={C, P, F,D,G} » {P,, B} 3)

In the work of one of the authors of this paper [10], all subalgebras of the Lie algebra, £, were
classified, and the symmetry reduction method (SRM) was used to generate invariant solutions of the
Euler system (1), including, among other solutions, travelling waves, bumps, kinks, double-periodic
solutions, efc. Many of these solutions had previously been found by other methods, such as the method
of characteristics (see, for example, [8,9,11,12] and references therein).

The SRM, on the other hand, certainly has a broader range of application, since it leads to different
sets of solutions obtained from the Lie algebra of symmetries (2) and its subalgebras classified into
different conjugacy classes. This approach is of great utility in the investigation of the classical Euler

Equations (1). The results obtained for the classical system (1) were so promising that it seemed
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worthwhile to try to apply the method to the case of a supersymmetric extension of a hydrodynamic-type
system and construct invariant solutions through the use of a superspace and superfield formalism.

This paper is organized as follows. In Section 2, we construct a supersymmetric extension of the
Euler-Equations (1) through a superspace and superfield formalism involving two independent fermionic
variables. In Section 3, we discuss in detail a number of symmetries of the proposed supersymmetric
system. For this purpose, we use a generalization of the prolongation formalism of vector fields
extended in such a way as to encompass both even and odd Grassmann variables. In this case, we
adapt the symmetry criterion in order to determine a superalgebra associated with the supersymmetric
system. Next, we classify the one-dimensional subalgebras of the superalgebra into conjugation classes
under the action of the associated supergroup. The subalgebras are classified in such a way that each
representative subalgebra corresponding to a different conjugation class generates a different type of
solution [13—16]. This analysis allows us to perform the symmetry reductions systematically. Section 4
contains the reduced systems corresponding to those subalgebras with its standard invariant structures. A
new method is proposed for solving the reduced systems of the equations. Several new invariant solutions
of the supersymmetric Euler Equation are constructed, some of which contain the freedom of arbitrary
functions of one or two arguments involving expressions in terms of bosonic or fermionic variables.
In the case when the arbitrary functions are expressed only in the independent fermionic variables, we are
able to obtain the solution based on a truncated Taylor expansion. We give some physical interpretation
of the obtained results in the context of non-linear field models. Finally, Section 5 contains some final

remarks and future perspectives.

2. Supersymmetric Extension

In order to supersymmetrize the Euler Equation (1), we extend the space of independent variables,
{z,t}, to the superspace, {z,t,601,05}, where 0; and 6, are independent Grassmannian-odd variables.
The variables, z and ¢, represent the bosonic (even Grassmannian) coordinates on two-dimensional
Euclidean space. The quantities, ¢, and 6, are anticommuting fermionic (odd Grassmann) variables.
We replace the real bosonic-valued fields of velocity, u(x,t), density, p(x,t), and pressure, p(z,t), by
the Grassmann-even superfields defined by:

U(x,t,01,05) = F(x,t) + 0101(x,t) + Osp2(x, t) + 010u(z, t)
R(x,t,01,02) = G(x,t) + O13h1 (2, ) + 0o (, 1) + 0102p(z, 1) (4)
P(x,t,01,05) = H(x,t) + 01wy (x,t) + bowo(x, t) + O102p(2, 1)

respectively. Here, the quantities, ¢;, ¢; and w; ¢ = 1,2, are fermionic fields, while F', G and H are

bosonic fields. The supersymmetric extension of the Euler Equations (1) is constructed in such a way
that it remains invariant under the supersymmetry transformations:

x—)x—m@l, 91—>01+m and t—>t—@92, 02-)02+@ (&)

where 7); and 7, are arbitrary constant odd parameters. In what follows, we use the convention that
underlined constants represent Grassmann-odd parameters. These transformations are generated by the
infinitesimal supersymmetry operators:

Ql = —91836 + (991 and QQ = —82815 + 892 (6)
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satisfying the anticommutation relations:

{Qi,Qi} = —20,:, i=1,2 (7)

where z! and 22 stand for z and ¢, respectively. In order to make the extended model invariant under the
supersymmetry generators, () and (), we introduce the covariant derivative operators:

D1 = 01836 + (991 and D2 = 92@ + 892 (8)

which possess the property that each of the derivatives, D;, ¢+ = 1,2, anticommutes with both
supersymmetry operators, ();, @ = 1, 2:

[Dle] :26:E17 {DlaDQ}:{DuQ]}:O for Z,j:1,2 (9)

Thus, if we write our supersymmetry equations in terms of the superfields, ¢/, R and P, and
their covariant derivatives of various orders, then they will be invariant under the transformations
generated by ()1 and (>. The most general supersymmetric extension of the Euler Equation (1) invariant
under the transformations generated by (); and (), is constructed by considering linear combinations
of the products of the various covariant derivatives of the superfields, ¢/, R and P. These multiply
together to produce the given terms as coefficients, whose components reproduce each term of the
classical Equation (1). The result of this analysis provides the following form of the supersymmetric
Euler Equations:

— ayR(D1D*U) + as(D1R)(D2*U) — as(DyR)(DyDy*U)+

(a1 + as + as — 1) (D1 DyR)(D*U) + asR(Dy Dyld ) (D1 Dold)

— a5(D1R)(Dod) (D> Dod) — ag(D1R)(DyDyd)(Dy? Dold)

+ a7(DaR)(D1U) (D1 Dold) + ag(DoR)(D1 Do) (D1*U) + ag(D1 DaR)U(Dy > Dol )
— a10(D1DaR)(DyU) (D12 Dold) + a11(Dy DoR) (Do) (D1 *U)

+ (1 — i ai> (D1 DyR)(Dy D) (D *U) + D*P =0

1=4

D22R - &12M(D13D2R> -+ alg(Dll/{) <D12D2R) — a14(D2U)(D13R) (10)
+ ((112 + a13 + a14 — 1)(D1DQU)<D12R) — CL15R(D13DQZ/{) + CL16<D1R> (D12DQZ/{)
— CL17<D2R)(D13U) + (CL15 + 16 + ayr — 1)(D1D2R)(D12U) =0

and

DQQP — alSU(Dlngp) —|— CL19(D1Z/{)(D12D2P) - CLQ()(DQU)(D13P)
+ (a18 + Q19 + o0 — 1>(D1D2Z/{)(D127D) — aglkP(D13D2U) + aQQk(Dlp)(D12D2U)
— Cngk’(DQP)(Dng/{) + (ClQl + a99 + Q93 — 1)]{3(D1D2P)(D12U) =0
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where aq, aq, . . ., ass are twenty-three arbitrary bosonic parameters. In this paper, we focus our analysis
on the simplest case, where all of the parameters, a;, 7 = 1,2,...,23, vanish:

(D1D2R)(Do*U) — (D1DyR) (D1 DUl ) (Dy*U) — D1*P =0
Dy*R — (D1 Dold)(D1*R) — (D1 DyR)(Dy*U) = 0 (11)
Do*P — (D1 DoU)(Dy*P) — k(D1 DoP)(Di*U) = 0
In what follows, we will refer to system (11) as the supersymmetric extension of the Euler Equations,
since it reduces to the classical Euler Equation (1) when 6; and 6, tend to zero.

In this paper, we use the convention that partial derivatives involving odd variables satisfy the
Leibniz rule:

95,(f9) = (90, f)g + (—1)98 f(8y:g) (12)
where:
0 if fiseven,
deg(f) = _ , (13)
1 if fisodd,
and the notation: 5 of
fo0, = %, (8_01> (14)

The partial derivatives with respect to odd coordinates satisfy 0p,0; = (5} The operators, Jy,, @1, Q2,
D; and D,, change the parity of the function acted on in the sense that it converts a bosonic function
to a fermionic function and vice versa. For example, 0p,U is an odd superfield, while Jy,4,U/ is an even
superfield, and so on. For further details, see the book by Cornwell [17] and the reference by DeWitt [18].
The chain rule for a Grassmann-valued composite function, f(g(x)), is [18,19]

of _9g of
dr O dg =

The interchangeability of mixed derivatives (with proper respect to the ordering of odd variables) is
assumed throughout.

The even supernumbers, variables, fields, etc., are assumed to be elements of the even part, A.ep,
of the underlying abstract real Grassmann ring, A. The odd supernumbers, variables, fields, etzc., lie in
its odd part, A,4g. We shall assume throughout the paper that the functions, u(x,t), p(z,t) and p(x,t),
have values in the invertible subset of A, plus {0}, i.e., nonvanishing nilpotent values are ruled out.
This technical assumption allows us to perform the necessary simplifications in our calculations without
splitting off of singular subcases.

Re-writing Equation (11) in terms of the independent variables, x, t, §; and 5, we obtain the form:

01027?’1‘751/{75 + eleﬁgut - 02Rt91ut - R9192ut + 0192thu9192ux - 0102R$92ut91u$
+ 01R$92u9192ux + 9192Rt91u.r62ux - 02Rt91u9162ux + 9102R9192uxtux (16)
+ 01Ro,0,Uzo,Us — 05 Rp,0,Usg, U — Ro,0,Up,0,Ur — Pz =0

Rt - 0192uxtRw - Hlua:GQRJ: + 02ut91Rx + Z/{9192Rx - HIQZthZ/{a: - elRwGQUz

(17)
+ 92Rt91ux + Relezux =0
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7Dt - 9102uxt73x - 91Ux9277x + 921/{15917)1’ + Z/{0192Px - k91027)xtux - k91Px92ux

(13)
+ k‘(ggptelux + kPQIQQZ/{x =0

The system (16)—(18) is a second-order nonlinear system of partial differential Equations, whose
coefficients depend on the fermionic variables.

3. Symmetries of the Supersymmetric Euler Equations

A symmetry supergroup, GG, of a supersymmetric system is a (local) supergroup of transformations
acting on a Cartesian product of supermanifolds, X x U, where X is the space of independent variables,
(x,t,601,0,), and U is the space of dependent superfields, (U, R,P). The action of the group, GG, on the
function, U(x,t,0,0,), R(z,t,0:,02) and P(x,t,0;,6,), maps solutions of (11) to solutions of (11).
If we assume that GG is a Lie supergroup, as described in [20,21], one can associate with it its Lie
superalgebra, &, whose elements are infinitesimal symmetries of (11).

The supersymmetric Euler Equation (11) are invariant under the Lie superalgebra, G, generated by

the following seven infinitesimal vector fields:

L, =2z0, + 91891 + 3Uy + 4POp, Lo = 2t0, + 92892 — Uy — 4POp,
L3 = RaR + 7)873, Pl - a&?; P2 - ata Ql = _0181 + a91 (19)
Q2 = 020, + 0Oy,

The generators, P, and P, represent translations in space and time, respectively, while L, L, and
L3 generate dilations in both even and odd variables. In addition, we recover the supersymmetry
transformations, ¢); and ()2, which we identified previously in (6). In order to determine this
superalgebra of infinitesimal symmetries, we have made use of the theory described in the book by
Olver [22]. The commutation (anticommutation in the case of two odd operators) relations of the
superalgebra, G, of the supersymmetric Euler Equations are given in Table 1.

Table 1. Supercommutation table for the Lie superalgebra, G, spanned by the vector

fields (19).

L, P, Q: Lo P, Q> | Ls
L, 0 | —2P | = 0 0 0 0
Py || 2P, 0 0 0 0 0 0
Qi || Q1 0 —2P, | O 0 0 0
Lo 0 0 0 0 | 2P| —Q2 | O
P, 0 0 0 2P, 0 0 0
Q2 0 0 0 Q- 0 2P| 0
L3 0 0 0 0 0 0 0
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It should be noted that the generators of the superalgebra, G, listed in (19), contain three dilations,
Ly, Ly and L3. This is analogous to the Lie algebra, £, of the classical version, whose generators
(in Equation (2)) also contain three dilations, D, F' and GG. The decomposition of the superalgebra, G,
of the supersymmetric system is very different from the decomposition of the Lie algebra of the classical
system, £.

The Lie superalgebra, &, can be decomposed into the following combination of direct and
semi-direct sums:

S = ({Li} {1, Q1}) ® ({Le} D {F2, Q2}) © {Ls} (20)

The one-dimensional subalgebras of G can be classified into conjugacy classes under the action of
the group generated by &. We obtain the following list of subalgebras:

Ly ={P}, Ly = {vQ2}, L3 ={P,+ vQ>}, L4 = {Ly},

Ls ={P}, Ls = {puQ1}, L;={P+ pQ:}, Ls={L},

Lo ={P +cP}, Lio = {P1 +rQa}, L1y ={P +eP +vQa},

Lo ={L2 + P}, Li3={P+ pQ1}, L4 = {pQ1 + vQ2},

Li5 ={Ps + pQ1 + vQ>}, Li6 = {La + pQ1}, Lir={P1+eP+ pQ},
Lig = {P1+ pQy + vQ>}, Lig ={P+ Py + pQ1 + vQ2},

Log = {Ly + P+ pQ1} Loy ={L; + P}, Lo = {L1 +vQ},

Loz ={L1+eP+vQs},  Loa={Li+kLs},  La5={Ls},

Log = {Ls + P}, Lo7 = {L3 + vQ}, Log = {Ls+ P+ vQs},

Log = {Lz+ kLs} L3 ={L3+eh}, L31={L3 + pQ1}, (21
L3y ={L3+eP + pQ}, L33 ={Ls+ kL } Lay={Ls+e1P + e3P},
Ls5 = {Lsz + P +vQ,}, Lss = {Ls+ 1P + 2P+ vQs},

Ls7 = {Ls+ kLy + Py}, L3g = {Lz + P+ pQ},

L3g = {L3 + pQ1 +vQ2}, Ly = {Ls + P+ pQy + vQs},

Ly = {Ls+kLy+ pQ1}, Ly ={Lz+e1P1 +eaPo + pQu},

L3 ={Ls +eP + pQi +vQa}, Lig={Lz+e1P+ &Py + pQ1 + vQs},
Lys ={Ls+ kLy+eP1 + pQ1} Ly ={Ls+ kL1 + P},

Lo ={Ls+kLi+vQ2},  Lis={Ls+kLi+ePy+rQs},

Lag = {Ls+ kL, + Ly}

where €, €; and e, are either one or —1, the parameters, k£ and /¢, are non-zero, and I and v are
fermionic constants. These representative subalgebras allow us to determine invariant solutions of
the supersymmetric Euler Equations (11) using the symmetry reduction method. It should be noted
that some of the subalgebras of the Lie symmetry superalgebra have non-standard invariant structures
in the sense that they do not lead to symmetry reductions in the usual sense. For instance, the
subalgebra, L, = {v(Q)2}, has the nonstandard invariant, v f(z, t, 0, 02,U, R, P), where f is an arbitrary
function of its arguments. Such non-standard invariants were found by the authors for several other

supersymmetric hydrodynamic-type systems, including the supersymmetric sinh-Gordon Equation [23],
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the supersymmetric Klein-Gordon polynomial Equation [23] and supersymmetric polytropic gas
dynamics [4].

4. Invariant Solutions of the Supersymmetric Euler Equations

We now proceed to use the symmetry reduction method to determine the invariants and orbits of nine
different subalgebras. Consequently, we obtain the reduced system specific to the given subalgebra.

(1) For subalgebra £; = { P»}, the invariants are

o=u, 01, s, U, R, P.
Therefore, the superfields are of the form:

U(x,0,0,), R(x,0,0s), P(x,6,,0s),
and the reduced system is:

91R$92u9192ux + 617291922/{;[02]/{33 - R0192Z/{9192um - Px == 07

- eluwegR:B + uelegR:B - elnmezux + Rglezux = O (22)

— 01Uy, Py + Up, 0, Py — k01 Prg,Uy + kPy,0,Uy = 0

One solution of this system is:

U = by — kg + 01 ks + 0ok
R = ~(x) + 0191(x) + O2ky (23)
P = ks + 01k + O2k7

where k1 and k5 are arbitrary bosonic constants, kg, k3, k4, ks and k; are arbitrary fermionic constants,
~v is an arbitrary bosonic function of z and ¢/ is an arbitrary fermionic function of z. This solution is
stationary. The choice of arbitrary functions in the density superfield, R, does not influence the velocity
and pressure superfields ((/ and P, respectively), which are linear in x, 6; and 6s.

(2) For subalgebra, L3 = { P, + v, }, the invariants are:
0=, 017 TQZQ_Zt) Z/{, R7 Pa
Therefore, the superfields are of the form:

U($791,7'2)7 R(l’,elﬂ'z)a 7)(96‘791,7'2)7
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and the reduced system is:

QIZR:ETQUTQ + ZRel’TQuTQ - elTZZRnguﬁngz/{m + 91T2R$T22u01T2u1' + eleTguengu:p
- QITQZRelTQUngux + T22R91T2u91T2u1' - 017—22(/{917'2“17'21/{% + elRengz/{ITgux
+ 7—2ZR01722/{017—2U:5 - R017—2u017'2um - Px =0

- ZRTQ + HITQZUJJTQRJ: - Qluxm Rw - TQZMGN'QR:U + u@m’ng + elTQZRaETgux (24)
- QleTzux - TZZnenguz + R917’2ux =0

- EPTQ + 917_221/{967'2 P:c - elux‘rg P:c - 7—22[/{917'27395 + Z/{Olfgpx + kelTQZPITQMI
- kglpazmux - kTQZPHyrgux + kpengux =0

We have two solutions. The first solution is:

U = vh(z) + 61¢1(z) + Ovl(x) + 0,60 f ()
R = vj(x) + Ovg(x) (25)
7) == Cl + 92202

where C'; and C) are arbitrary bosonic constants, ¢, and g are arbitrary bosonic functions of x and f and
h, 7 and ¢, are arbitrary fermionic functions of x. This solution represents a stationary flow. The choice
of arbitrary functions in &/ and R does not influence the pressure superfield, P, which is linear in 6.
The arbitrary functions can be chosen completely arbitrarily. In particular, we can choose bumps, kinks
and multiple wave solutions. The postulated form of the arbitrary functions will change as the solution
evolves in time. For example, as an illustration, if we choose the arbitrary function:

g(z) = cn [1 + cosh (arctan (ax))™", kK], a€eR (26)

and the modulus, x, of the elliptic function is such that 0 < k2 < 1, then the solution has one purely real

and one purely imaginary period. For a real argument of the elliptic function, we have the relation:
—1 < cn [1 + cosh (arctan (az))™", k] <1 (27)

and so, the solution represents a cnoidal wave bump. Asymptotically, this solution approaches a constant.
The second solution is:

U = h(pz + C301 + pvbs)
R =7(x) + 1h1(v) + O2(vx + v) + 0102(hp) — O1vt(hp) (28)
P =Cy+ 0,0y + 0:Cy — wtCy + 010505

where C and Cj are arbitrary bosonic constants, i, Cs, Cy and C5 are arbitrary fermionic constants,
v is an arbitrary bosonic function of z and 1/ is an arbitrary fermionic function of z. This solution is
non-stationary, and the choice of v(x) and () in the density superfield, R, does not influence ¢/ and

‘P. The time dependence in the pressure superfield, P, does not affect &/ and R.
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(3) For subalgebra, £, = { L.}, the invariants are:
o=z, 0, Ty = t1/20,, A=t"2U, R, C =t*P.
Therefore, we have the superfields:
U=1t"12A(z,0,,m), Rz, 01, 7), P=1t"2C(z,01, 7).
The corresponding system is given by:
1 1 1 1 1
- §QIRZET2A + 5917—272%7'2'/47'2 + §R91T2A + §T2R91T2AT2 + 5817—272%7'2'/491-’4:2

1 1
+ ele‘rgAengAaz - 59172R9172 (Ax)2 + §T2R9172A91Ax + elRelTQAngAx (29)
- R01T2A91T2ASC - CSC =0

1
—nR, =0 (30)

1 1
5917-2AxRJ: - §T2A91Ra: - 91A$T2R$ + A91T2Rx - 91Rx72-’4x + RengAx 9

1 1 1
— 2C — 57'207_2 —'— 5817—2./41-(31 - 57-2./4.91C;E - elAmTQCq: + AGU—QCI + 2k91T2CIACE

— 2k19Co Ay — k61Cory Ay + kCyyry Ay =0 oY
We obtain the solution:
U=t""0pf(x)
R = 01ug(x) (32)

P=0

where [ and g are arbitrary bosonic functions of x. This solution is non-stationary. If the functions, f(x)
and g(z), are chosen to be bounded or periodic, then they remain bounded, and the velocity superfield,

U, is dampened with time, t.

(4) For subalgebra, L7 = {P; + ﬁ@l}, the invariants are:
o =1, =6 — pz, 05, u, R, P.
Therefore, we have the superfields:
U=U(tT,0), R =R(t, m,09), P ="P(t,m,0,).
The corresponding system is given by:

- ETIQQRt’Ijut - HTIRTlegut - GQRtTlut - RTlezut + H82RtT1uT192uT1
+ EGQRHQZUMUH + HR7192U7192L{71 + HPTl =0

(33)
Rt - HQQUtTl RTl - HU’HGQR’H - HHZRhﬁuTl - ﬁRTleguTl =0

Pt - /~_L92ut7'1737'1 - HuTleszl - kHQQPtTluTl - kEPTlaguTl =0
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We have two solutions. The first solution is:
U= aft) + (01 — pr)di(t) + 6292(t) + (61 — px)025(t)
R=Cy+0ipl (34)
P =C3+01uC,

where Cs, C5, Cy and ¢ are arbitrary bosonic constants, o and /3 are arbitrary bosonic functions of ¢ and
¢1 and ¢4 are arbitrary fermionic functions of ¢. This solution is non-stationary, and the velocity, U, does
not influence the other superfields, R and P.

It should be noted that both supersymmetries, (), and ()5, are broken by the solution (34). Indeed,
the supersymmetric transformation generated by () is: r — x —mby, 01 — 01+ n, so that the
superfield, U (z,t, 01, 02), is transformed to U (x + 1161, t, 01 — 11, 02). Therefore, if the superfield, U, is
to be preserved by the supersymmetry, ()1, we must have:

(_m - ﬂel)d)l(t) =0, and (_m - ﬂ&)%ﬁ(ﬂ =0

Similarly, if the superfields, R and P, are to be preserved, we must have m_uf =0 and 771_M02 =0,
respectively. Therefore, the solution (34) is only preserved if ; = 0, so the supersymmetry, )1, is broken
by the solution (34). In a similar way, it can be shown that the supersymmetry, (), is also broken by
the solution (34).

The second solution of system (33) is:
U = (utCy + Cs 4 Crpt) + (01 — pw)(—ptCy — Cg + Cyput) + Oo(—putCs — C7)
+ (01 — pa)0s(utCy + Cy)

R = (HOSQt - H%Clot + 013) + (91 - HZE)@ + 02(—2H08010t + %) + Cyo (35)
P = (uCsCiit — kuCeCrat + Cis5) + (01 — p)Ciy + 02(—(k + 1) uCsChat + Ci)
+ Ch2

C4 and Cy¢ are arbitrary fermionic constants. The solution is non-stationary. All of the superfields are

linear in x and ¢. In this case, they influence each other, since the superfields have parameters in common.

(5) For subalgebra, L3 = { L}, the invariants are:
o=t n=ax %0, 0,, A=z, R, C=ax2P.
Therefore, we have the superfields:
U=22At,m,60,),  R(t,m,60), P =aC(t,m,6).

The corresponding system is given by:

9 3 1
- QQRtT1 At - R7'192 At + 17_1 92Rt7'1 AOQA - 592727571 AT192A + EQZRtﬁ -/47102 7—1-/47'1
9 9 3 1
+ ZTIGQRTlezAtA + ZTIRTlegAQQA - 592RT192A15T1A + 592RT192At71 TIATl (36)

3 1 1
- §RT192AT192A + §R7192AT1927—1A71 - QC + 57—107'1 =0



Symmetry 2013, 5 264

62./4”1 Tan —+ A7—192 Terl — 3927?/157—1./4 -+ @QRtTl 7'1./47—1 - 3R7—192A + R7—192 7'1./47—1

—2R; =0 (37)
1 1
Ct — 37’19244,56 — 37'1./4926 + 292./4)57-16 — 592«4,57-17'167-1 -+ 2./47-1926 — 5./47-1927'16-,-1
3 1 3
— 3k7192CtA - 3k71C92A + §]€Ct7—1A - ikctﬁTlATl + 5](367192«4 (38)

1
- ikCTleleATl =0

We obtain the solution:

U= 2% (uf(t) +272000q(t) + Ooph(t) + 2~ 20:009(t)) ,
R =C1 + 0,05, 59)
P = x292H

where C'; and () are arbitrary bosonic constants, h and ¢ are arbitrary bosonic functions of ¢ and f
and g are arbitrary fermionic functions of ¢. This solution is non-stationary. The velocity and pressure
superfields are subject to infinite growth in the variable, x. The arbitrary functions, f(t), ¢(t), h(t) and
g(t), do not influence the superfields, R and P.

(6) For subalgebra, Lo = { P, + P}, the invariants are:
o =ux—¢t, 0., 05, U, R, P.
Obtaining the superfields:
U(o,01,0s), R(c,01,05), P(o,01,6s),
we are led to the reduced system:

9192RUO'MO' - 591R092u0 - 9273(;91“0 + 5R9192ua - 59192R00u9192u0
+ 0102 R 60,Us0,Us + 01 Ro0,Up, 0,Us — €0102R 50, Uso,Us + 02 R0, Uy, 0,U, (40)
— £0105Rg,0,UsoUy + 01Rg,0,Ur0,Uy + €05Rg,0,Ur0,Uy — Ro,0,Up,0,Us — Py =0

— €RU + 59192UUUR0 — 01“092Rg — 882UU91R0— + Z/{9192RU + 501027€00L{0
- QIRUGQMO' - 5927?’001[/{0 + R9102ua =0

(41)

— 57),; + 681622/[00730 — 91(/{0927)0 — 8922/{091730 + Z/[91927Dg + 81{?(91927)002/{,7
— k:91730922/{g — 6/{592730—911/{0 + /{57391921/10 =0

(42)

We have two solutions. The first solution is:
U=0C+ Qlclg + 0,Chv + 919202gz
R = Cs + 0,C7 + 0,C5 + 6,0,Cy (43)
P = Cio+ 01C5 + 0,C4 + 0,0,C5
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where Cy, C1, Cy, Cs, Cg, Cy and (g are arbitrary bosonic constants and C3, Cy, C7 and Cy are
arbitrary fermionic constants. This solution does not depend on the symmetry variable, c. However, the
superfields are expressible in terms of the Grassmann variables, #; and 5. The second solution is:

U = pvl(x — et) + 0 prq(z — et) + Oapvq(x — et) + 01025 (x — ct)
R =Cs5+0,C4 + 0,0y (44)
P = C() + 9101& + 92012 + GlﬁgCgﬁy
where Cy, Cy, Cy and C3 are arbitrary bosonic constants, Cy is an arbitrary fermionic constant,
¢ is an arbitrary bosonic function of its argument and ¢ and j are arbitrary fermionic functions of their

arguments. This solution represents a travelling wave. The choice of the functions, ¢, ¢ and j, in I/ does
not affect the superfields, R and P, which depend only on ¢, and 0s.

(7) For subalgebra, L1 = {P; + v()»}, the invariants are:
o =1t+vbz, 0y, Ty = 0y — vz, U, R, P,
and the superfields are:
U(o,0:,Ts), R(0,01,72), P(o,01,72),
which allows us to reduce to the system:

- VelHQRO'TQMU + VHIRO'MU - V9192RO'TQZ/{O' - (927?,0-911/{0 + V-CERO'GJ/{U - R917'2uo'
+ V92R091u917-2u72 + 1/6272’917'22/{0'91]/{7'2 - 1/9272,917-2[/{917-2[/{0- + VR@U’QUGN'QUTQ - VHQPO' (45)
+vP, =0

Ra - UQQZ/{UGIRTQ + V62U017'2Ro' - I/z/{91T2RT2 - V92R0'01u‘r2 + 1/927?,917-2]/{0-

(46)
— I/R,gl.rQZ/{T2 = 0

7)0 — Vegugglpm + V02u017-27)o— — VUelTQ'PTQ — kV@QPoeluTz + kV92P917—2Z/{0—

47)
— kvPo, Uy, =0

We obtain the solution:

U= a(t+ vbox) + 0101 (t + vbox) + (0 — va)do(t + vbax) + 61(0; — va)5(t + vhsx)
R = QZ + 62022 (48)
P = lﬁgy + 92]61022

where k; and C are arbitrary bosonic constants, (; is an arbitrary fermionic constant,  and 3 are
arbitrary bosonic function of their arguments and ¢; and ¢, are arbitrary fermionic functions of their
arguments. This solution is a travelling wave involving the Grassmann variable, #5. The superfields, R
and P, depend linearly on 6s.
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(8) For subalgebra, L17 = {P; + P, HQl}’ the invariants:
o=z — ¢t +euth, T =6 —eut, 05, u, R, P,
give us superfields of the form:
U(o,11,0), R(o,71,0,), P(o,11,6s),
which lead us to the following reduced system:

10 Rooly + T10a i RoolUr, + T102piRor Uy + epittr Rools — 71 Ro9,Us

— eT1Rog, pilhy, — Pt Roo,Us + 02pt Rooly — ot Ry + O2pumi Ror,Us

+ 0Ror pTilhy — 05 Ror Uy — O2Rory plhy, + 1t Ro0,Us — i1 Rry0,Us + R+ 0,Us
+ euRr0,Ur, — T102Roo pitlop,Us — eT102R ool 0,Us — eT102 0 R o, U, 0,Us

— Pt R ol 0,Usy — T102 Rty ity 4 €102 R g p1( Uy ) + €710 R g0, Urr, U

+ utt02Rop,Usr Uy + T1 Rog, ity 0,Us + T1 R o9,Ur, 0,Us + Pt R0, Ur, 0,Us

+ T102pt Rool0,Us — eT102ptRolso,Us — T105Ror,Usp,Us — pit0oRor, Usp,Us

— o ptRoolr,0,Us + €02t Rolr, 9,Us — €02uT1 Ror U 0,Us + O R, it y0,Us

+ 0o Ror,Ur,0,Us — T102pt Ro9,UsoUy — T105R 17, 0,UseUs — eT105Rr 0, filhrr, Uy
— P02 R 1,0,UsoUs + eT1 11t Ro0,Us0,Us + T1 R, 0,Us0,Us + et R 110,Us9,Us

+ Oapit R o, Urr Uy — 2R py0, iU Uy + €02 R 7,0, 11Uy ) — €05 R 1,0, i1 U, Uss

+ €02R 1, 0.UorUs — et Rog,Ur 0,Us — €1t Rr,0,Uo0,Us — Rry0,Ur0,Us — Po =0

(49)

epuniRs — Ry — epRyy + eT10Uy Ry + 1105 o, R + EtQQUMRU — 1ildpo, Ro

— epitlng, Ry + Oopitlyo Ry — baplds Ry + ebopiTilor, Ry — e02lor, R

+ eptlop, Ry + Ur0,Ro + eT102Rooly + eT102p RorUs + ptboRoolly — T1R50,Us (50)
— et Rop,Uy + it Ryoly — ebapiRoldy + bapiTi Ror Uy — €02 Ror Uy,

+ eptRop,Us + Rr9Us =0

euTiPy — Py — epfPry + T10oldo Py + T102pildyr, Py + (it02Uoo Po — T1ily0, P

— eptly0, Py + O2pitlyo Py — 0o pilhy Py + e02uT1ilyr, Py — €02Uyr, Py

+ epitlog, Py + Ur 9, Py + k1105 Poely + ekT102p0Por Uy + 11kt Pooldy (28]
— ki Pog,Us — ekt Pog,Us + ko it PoolUy — kO Polly + eklopumi Por,Usy

— €k0yPor Uy + kit Pog,Us + kPr0,Uy =0

We obtain the solution:
U= Co+ bp+ 60,01,
R = Hﬁ — L@($ — €t) + (01 — 5&75)& + 92&010 + QQHCg(I’ — St) + (01 — €Ht)9209, (52)
P = Cg + Hlﬁﬁ + 92% + 9102%
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where Cy, C3, Cy, Cyo and (¢ are arbitrary bosonic constants and C', Cs, Cs, C7 and Cy are arbitrary
fermionic constants. This solution is non-stationary. The density, R, is a travelling wave. The
superfields, &/ and P, depend only on 6, and 6s.

(9) For subalgebra, L3y = { L3 + P, }, the invariants are:
t, 01, 0o, U, B=e""R, Ce *P.
Therefore, we have the superfields:
U(t,0,0s), R = e B(t, 01, 0), P = eC(t,01,0,),
and the reduced system is:

9192€Btl/{t — 925}91% + (918392% — 691922/{15 —eC = O,
Bt + 922/{159188 + UQ192€B = 0, (53)

Ct + OoUyg,£C + Uy, p,eC = 0
We have two solutions. The first solution is:
U=C1+ 0,0y + 0,C3 + 0,0:C4,
R = "N [ky + 01 ks + Ozky + 0102k5] (54)
P=0

where C, Cy, k; and k5 are arbitrary bosonic constants and Cy, C3, k3 and k4 are arbitrary fermionic
constants. This is a non-stationary solution. The density superfield, R, contains a factor of e*(*~C1t),
Depending on whether ¢ is —1 or one, at a fixed position, x, we have either damping or growth. The

velocity is not influenced, however. The second solution is:

U=At + B + 61% + 6192&%,
R = e [Hlﬁ + Ot + 9192E%} ’ (55)
P = Ae®” [—8&% + Hlﬂ}
where A and B are arbitrary bosonic constants and Cs and Cj are arbitrary fermionic constants. This is
a non-stationary solution. The density and pressure contain a damping (or growth) factor. The velocity

superfield is linear in time ¢. The velocity and pressure are linked through the constant, A. Depending
on the sign of A, the velocity, U, is either increasing or decreasing.

5. Final Remarks and Open Problems

In this paper, we discuss first the construction of a supersymmetric extension of the Euler system (1)
through a superspace and superfield formalism. This analysis includes a supersymmetric extension

of a one-dimensional ideal compressible non-viscous fluid flow. This allows us to determine a Lie
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superalgebra of infinitesimal symmetries, which generate the Lie point symmetries of the Euler system
of Equations. We observe that, in analogy with the classical Euler system, the Lie symmetry superalgebra
of the supersymmetric Euler system contains three independent dilations. Next, we discuss the
classification of its subalgebras. Through the use of a generalized version of the symmetry reduction
method, we have demonstrated how to find exact invariant solutions of the supersymmetric model.
A systematic use of the structure of the invariance supergroup of the Euler Equations allows us to
generate all symmetry variables. For certain subalgebras, the invariants have a nonstandard structure
and, therefore, do not lead to invariant solutions. This phenomenon of nonstandard invariants has also
been observed, among other places, in the analysis of the symmetries of the supersymmetric sine-Gordon
Equation [24] and of supersymmetric polytropic gas dynamics [4]. The SRM enables us to reduce,
after some transformations, the basic system of PDEs to many possible ODEs. In each case, the three
superfields can be decomposed in terms of its independent fermionic variables, #; and #,. This allows
us to determine the invariant solutions of the supersymmetric Euler system component-wise. For nine
specific subalgebras involving different types of generators, a number of invariant solutions were found.
These included solutions involving several arbitrary functions of one variable. In particular, this includes
bumps, kinks and multiple wave solutions. If these arbitrary functions depend on z, the postulated form
will change as the solution evolves in time. Such a large number of arbitrary function degrees of freedom
were not found in the previous analyses by the authors of supersymmetric hydrodynamic systems (i.e.,
polytropic gas [4], integrable models (sine-Gordon, sinh-Gordon, polynomial Klein-Gordon [23,24]).
Some of the obtained solutions involved damping and growth. However, no blow-up phenomenon
(gradient catastrophe) was observed for any of our solutions.

In the future, it would be interesting to expand our analysis in several directions. One such
possibility would be to apply the above supersymmetric extension methods to the Euler system in higher
dimensions. Due to the complexity of the calculations involved, this would require the development of a
computer algebra Lie symmetry package capable of handling odd and even Grassmann variables. To the
best of our knowledge, such a package does not presently exist. Conservation laws are well-established
for the classical Euler Equations, but it has been observed that, for many hydrodynamic-type systems,
such conservation laws are broken in their corresponding supersymmetric extensions (see, e.g., [4] and
references therein). The question of which quantities are conserved by the supersymmetric model still
remains an open question for hydrodynamic-type Equations. These topics will be investigated in our

future work.
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