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1. Introduction

1.1. Subject and Goal

Boundary value/periodic problems for second order nonlinear Ordinary Differential Equations
(ODEs) have been within the focus of the nonlinear analysis community for a long time (see, for
example [1–3]). In [2,4], P. Hartman established the existence result for the boundary value problem:ÿ = f(t, y, ẏ)

y(0) = y(1) = 0
(1)

where the function, f : [0, 1] × Rn × Rn → Rn, satisfies the so-called Hartman-Nagumo
conditions, which, informally, means that f is a reasonable function having a sub-quadratic growth
on ẏ. Later on, H.W. Knobloch [5,6] observed that a similar result is true for the corresponding
periodic problem: ÿ = f(t, y, ẏ)

y(0) = y(1), ẏ(0) = ẏ(1)
(2)

Several extensions of Hartman-Knobloch results of perturbations of the ordinary vector p-Laplacian
operator were suggested by J. Mawhin et al. (see, for example, [7–9] and the references therein).

Although Hartman’s existence result was extended to more general settings by many authors, to
the best of our knowledge, the problems of estimating a minimal number of solutions to (1), as well
as classifying their symmetric properties have not been carefully studied. To some extent, our recent
paper [10] opened a door to a systematic usage of the equivariant degree theory for analysis of multiple
solutions to symmetric (1) and its generalizations. The starting point for our discussion was Example 6.1
from [11] in which a particular case of BVP (1) in the presence of D4-symmetries was considered (see
also [12] in which a “multivalued perturbation of this example” was discussed).

The goal of this paper is to study multiple solutions to boundary value problems for implicit symmetric
second order differential systems using the equivariant degree-based method. To simplify our exposition,
we will restrict ourselves to the Dirichlet boundary conditions. More specifically, we are interested in
the BVPs of the form: ÿ = h(t, y, ẏ, ÿ), a.e. t ∈ [0, 1]

y(0) = y(1) = 0
(3)

where V := Rn is an orthogonal G-representation and h : [0, 1] × V × V × V → V is a G-equivariant
map satisfying the so-called Carathéodory condition. For some motivating examples from mechanics
(including, in particular, the ones modeled by the so-called generalized Liénard equation), we refer the
reader to [13] and the references therein.
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1.2. Method

The main idea behind the method allowing us to study (3) can be traced back to [14,15]. Namely,
assume that h satisfies the Hartman-Nagumo conditions with respect to (y, ẏ), and, in addition, it is
non-expansive with respect to ÿ. Since the set of fixed points of a non-expansive map of an Euclidean
space is convex, one can canonically associate with problem (3) the “explicit” differential inclusion of
the form: ÿ ∈ F̃ (t, y, ẏ), a.e. t ∈ [0, 1]

y(0) = y(1) = 0
(4)

with F̃ : [0, 1] × V × V → Kc(V ) (here, Kc(V ) stands for the set of all non-empty convex and
compact subsets of V ). By the (equivariant) homotopy argument, the later problem can be reduced to the
“explicit” single-valued symmetric BVP of the form of Equation (1), and the equivariant degree-based
method developed in [10] can be applied.

Recall that the equivariant degree is a topological tool allowing “counting” orbits of solutions to
(symmetric) equations in the same way as the usual Brouwer degree does, but according to their
symmetric properties. This method is an alternative and/or complement to the equivariant singularity
theory developed by M. Golubitsky et al. (see, for example, [16]), as well as to a variety of methods
rooted in Morse Theory, Lusternik-Schnirelmann Theory and Morse-Floer complex techniques (see,
for example, [17–20]) used for the treatment of variational problems with symmetries. These standard
methods, although being quite effective in the settings in which they are usually applied, encounter
technical difficulties when: (i) the group of symmetries is large; (ii) multiplicities of eigenvalues of
linearizations are large; (iii) phase spaces are of a high dimension; and (iv) the operators involved
exhibit a lack of smoothness. Furthermore, one would expect to use computer routines for complex
computations, while it is not clear if these approaches are “open enough” to be computerized. On the
other hand, the equivariant degree theory has all the attributes allowing its application in settings related
to (i)–(iv), and in many cases, it allows computerization. For instance, in the case of the dihedral group,
the tools required for the symbolic computations of the equivariant degree can be found at [21]. For a
detailed exposition of the equivariant degree theory, we refer the reader to [11,22–25].

1.3. Overview

After the Introduction, the paper is organized as follows. In Section 2, we collect the standard
equivariant background together with basic properties of the equivariant degree (without free parameters)
for compact equivariant multivalued fields. This theory is applied in Section 3 for studying “explicit”
second order equivariant inclusions (see (11)). We reformulate (11) as a fixed-point problem
with a compact equivariant multivalued vector field defined on the Sobolev space, H2([0, 1];Rn),
and associate to this field an invariant, ω(C,F ), expressed in terms of the equivariant degree
(see (22)). Using ω(C,F ), we formulate our result for (11) (see Theorem 3.6). In Section 4,
we combine Theorem 3.6 with the equivariant version of the well-known result from [15] (cf.
Lemma 4.1) to obtain our main abstract result for the “explicit” BVP (3) (in fact, this result
(see Theorem 4.4) is expressed in terms of ω(C,F ) provided by Lemma 4.1). In Section 5, we
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describe a wide class of BVPs (3) symmetric with respect to the dihedral group representations for
which Theorem 4.4 can be applied to obtain a complete symmetric classification of solutions (see
Proposition 5.1). We also give a concrete D4-symmetric example supporting Proposition 5.1 (see
Theorem 5.2). To make our exposition self-contained, we conclude with two Appendices (Appendix 1
is related to the equivariant degree theory for single-valued maps (in particular, the concept of a Burnside
ring, and a computational formula for the equivariant degree of a linear equivariant isomorphism is
given); in Appendix 2, we collected all the facts frequently used in this paper that are related to
D4-representations and D4-equivariant degree).

2. G-Actions and Equivariant Degree without Parameters for Multivalued Fields

In this section, we briefly recall the standard “equivariant jargon” and present basic facts related to the
equivariant degree without free parameters for equivariant multivalued fields. In what follows, G stands
for a finite group and V for an orthogonal G-representation.

2.1. G-Actions

For a subgroup, H ⊂ G, denote byN(H) the normalizer ofH inG, byW (H) = N(H)/H , the Weyl
group of H in G, and by (H), the conjugacy class of H in G. The set, Φ(G), of all conjugacy classes in
G admits a partial order defined as follows: (H) ≤ (K) if and only if gHg−1 ⊂ K for some g ∈ G.

For a G-space, X and x ∈ X , denote by Gx := {g ∈ G : gx = x} the isotropy of x and by
G(x) := {gx : g ∈ G} ' G/Gx the orbit of x. Given an isotropy, Gx, call (Gx) the orbit type in X and
put Φ(G;X) := {(H) ∈ Φ(G) : H = Gx for some x ∈ X}. Furthermore, for a subgroup, H ⊂ G, put
XH := {x ∈ X : Gx ⊃ H}. As is well known (see, for instance, [26]), the G-action on X induces a
natural W (H)-action on XH .

Consider two subgroups, L ⊂ H , of G and put N(L,H) := {g ∈ G : gLg−1 ⊂ H}. Clearly,
N(L,H) is an N(H)-space. Define the number n(L,H) := |N(L,H)/N(H)| having very transparent
geometric meaning; it is equal to the cardinality of the set {H ′ : H ′ ∈ (H) and L ⊂ H ′}.

Let X and Y be two G-spaces. A continuous map, f : X → Y , is said to be G-equivariant (or,
simply, a G-map) if f(gx) = gf(x) for all x ∈ X and g ∈ G.

Convention: For a (finite) group, G, we denote by V0, V1, V2, . . . , Vr the complete list of all irreducible
orthogonal (real) G-representations.

Suppose that V is an orthogonal G-representation (in general, reducible). Then, it is possible to
represent V as the following direct sum:

V = V0 ⊕ V1 ⊕ · · · ⊕ Vr (5)

called the G-isotypical decomposition of V , where the isotypical components Vk are modeled on the
irreducible G-representations, Vk. In other words, the component, Vk, is the minimal subrepresentation
of V containing all the irreducible subrepresentations of V that are equivalent to Vk. Notice that if
T : V → V is a G-equivariant linear operator, then T (Vk) ⊂ Vk for all k. Furthermore, denote by
GLG(V ) the set of all linear G-equivariant isomorphisms, T : V → V .
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Let S([a, b];V ) be a Banach space of reasonable (e.g., continuous, differentiable, Sobolev
differentiable, etc.) functions, [a, b]→ V , where V is an orthogonalG-representation. Then, S([a, b];V )

can be equipped with the structure of a Banach G-representation by letting:

(g, u)(t) := g(u(t)), g ∈ G, u ∈ S([a, b];V ) (6)

Combining Equations (5) and (6) yields the isotypical decomposition:

S([a, b];V ) = S([a, b];V0)⊕ S([a, b];V1)⊕ ...⊕ S([a, b];Vr) (7)

2.2. Equivariant Degree for Multivalued Vector Fields

In order to treat implicit symmetric BVPs, we will use an extension of the equivariant degree without
free parameters to multivalued compact equivariant vector fields with compact convex images. Up to
several standard steps, such an extension is very simple (see, for example, [12]). Therefore, below, we
will only outline the key steps of the construction (we refer the reader to Appendix 1 of the present paper,
where the axiomatic definition for single-valued fields is presented).

Let E be a Banach space. Denote by C (E) (respectively Kc(E)) the family of all non-empty convex
subsets of E (respectively all non-empty convex and compact subsets of E). Let X be a subset of a
Banach space, Y. A map, F : X → C (E) (respectively F : X → Kc(E)), is called a multivalued map
with convex values from X to E (respectively multivalued map with convex and compact values from X

to E).
A multivalued map, F : X → Kc(E), is said to be upper semi-continuous (in short, u.s.c.) if for

every open set, U ⊂ E, the set, {x ∈ X : F (x) ⊂ U}, is open in X . A u.s.c multivalued map,
F : X → Kc(E), is called compact if, for any bounded set, S ⊂ X , the closure of

⋃
x∈S

F (x) is compact

in E. In what follows, we will write F ∈ MK to indicate that F is a u.s.c. compact multivalued map
with non-empty compact convex values.

Assume now that E and Y are isometric Banach G-representations, X ⊂ Y is a G-invariant set and
F ∈ MK is a multivalued map from X to E. Then, F is called G-equivariant if F (gx) = gF (x) for
all x ∈ X and g ∈ G, and we write F ∈ MG

K . Observe that if f : X → E is a single-valued compact
G-equivariant map, then it can also be considered as the multivalued map Ff (x) := {f(x)}, x ∈ X .
Clearly, Ff is u.s.c. (as a multivalued map) and, therefore, Ff ∈MG

K .
Let Ω ⊂ E be an open bounded G-invariant subset. Similarly to the single-valued case, a multivalued

map, F : Ω → Kc(E), is called an Ω-admissible compact G-equivariant field if the following two
conditions are satisfied:

(i) there exists F : Ω→ Kc(E), such that F ∈MG
K and F(x) = x− F (x) for all x ∈ Ω;

(ii) for all x ∈ ∂Ω, 0 6∈ x− F (x), i.e., x 6∈ F (x) (by the same token, F has no fixed-points in ∂Ω).

In such a case, (F,Ω) is called an admissible G-pair in E. Denote by A MG
K (E) the set of all such

admissible G-pairs in E and put:

A MG
K :=

⋃
E

A MG
K (E) (8)
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(here, the union is taken over all isometric Banach G-representations).
Take (F0,Ω), (F1,Ω) ∈ A MG

K . Then, F0,F1 are said to be equivariantly Ω-admissibly homotopic if
there exists a multivalued map, H : [0, 1]× Ω→ Kc(E), H ∈MG

K , such that:

(a) Fi(x) = x−H(i, x), i = 0, 1, for all x ∈ Ω;
(b) x 6∈ H(t, x) for all (t, x) ∈ [0, 1]× ∂Ω.

Lemma 2.1. (cf. [12,27]).

(i) For any (F,Ω) ∈ A MG
K (E), there exists an equivariant Ω-admissible homotopy,H : [0, 1]×Ω→

Kc(E), H ∈MG
K , such that H(0, ·) = F and H(1, ·) = Ff , where f : Ω→ E is a single-valued field.

(ii) Let H : [0, 1] × Ω → Kc(E), H ∈ MG
K be an equivariant Ω-admissible homotopy, such that

H(0, ·) = Ff0 and H(1, ·) = Ff1 , where f0, f1 : Ω → E are (compact) single-valued fields. Then, there
exists a single-valued equivariant Ω-admissible homotopy joining f0 and f1.

Lemma 2.1 allows us to extend theG-equivariant degree defined for single-valued admissibleG-pairs
to the fields from A MG

K . Namely, take (F,Ω) ∈ A MG
K (E). Find an admissible G-pair (f,Ω) with

single-valued f : Ω→ E, such that Ff is equivariantly Ω-admissibly homotopic to F (cf. Lemma 2.1(i)),
and put:

G-Deg(F,Ω)
def
=G-deg(f,Ω) (9)

Using Lemma 2.1(ii), one can easily verify that G-Deg(F,Ω), defined by (9), is independent of a
choice of a single-valued representative, f . Moreover, by applying the standard argument, one can show
that G-Deg satisfies the standard properties. More precisely:

Theorem 2.2. (cf. [12]).

There exists a unique map, G-Deg : A MG
K → A(G), which assigns to every admissible G-pair

(F,Ω) an element, G-Deg(F,Ω) ∈ A(G), called the G-equivariant degree (or, simply, G-degree) of F
on Ω:

G-Deg(F,Ω) =
∑

(Hi)∈Φ(G)

nHi(Hi) = nH1(H1) + · · ·+ nHm(Hm) (10)

satisfying (among others) the following properties:

(MG1) (Existence) If G-Deg(F,Ω) 6= 0, i.e., there is in Equation (10) a non-zero coefficient, nHi , then
∃x∈Ω, such that 0 ∈ F(x) and (Gx) ≥ (Hi).

(MG2) (Additivity) Let Ω1 and Ω2 be two disjoint open G-invariant subsets of Ω, such that, for any
x ∈ Ω \ (Ω1 ∪ Ω2), one has 0 /∈ F(x). Then:

G-Deg(F,Ω) = G-Deg(F,Ω1) +G-Deg(F,Ω2)

(MG3) (Homotopy) If H : [0, 1] × Ω → Kc(E) is an Ω-admissible G-homotopy of multivalued
G-equivariant compact fields, then:

G-Deg(Ht,Ω) = constant, t ∈ [0, 1]
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(MG4) (Normalization) Let Ω be a G-invariant open bounded neighborhood of zero in E. Then:

G-Deg(Id ,Ω) = 1 · (G)

(MG5) (Multiplicativity) For any (F1,Ω1), (F2,Ω2) ∈ A MG
K

G-Deg(F1 × F2,Ω1 × Ω2) = G-Deg(F1,Ω1) ·G-deg(F2,Ω2)

where the multiplication “·” is taken in the Burnside ring, A(G) (see Appendix 1, Subsection A1.1.).

For the equivariant topology/representation theory background, we refer the reader to [26,28–30].
For all the “multivalued” backgrounds frequently used here, we refer the reader to [27,31]. The detailed
exposition of the equivariant degree theory can be found in [22,25].

3. Symmetric Differential Inclusions

3.1. Basic Definitions and Facts

To formulate a result on (symmetric) multivalued BVPs, recall some standard notions and facts.
For any Banach space, E, the set, Kc(E), of all nonempty compact convex sets in E can be equipped

with the so-called Hausdorff metric, D(·, ·). To be more specific, if A, B ∈ Kc(E), put:

d(A,B) := inf{r > 0 : A ⊂ Br(0) +B}; D(A,B) := max{d(A,B), d(B,A)}

(here, Br(0) stands for the ball of radius r centered at the origin). One can easily verify that the function
D is indeed a metric on Kc(E).

Definition 3.1. Let Ω ⊂ Rn ⊕ E be an open set. A multivalued map, F : Ω → Kc(E), is said to be
measurable if, for every open set, U ⊂ Kc(E) (in the topology induced by the Hausdorff metric), the
inverse image:

F−1(U) := {x ∈ Ω : F (x) ∈ U}

is Lebesgue measurable.

Definition 3.2. A multivalued map, F : [0, 1] × Rm → Kc(Rn), is called a Carathéodory if it satisfies
the following two conditions:

(i) for every u ∈ Rm, the multivalued map F (·, u) is measurable;
(ii) for every t ∈ [0, 1], the multivalued map F (t, ·) is upper semicontinuous.

The following result is well-known (see [32,33]) and plays an important role in our considerations.

Proposition 3.3. Let F : [0, 1] × Rm → Kc(Rn) be a Carathéodory multivalued map satisfying the
following condition:

(A) For any bounded set, B ⊂ Rm, there exists ϕB ∈ L1([0, 1];R), such that:

‖F (t, v)‖ := sup{‖u‖ : u ∈ F (t, v), t ∈ [0, 1], v ∈ B} ≤ ϕB(t)}
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Then, the formula:

NF (v)(t) := {u ∈ L2([0, 1],Rn) : u(t) ∈ F (t, v(t)) a.e. t ∈ [0, 1]}

defines a continuous map from C([0, 1),Rm) to Kc(L
2([0, 1],Rn).

3.2. Hypotheses

Put V := Rn. We are interested in studying the BVP for second order differential inclusion of
the type: ÿ ∈ Cy(t) + F (t, y(t), ẏ(t)) for a.e. t ∈ [0, 1]

y(0) = 0 = y(1)
(11)

where F : [0, 1] × V × V → Kc(V ) and C : V → V is a linear operator. As usual, the
differentiation is understood in the sense of Sobolev derivatives. We need the following adaptation of the
Hartman-Nagumo conditions (cf. [2,4]) for the multivalued map, C + F .

(H0) F is a Carathéodory map satisfying condition (A), and there exists a constant R > 0, such that:
(H1) for any v0, w0 ∈ V satisfying w0 • v0 = 0, there is δ = δ(v0, w0) > 0, such that

‖v0‖ > R =⇒ ess inf
t∈[0,1]

{
v • u+ ‖w‖2 : u ∈ Cv + F (t, v, w), (v, w) ∈ Dδ

}
> 0

where Dδ := {(v, w) ∈ V × V : ‖v − vo‖+ ‖w − wo‖ < δ};
(H2) there exist α, κ > 0, such that, for all v, w ∈ V :

‖v‖ ≤ R =⇒ ‖Cv + F (t, v, w)‖ ≤ α(v • u+ ‖w‖2) + κ

for a.e. t ∈ [0, 1] and all u ∈ Cv + F (t, v, w);
(H3) there is a function, β : [0,∞)→ (0,∞), such that the function, s 7→ s

β(s)
, s ∈ [0,∞), belongs to

L∞loc[0,∞),
∫ ∞

0

s

β(s)
ds =∞, and for all v, w ∈ V with ‖v‖ ≤ R,

‖Cv + F (t, v, w)‖ ≤ β(‖w‖) for a.e. t ∈ [0, 1]

In addition, we will assume that problem (11) is asymptotically linear at the origin and the
linearization at the origin is non-degenerate, i.e.:

(H4) lim
(v,w)→(0,0)

‖F (t, v, w)‖
‖(v, w)‖

= 0 uniformly with respect to t ∈ [0, 1];

(H5) the linear system: ÿ = Cy

y(0) = 0 = y(1)

has only the trivial solution, y ≡ 0, i.e., σ(C) ∩ {−π2n2 : n ∈ N} = ∅, where σ(C) stands for the
spectrum of C.
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Finally, we assume that V is a coordinate permutation G-representation, i.e., there is a
homomorphism, σ : G→ Sn, such that:

g(x1, x2, ..., xn)T = (xσ(g)(1), xσ(g)(2), ..., xσ(g)(n))
T (12)

(here, Sn stands for the symmetric group of n elements). Moreover, we will always assume that
dimV G = 1, i.e.:

V G = {(x, x, ..., x)T : x ∈ R} (13)

We make the following assumptions with respect to F :

(H6) the multivalued map, F : [0, 1]× V × V → Kc(V ), is G-equivariant, i.e.:

∀g∈G ∀v,w∈V ∀t∈[0,1] F (t, gv, gw) = gF (t, v, w)

(as usual,G is supposed to act trivially on [0, 1]), and the linear map, C : V → V , isG-equivariant,
as well.

It follows immediately from condition (H6) that the multivalued map, FG : [0, 1] × V G × V G →
Kc(V

G), given by:

FG(t, v, w) := F (t, v, w) ∩ V G, t ∈ [0, 1], v, w ∈ V G

is well-defined and u.s.c. We assume additionally:

(H7) for every non-zero, v0 ∈ V G, there is δ = δ(v0) > 0, such that:

ess inf
t∈[0,1]

{
vu+ w2 : u ∈ Cv + FG(t, v, w), (v, w) ∈ Dδ

}
> 0

where Dδ := {(v, w) ∈ V G × V G : |v − vo|+ |w| < δ}

The simple observation, following below, will be essentially used in the sequel.

Lemma 3.4. Under assumptions (H0)–(H7), the differential inclusion:ẍ ∈ CGx+ FG(t, x, ẋ) a.e. t ∈ [0, 1]

x(0) = 0 = x(1)
(14)

where CG := C|V G , has only the trivial solution, x ≡ 0.

Proof: Assume for contradiction that x : [0, 1] → R =: V G is a solution to (14), such that
r(t) := 1

2
x2(t) has a positive maximum, i.e., (see the boundary conditions) there is to ∈ (0, 1), such that:

r(to) = max{r(t) : t ∈ [0, 1]} > 0

Then, ṙ(to) = x(to)ẋ(to) = 0, which implies:

ẋ(to) = 0 (15)
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Since x is a solution to (14), r̈(·) = x(·)ẍ(·) + ẋ2(·) ∈ L2([0, 1];R) and ẍ(t) ∈ CGx(t) +

FG(t, x(t), ẋ(t)) for a.e. t ∈ [0, 1]. In particular, x is a C1-smooth function; therefore (see (15)),
t→ to implies (x(t), ẋ(t))→ (x(to), 0). Hence, there exist α > 0 and η > 0, such that:

ess inf
t∈Aη

{
x(t)u+ ẋ2(t) : u ∈ Cx(t) + F (t, x(t), ẋ(t))

}
> α > 0

where Aη := {t ∈ [0, 1] : |to − t| < η} (cf. condition (H7)). Thus, for almost every t ∈ Aη:

r̈(t) = x(t)ẍ(t) + ẋ2(t) > α > 0

which implies that ṙ(t) is increasing for t ∈ Aη, t > t0 and decreasing for t ∈ Aη, t < to. However, this
is a contradiction with the assumption that r(to) is a maximal value of r. �

3.3. Operator Reformulation in Functional Spaces and the Existence of Multiple Symmetric Solutions:
Abstract Result

Take the Sobolev space, E := H2([0, 1];V ), equipped with the norm:

‖u‖E := ‖u‖2,2 =

[∫ 1

0

(
u(t) • u(t) + u̇(t) • u(t) + ü(t) • ü(t)

)
dt

] 1
2

(16)

the space: F := L2([0, 1];V )× V 2 = L2([0, 1];V )× V × V equipped with the usual product norm:

‖(f, p, q)‖F := max{‖f‖L2([0,1];V ), ‖p‖V , ‖q‖V } (17)

and the space, C([0, 1];V 2), of continuous functions from [0, 1] to V 2 equipped with the norm:

‖(u, v)‖∞ := max{‖u‖∞, ‖v‖∞} (18)

where u, v ∈ C([a0, a1];V ). Define the operators:

j : E→ C([0, 1];V 2), j(u) = (j1(u), j2(u)) := (u, u̇), u ∈ E (19)

L : E→ F, Lu := (ü, u(a0), u(a1)), u ∈ E (20)

Observe that both jk : E→ C([0, 1];V ), k = 1, 2 are compact; therefore, j is compact, as well.
Furthermore, define the multivalued map, NF : C([0, 1];V 2)→ Kc(F), by

NF (v, w)(t) := {u ∈ F : u(t) ∈ F (t, v(t), w(t)) a.e. t ∈ [0, 1]} × {(0, 0)}

and the operator, C : C([0, 1];V 2)→ F, by:

C(v, w)(t) := (Cv(t), 0, 0) (21)

Since the operator L is an isomorphism, the differential inclusion (11) can be reformulated as the
following fixed-point problem:

u ∈ L−1(C +NF )(j(u)), u ∈ E (22)
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Remark 3.5. (i) The G-action on V induces in a natural way the G-actions on E, C([0, 1];V 2) and F.
For example, the G-action on C([0, 1];V 2) is given by the formula:

∀g∈G ∀u=(u1,u2)∈C([0,1];V 2) g(u) := (g(u1(t)), g(u2(t)))

where t ∈ [0, 1].
(ii) The multivalued map, F : E→ Kc(E), given by

F(u) := u− L−1(C +NF )(j(u)), u ∈ E

is a compact G-equivariant multivalued field (cf. condition (H6) and compactness of the operator, j).

(iii) The map, A : E→ E, given by:

A (u) := u− L−1 ◦ C(j(u)), u ∈ E (23)

is a G-equivariant compact linear field on E, and moreover, by assumption (H5), it is an isomorphism.
In particular, (A ,Ωδ), where Ωδ := {u ∈ E : ‖u‖2,2 < δ} is an admissible G-pair for any δ > 0;
therefore, the G-equivariant degree, G-Deg(A ,Ωδ) ∈ A(G), is correctly defined for any δ > 0.

(iv) By conditions (H4) and (H5), there exists δo > 0 and a G-equivariant Ωδo-admissible homotopy
joining F and A . Therefore, G-Deg(A ,Ωδo) = G-Deg(F ,Ωδo) (cf. property (MG3)).

Put:
ω(C,F ) := (G)−G-Deg(A ,Ωδo) (24)

Theorem 3.6. Let V be an orthogonal G-representation satisfying (12) and (13). Assume F satisfies
(H0)–(H7) and let (cf. (24)) ω(C,F ) 6= 0, i.e.,

ω(C,F ) = n1(H1) + n2(H2) + · · ·+ nm(Hm), nj 6= 0, j = 1, 2, . . . ,m (25)

Then:

(a) for every j = 1, 2, . . . ,m, there exists a non-zero solution, u ∈ E, to (11), such that (Gu) ≥ (Hj).

(b) If, in addition, (Hj) is a maximal orbit type in V \ V G, then (Gu) = (Hj).

Proof: Using conditions (H0)–(H3) and following the standard argument (see, for example, [2,4,23]),
one can provide a priori estimates for solutions to (22). More precisely, there exists R > 0 large
enough, such that the multivalued field, F, is G-equivariantly admissibly homotopic to Id on the ball
ΩR := {u ∈ E : ‖u‖2,2 < R}. In particular (see properties (MG3) and (MG4) of the equivariant degree
for multivalued fields):

G-Deg(F,ΩR) = (G) (26)

Take δo > 0 provided by Remark 3.5(iv). By (MG2), (24) and (26):

G-Deg(F,ΩR \ Ωδo) = G-Deg(F,ΩR)−G-Deg(F,Ωδo) = ω(C,F ) (27)

Combining (25) and (27) with the existence property (MG4) yields Statement (a).
To establish Statement (b), it is enough to combine Statement (a) with assumption (H7) and

Lemma 3.4. �
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4. Symmetric Implicit Boundary Value Problems

4.1. General Result

In this section, we will apply Theorem 3.6 to study problem (3) in the symmetric setting. Below, we
formulate assumptions on h. The following condition essentially allows a passage from the “implicit”
problem to the single-valued “explicit” one via multivalued equivariant homotopy techniques.

(A0) h : [0, 1]× V × V × V → V is a Carathéodory function and there exist a Carathéodory function,
α : [0, 1]× V × V → [0,∞), and a constant, 0 ≤ c < 1, such that:

‖h(t, u, v, w)‖ ≤ α(t, u, v) + c‖w‖ for a.e. t ∈ [0, 1], and for all u, v, w ∈ V (28)

lim
(u,v)→(0,0)

α(t, u, v) = 0 uniformly with respect to t ∈ [0, 1] (29)

and:
‖h(t, u, v, w1)− h(t, v, u, w2)‖ ≤ ‖w1 − w2‖ for a.e. t ∈ [0, 1] (30)

and for all u, v ∈ V , w1, w2 ∈ Br := {w ∈ V : ‖w‖ < r}, where r := r(t, u, v) = α(t,u,v)
1−c

As is very well-known, the set of fixed points of a non-expansive map is convex. The following
statement was proven in [15]:

Lemma 4.1. Suppose that a Carathéodory function, h : [0, 1] × V × V × V → V , satisfies condition
(A0). Then, the multivalued map, F̃ : [0, 1]× V × V → Kc(V ), given by:

F̃ (t, u, v) := {w ∈ Br(t,u,v) : w = h(t, u, v, w)} (31)

where r(t, u, v) is given in condition (A0), is well-defined and satisfies the Carathéodory condition.

Next, three conditions present the adaptation of the Hartman-Nagumo conditions for the implicit BVP.
Namely, we assume that there exists R > 0, such that:

(A1) for any uo, vo ∈ V satisfying uo • vo = 0, there exists δ = δ(uo, vo) > 0, such that if ‖yo‖ > R,
then:

0 < ess inf
t∈[0,1]

{u • h(t, u, v, w) : ‖(u, v)− (uo, vo)‖ ≤ δ and ‖w‖ ≤ r} (32)

where r := r(t, u, v) is given in (A0);
(A2) There exist constants, κ, α > 0, such that:

‖h(t, u, v, w)‖ ≤ 2α(u • h(t, u, v, w) + ‖v‖2) + κ a.e. t ∈ [0, 1] (33)

and for all u, v, w ∈ V with ‖u‖ ≤ R and ‖w‖ ≤ r := r(t, u, v) (where r(t, u, v) is given in the
condition (A0));
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(A3) There is a function, ϕ : [0,∞)→ (0,∞), such that s 7→ s

ϕ(s)
, s ∈ [0,∞), belongs to L∞loc[0,∞),∫ ∞

0

s

ϕ(s)
ds =∞, and:

‖h(t, u, v, w)‖ ≤ ϕ(‖v‖) for a.e. t ∈ [0, 1] (34)

and u, v, w ∈ V , with ‖u‖ ≤ R and ‖w‖ ≤ r := r(t, u, v) (where r(t, u, v) is given in the
condition (A0)).

In addition, we will assume that problem (3) is asymptotically linear at the origin and that the
linearization at the origin is non-degenerate. More precisely:

(A4) For any t ∈ [0, 1], the function, h : [0, 1] × V × V × V → V , is differentiable at (t, 0, 0, 0);
also, Dth(t, 0, 0, 0) ≡ 0 ≡ Dvh(t, 0, 0, 0), and Duh(t, 0, 0, 0) =: A, Dwh(t, 0, 0, 0) =: B, with
detA 6= 0 and det(Id−B) 6= 0;

(A5) the characteristic equation, detC4(λ) = 0, λ ∈ C, where4(λ) := λ[Id−B]−A, associated with
the system linearized at (t, 0, 0, 0), has no characteristic roots of the form−π2n2 (n = 1, 2, 3, . . . ).

Finally, as in Subsection 3.2, we assume that V is a coordinate permutation G-representation given
by (12), and condition (13) is satisfied. Furthermore, assume that:

(A6) the function, h : [0, 1]× V × V × V → V , is G-equivariant, i.e.:

h(t, gu, gv, gw) = gh(t, u, v, w), for all t ∈ [0, 1] and u, v, w ∈ V

(A7) the function ho = h|[0,1]×V G×V G×V G satisfies the condition: for any uo ∈ V , there is δ = δ(uo) > 0,
such that:

0 < ess inf
t∈[0,1]

{u • ho(t, u, v, w) : ‖(u, v)− (uo, 0)‖ ≤ δ and ‖w‖ ≤ r} (35)

where r := r(t, u, v) is given in (A0).

Remark 4.2. A careful analysis of the proof of Lemma 4.1 shows that under the assumption that h is
G-equivariant, one can construct F̃ to be G-equivariant, as well.

The Lemma, following below, plays an important role in our considerations.

Lemma 4.3. Suppose that h : [0, 1]× V × V × V → V satisfies conditions (A0)–(A7). Let C : V → V

be given by:
C := (Id− B)−1A (36)

and let F̃ be a map provided by Lemma 4.1. Define the multivalued map, F : [0, 1]×V×V → Kc(V ), by:

F (t, u, v) := F̃ (t, u, v)− Cu, u, v ∈ V (37)

Then:

(a) F : [0, 1]× V × V → Kc(V ) satisfies conditions (H0)–(H7);

(b) any solution, u ∈ E, to (11) is also a solution to (3).
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Proof: In light of [15] (see also (12) and (13), conditions (A6) and (A7)), we need to check only
condition (H4), i.e.:

lim
(u,v)→(0,0)

‖F (t, u, v)‖
‖(u, v)‖

= 0 (38)

uniformly with respect to t ∈ [0, 1].
Suppose for contradiction that (38) is not true. Then, there exists ε > 0 and a sequence,

{(tn, un, vn, wn)}∞n=1, such that tn → to and (un, vn)→ (0, 0), where wn ∈ F (t, un, vn) and:

‖wn‖ ≥ ε‖(un, vn)‖ for all n ∈ N (39)

Therefore, by the definition of F :

wn + Cun = g(tn, un, vn, wn + Cun), n ∈ N

Therefore:

wn + Cun = Aun +B(wn + Cun) + r(tn, un, vn;un + Cwn)

where r(t, u, v, w)/‖(u, v, w)‖ → 0 as ‖(u, v, w)‖ → 0 (uniformly with respect to t), which leads to:

(Id−B)wn = r(tn, un, vn;un + Cwn) (40)

Then, since, by (29), ‖wn‖ ≤ α(tn, un, vn)→ 0 as n→∞, it follows that:

lim
n→∞

(Id−B)wn
‖(un, vn)‖

= lim
n→∞

r(tn, un, vn;un + Cwn)

‖(un, vn)‖

= lim
n→∞

r(tn, un, vn;un + Cwn)

‖(un, vn, un + Cwn)‖
· lim
n→∞

‖un + Cwn‖

= 0 · 0 = 0

and we obtain a contradiction with (39). �

Combining Lemma 4.3 with Theorem 3.6, one obtains the following:

Theorem 4.4. Let h : [0, 1] × V × V × V → V satisfy conditions (A0)–(A7). Assume C : V → V is
given by (36) and F : [0, 1] × V × V → Kc(V ) is given by (37). Take ω(C,F ) defined by (19)–(24)
and assume:

ω(C,F ) = n1(H1) + n2(H2) + · · ·+ nm(Hm), nj 6= 0, j = 1, 2, . . . ,m

Then, for every j = 1, 2, . . . ,m, there exists a non-zero solution u ∈ H2([0, 1];V ) to (3), such that
Gu ⊃ Hj . In addition, if (Hj) is a maximal orbit type in V \ V G, then Gu = Hj .
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4.2. General Formula for ω(C,F )

Theorem 4.4 reduces studying symmetric multiple solutions of (3) to the computation of ω(C,F )

(or that is the same (cf. Remark 3.5, (23) and (24)) as the computation of the equivariant degree,
G-Deg(A ,Ωδo) ∈ A(G)). Below, we give a general formula for it.

Assume V admits the isotypical decomposition (5). Then, E := H2([0, 1];V ) has the following
G-isotypical decomposition:

E := E0 ⊕ E1 ⊕ · · · ⊕ Er (41)

where:
Ek := {u ∈ E : ∀t∈[a0,a1] u(t) ∈ Vk}

Since A : E→ E is G-equivariant, it preserves the G-isotypical decomposition of E, i.e.:

A (Ek) = Ek, k = 0, 1, 2, . . . , r (42)

Since A is a compact linear field, all points of the spectrum of A are of finite multiplicity, and one
can be the only accumulation point of the spectrum of A . Hence, the negative spectrum, σ−(A ), is
composed of a finite number of eigenvalues (of finite multiplicity). For each λ ∈ σ−(A ), denote by
E(λ) the generalized eigenspace of λ and put (cf. (64))

mk(λ) := dim (E(λ) ∩ Ek)/dim (Vk), k = 0, 1, 2, . . . , r

to denote the Vk-multiplicity of the eigenvalue, λ. Consequently, one has (see Theorem 5.5) the
following formula:

G-Deg (A ,Ωδo) := G-Deg (DF(0),Ωδo) =
∏

λ∈σ−(A )

r∏
k=0

(degVk)
mk(λ) (43)

Formula (43) requires effective computations of the negative spectrum of A . In the next section, we
will show that very often, it is a feasible task.

5. Examples of Implicit Dn-Symmetric BVPs with Multiple Solutions

In this section, we describe a class of examples illustrating Theorem 4.4. Throughout this section, V
stands for a Dn-representation given by (72) and (73) and admitting the isotypical decomposition (76).

5.1. A Class of Maps Satisfying (A0)–(A7)

We start with describing a class of functions, h : [0, 1]× V × V × V → V , satisfying (A0)–(A7).
Let A : V → V be a Dn-equivariant linear operator and let σ(A) := {µj : 0 ≤ j ≤ m} denote the

spectrum of A (cf. Theorem 5.6). Assume that µ0 = 0, i.e.:

A|V G = 0 (44)

Let ζ : [0, 1]× V → R be a Dn-invariant C1-differentiable function, such that:

ζ(t, u) > 0 (45)
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For two vectors, u, v ∈ V , define:

u · v := (u1v1, u2v2, . . . , unvn)T , u = (u1, u2, . . . , un)T , v = (v1, v2, . . . , vn)T (46)

and put:
ul+1 := u · ul, for l ≥ 1 (47)

Let ψ : [0, 1]× V → V be a Dn-equivariant C1-differentiable function, such that:

ψ(t, u) = (ψ1(t, u), ψ2(t, u), . . . , ψn(t, u))T with ψi(t, u) ≥ 0, i = 1, 2, . . . , n, and ψ(t, 0) ≡ 0

(48)
Define f : [0, 1]× V × V → V by:

f(t, u, v) = Au+
(
‖v‖βζ(t, u)

)
v + u2p+1 + u · ψ(t, u) (49)

where β ∈ (0, 1) and p ∈ N.

Let g : V × V → V be a function satisfying the following conditions:

(g1) g is Dn-equivariant (in particular, continuous);
(g2) there exist real constants, α > 0 and 1 > c ≥ 0, such that ‖g(v, w)‖ ≤ α + c‖w‖ for all

(v, w) ∈ V × V ;
(g3) ‖g(v, w1)− g(v, w2)‖ ≤ ‖w1 − w2‖ for all v, w1, w2 ∈ V ;
(g4) g(0, 0) = 0;
(g5) g′v(0, 0) = 0.

The proof of the statement following below is straightforward.

Proposition 5.1. Let V be a Dn-representation given by (72) and (73), and let f : [0, 1]× V × V → V

be given by (49) (cf. (44)–(48)). Let g : V × V → V be a function satisfying (g1)–(g5).
Then, the function, h : [0, 1] × V × V × V → V , defined by h(t, u, v, w) := f(t, u, v) + g(v, w)

satisfies conditions (A0)—(A7).

5.2. Example

One can easily construct a wide class of illustrative examples of implicit BVPs for differential systems
symmetric with respect to various classical finite groups (including, in particular, arbitrary dihedral
groups Dn, a tetrahedral group A4, an octahedral group S4, an icosahedral group A5, etc. (see [25])).
However, being motivated by simplicity and the transparency of our exposition, we restrict ourselves to
one of the simplest non-abelian symmetry groups, namely D4.

Let V := R4 be a D4-representation given by (72) and (73). Put y = (y1, y2, y3, y4)T ∈ V and
consider the (autonomous) four-dimensional system of second order ODEs:

ÿ1 = −2ay1 + ay2 + ay4 + ẏ1e
y1y2y3y4‖ẏ‖β + y3

1 + y1y
2
2y

2
4 + kẏ1‖ẏ‖β sin(ÿ1)(1 + ‖ẏ‖2)−1

ÿ2 = −2ay2 + ay1 + ay3 + ẏ2e
y1y2y3y4‖ẏ‖β + y3

2 + y2y
2
1y

2
3 + kẏ2‖ẏ‖β sin(ÿ2)(1 + ‖ẏ‖2)−1

ÿ3 = −2ay3 + ay2 + ay4 + ẏ3e
y1y2y3y4‖ẏ‖β + y3

3 + y3y
2
2y

2
4 + kẏ3‖ẏ‖β sin(ÿ3)(1 + ‖ẏ‖2)−1

ÿ4 = −2ay4 + ay1 + ay3 + ẏ4e
y1y2y3y4‖ẏ‖β + y3

4 + y4y
2
1y

2
3 + kẏ4‖ẏ‖β sin(ÿ4)(1 + ‖ẏ‖2)−1

(50)
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with the boundary conditions y(0) = 0 = y(1) (here, a > 0 and will be specified later (cf. conditions (a1)
and (a2) below), β ∈ (0, 1) and 0 < k ≤ 1).

Define:

A :=


−2a a 0 a

a −2a a 0

0 a −2a a

a 0 a −2a

 (51)

f(y, ẏ) :=


−2ay1 + ay2 + ay4 + ẏ1e

y1y2y3y4‖ẏ‖β + y3
1 + y1y

2
2y

2
4

−2ay2 + ay1 + ay3 + ẏ2e
y1y2y3y4‖ẏ‖β + y3

2 + y2y
2
1y

2
3

−2ay3 + ay2 + ay4 + ẏ3e
y1y2y3y4‖ẏ‖β + y3

3 + y3y
2
2y

2
4

−2ay4 + ay1 + ay3 + ẏ4e
y1y2y3y4‖ẏ‖β + y3

4 + y4y
2
1y

2
3

 (52)

g(ẏ, ÿ) :=


kẏ1‖ẏ‖β sin(ÿ1)(1 + ‖ẏ‖2)−1

kẏ2|ẏ‖β sin(ÿ2)(1 + ‖ẏ‖2)−1

kẏ3‖ẏ‖β sin(ÿ3)(1 + ‖ẏ‖2)−1

kẏ4‖ẏ‖β sin(ÿ4)(1 + ‖ẏ‖2)−1

 (53)

Clearly, f (respectively g) is of the form of (49) (respectively it satisfies conditions (g1)–(g5)).
Therefore, by Proposition 5.1, h := f + g satisfies conditions (A0)–(A7). Therefore, in order to apply
Theorem 4.4 to find non-zero solutions to (50) and to describe their symmetries, one needs to effectively
use formula (43).

Observe that the (symmetric) spectral properties of the linearization A := DF(0) are completely
determined by σ(A) and σ(L) (cf. (23)). One has the following D4-isotypical decomposition of V :

V := V0 ⊕ V1 ⊕ V3 (54)

(see Appendix 2 for the used notations), which implies:

E = E0 ⊕ E1 ⊕ E3, Ej := H2([0, 1];Vj), j = 0, 1, 3

In Figure 1, we show the hierarchy of the orbit types in E.

Figure 1. Orbit types in E.
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The matrix, A, has the eigenvalues, λ0 = 0, λ1 = −2a and λ3 = −4a (see Appendix 2 for more
details), with the eigenspaces, V0, V1 and V3, respectively. The spectrum of the (D4-equivariant) operator,
A , is:

σ(A ) :=

{
1, 1− 2a

π2k2
, 1− 4a

π2k2
: k ∈ N

}
(55)

We make the following assumptions regarding σ(A ) (take, for example, a = 5.5):

(a1) 0 /∈ σ(A );

(a2) σ−(A ) := {µ ∈ σ(A ) : µ < 0} =
{

1− 2a
π2 , 1− 4a

π2

}
(for simplicity).

Then, formula (43) reads as follows:

D4-Deg(A , Bδo) = degV1 · degV3 (56)

(cf. Appendix 2). Combining (56) with (70), (71) and the multiplication table for the Burnside ring,
A(D4) (see, for example, Table 1 in [11]), one obtains:

D4-Deg(A , Bδo) = degV1 · degV3

=
(
(D4)− (D1)− (D̃1) + (Z1)

)
·
(
(D4)− (D2)

)
= (D4)− (D2) + (D1)− (D̃1)

hence (see (24)) ω(C,F ) = (D2)− (D1) + (D̃1). We established the following:

Theorem 5.2. Given system (50), assume the set (55) satisfies hypotheses (a1) and (a2). Then, (50)
admits at least two (classical) non-zero solutions with symmetry (D2) and at least four (classical)
solutions with symmetry (D̃1).

We refer to [10] as an appropriate source of examples of explicit Dn-symmetric BVPs that can be
converted to implicit Dn-symmetric BVPs admitting an arbitrary large number of symmetric solutions.
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Appendix 1: Equivariant Degree without Parameters: Single-Valued Maps

A1.1. G-Equivariant Degree: Domain and Range of Values

Let V be an orthogonal G-representation, Ω ⊂ V , a bounded G-invariant set, and f : V → V , a
G-equivariant map, such that f(x) 6= 0 for all x ∈ ∂Ω. Then, f is said to be Ω-admissible, and the pair
(f,Ω) is called a G-admissible pair in V . Denote by MG(V ) the set of all G-admissible pairs in V ,
and put:

MG :=
⋃
V

MG(V ) (57)

where V is an orthogonal G-representation.
The collection determined by (57) is served as a domain of the G-equivariant degree (without

free parameters).
Denote by A(G) := Z[Φ(G)] the free abelian group generated by (H) ∈ Φ(G), i.e., an element,

a ∈ A(G), is a finite sum:

a = n1(H1) + · · ·+ nm(Hm), with ni ∈ Z and (Hi) ∈ Φ(G)

One can define an operation of multiplication in A(G) by:

(H) · (K) =
∑

(L)∈Φ(G)

nL (L) (58)

where the integer, nL, represents the number of orbits of type (L) contained in the space, G/H ×G/K.
In this way, A(G) becomes a ring with the unity, (G). The ring A(G) (serving as the range of values of
the equivariant degree) is called the Burnside ring of G.

By using the partial order on Φ(G), the multiplication table for A(G) can be effectively computed
using a simple recurrence formula:

nL =
n(L,H)|W (H)|n(L,K)|W (K)| −

∑
(L̃)>(L) n(L, L̃)nL̃|W (L̃)|

|W (L)|
(59)

A1.2. G-Equivariant Degree: Basic Properties and Recurrence Formula

In this subsection, we will present a practical “definition” of the G-equivariant degree, which is based
on its properties that can be used as a set of axioms and determines this G-degree uniquely. These
properties (or axioms) can be effectively applied to compute the values of the G-equivariant degree,
needed to study symmetric boundary value problems.

Theorem 5.3. There exists a unique map, G-deg : MG → A(G), which assigns to every admissible
G-pair (f,Ω) an element, G-deg(f,Ω) ∈ A(G), called the G-equivariant degree (or simply G-degree)
of f on Ω:

G-deg(f,Ω) =
∑

(Hi)∈Φ(G)

nHi(Hi) = nH1(H1) + · · ·+ nHm(Hm) (60)

satisfying the following properties:
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(G1) (Existence) If G-deg (f,Ω) 6= 0, i.e., there is in (60) a non-zero coefficient, nHi , then ∃x∈Ω, such
that f(x) = 0 and (Gx) ≥ (Hi).

(G2) (Additivity) Let Ω1 and Ω2 be two disjoint open G-invariant subsets of Ω, such that f−1(0)∩Ω ⊂
Ω1 ∪ Ω2. Then:

G-deg(f,Ω) = G-deg(f,Ω1) +G-deg(f,Ω2)

(G3) (Homotopy) If h : [0, 1]× V → V is an Ω-admissible G homotopy, then:

G-deg(ht,Ω) = constant

(G4) (Normalization) Let Ω be a G-invariant open bounded neighborhood of zero in V . Then:

G-deg(Id ,Ω) = 1 · (G)

(G5) (Multiplicativity) For any (f1,Ω1), (f2,Ω2) ∈MG:

G-deg(f1 × f2,Ω1 × Ω2) = G-deg(f1,Ω1) ·G-deg(f2,Ω2)

where the multiplication “·” is taken in the Burnside ring, A(G).
(G6) (Suspension) If W is an orthogonal G-representation and B is an open bounded invariant

neighborhood of 0 ∈ W , then:

G-deg(f × IdW ,Ω×B) = G-deg(f,Ω)

(G7) (Recurrence Formula) For an admissibleG-pair (f,Ω), theG-degree (10) can be computed using
the following recurrence formula:

nH =
deg(fH ,ΩH)−

∑
(K)>(H) nK n(H,K) |W (K)|
|W (H)|

(61)

where |X| stands for the number of elements in the set,X , and deg(fH ,ΩH) is the Brouwer degree
of the map fH := f |V H on the set, ΩH ⊂ V H .

Remark 5.4. Combining the standard (equivariant) finite-dimensional approximations with the
suspension property (G6), the G-equivariant degree can be extended to the Leray-Schauder
G-equivariant degree for G-admissible pairs (F,Ω) in an isometric Banach G-representation, E, where
Ω ⊂ E is a bounded G-invariant set and F = Id−F : E→ E is a completely continuous G-equivariant
field on E, i.e., F : E → E is a completely continuous G-map (taking bounded sets onto pre-compact
sets). For a detailed construction of this extension, we refer the reader to [23].

A1.3. G-Equivariant Degree of Linear G-Isomorphisms

Any degree (including the equivariant one) applied to a concrete (nonlinear) problem can be often
computed using the so-called linearization techniques based on local or global linear approximations.

Let T ∈ GLG(V ) and consider the isotypical decomposition (5). By the multiplicativity
property (G5):
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G-deg(T,B(V )) =
r∏

k=1

G-deg(Tk, B(Vk)) (62)

where B(Vk) is the unit ball in Vk and Tk := T |Vk : Vk → Vk. Denote by σ−(T ) the set of all negative
real eigenvalues of the operator, T . Choose λ ∈ σ−(T ), and let:

E(λ) :=
∞⋃
j=1

ker(T − λId )j (63)

denote the generalized eigenspace of T corresponding to λ. Then, define:

(i) for each k = 0, 1, . . . , r, put:

mk(λ) := dim (E(λ) ∩ Vk) /dimVk (64)

and call the number, mk(λ), the Vk-multiplicity of the eigenvalue, λ, of T ;
(ii) for any irreducible representation, Vk, put:

degVk := G-deg(−Id , B(Vk)) (65)

and call degVk the basic G-degree corresponding to the representation, Vk.

We have the following effective computational formula for G-deg(T,B(V ) (see, for
example, [11,25]).

Theorem 5.5. Let V be an orthogonal G-representation with isotypical decomposition (5) and
T ∈ GLG(V ). Then:

G-deg(T,B(V )) =
∏

λ∈σ−(T )

r∏
k=0

(
degVk

)mk(λ) (66)

where B(V ) stands for the unit ball in V , σ−(T ) denotes the set of negative real eigenvalues of T and
the product is taken in the Burnside ring, A(G).

For the detailed exposition of the equivariant degree theory, one can use [11,22–25]).

Appendix 2: Dihedral Group and Its Representations

A2.1. Dihedral Group

Represent the dihedral group, Dn, of order 2n as the group of rotations, one, γ, γ2, . . . , γn−1, of the
complex plane (where γ = e

2πi
n is the multiplication by e

2πi
n ) plus the reflections, κ, κγ, κγ2, . . . , κγn−1,

with κ being the operator of complex conjugation described by the matrix,

[
1 0

0 −1

]
.

To describe (up to conjugacy) subgroups of Dn, take a positive integer, k, with k | n, and ξ := e
2πi
k .

The list of subgroups of Dn includes:
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(i) the subgroups Dk =
{

1, ξ, ξ2, . . . , ξk−1, κ, κξ, . . . , κξk−1
}

and their isomorphic copies:

Dk,j =
{

1, ξ, ξ2, . . . , ξk−1, κγj, κγjξ, . . . , κγjξk−1
}
⊂ Dn

j = 0, 1, . . . , n
k
− 1, which are all conjugate, if n

k
is odd, but split into two conjugacy classes, (Dk) and

(D̃k), where D̃k := Dk,1, if n
k

is even;
(ii) the cyclic subgroups, Zk, generated by ξ.

A2.2. Irreducible Dn-Representations and Basic Degrees

For the complete list of irreducible Dn-representations and the corresponding basic degrees, we refer
the reader, for instance, to [25], p. 174. Here, we restrict ourselves with the data important for the
present paper.

(a) Clearly, there is the one-dimensional trivial representation, V0. In this case:

degV0 = −(Dn)

(b) For every integer number, 1 ≤ j < n
2
, there is a Dn-representation, Vj , on C given by:

γz := γj · z, for γ ∈ Zn and z ∈ C
κz := z

(67)

where γj · z denotes the usual complex multiplication. Put:

h := gcd(j, n) and q := n/h (68)

For the lattices of orbit types related to this case, we refer to Figure 2i (the case, q, is odd) and
Figure 2ii (the case, q, is even). Furthermore, we have the following degrees of the basic maps:

degVj = (Dn)− 2(Dh) + (Zh) if q is odd (69)

degVj = (Dn)− (Dh)− (D̃h) + (Zh) if q is even (70)

(c) For n being even, there is an irreducible representation, Vn
2
, given by d : Dn → Z2 = O(1), such

that ker d = Dn/2. In this case, the lattice of orbit types is given in Figure 2iii and the degree of the
corresponding basic map is:

degVn
2

= (Dn)− (Dn
2
) (71)
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Figure 2. Lattices of orbit types for irreducible Dn-representations.

A2.3. Dn-Representations Induced by Coordinate Permutations

Assume that V := Rn is the natural Dn-representation with the Dn-action defined on the generators
as follows:

γ(x1, x2, . . . , xn−1, xn)T := (x2, x3, . . . , xn, x1)T (72)

κ(x1, x2, . . . , xn−1, xn)T := (x1, xn, . . . , x3, x2) (73)

where (x1, x2, . . . , xn)T ∈ Rn. Clearly, the matrices of transformation (72) and (73) are:

P :=


0 1 0 . . . 0

0 0 1 . . . 0
...

...
... . . . ...

0 0 0 . . . 1

1 0 0 . . . 0

 (74)

and:

S :=


1 0 0 . . . 0

0 0 0 . . . 1
...

...
... . . . ...

0 0 1 . . . 0

0 1 0 . . . 0

 (75)

respectively.

Proposition 5.6. Let V be a Dn-representation given by (72) and (73) (see also (74) and (75)), and let
m := bn

2
c. Then:



Symmetry 2013, 5 310

(i) V admits the isotypical decomposition:

V := V0 ⊕ V1 ⊕ · · · ⊕ Vm (76)

where Vj ' Vj , j = 0, 1, ...,m (see Appendix 1);

(ii) for any collection of real numbers, {µj}mj=0, there exists a unique Dn-equivariant linear operator,
A : V → V , such that σ(A) := {µj : 0 ≤ j ≤ m} and E(µj) = Vj .

(iii) Let C be a matrix of the operator, A : V → V , provided by (ii). Then:

(a) if n is odd, then:

C = c0 Id +
m∑
k=1

ck
[
P k + P−k

]
and µj = c0 +

m∑
k=1

2ck cos
(2πkj

n

)
(77)

(b) if n is even, then:

C = c0 Id +
m−1∑
k=1

ck
[
P k + P−k

]
+ cmP

m and µj = c0 +
m−1∑
k=1

2ck cos
(2πkj

n

)
− cm (78)
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