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1. Why Use Symmetries (and Groups) in General Scientific Computations?

1.1. What We Plan to Do in This Paper

In this paper, on an important example of determining the dissociation constants related to multiple
binding sites, we show that symmetries and groups can be useful in chemical computations.

1.2. Use of Symmetries in Chemistry: A Brief Reminder

In many practical situations, physical systems have symmetries, i.e., transformations that preserve
certain properties of the corresponding physical system. For example, a benzene molecule C6H6 does
not change if we rotate it 60◦: this rotation simply replaces one carbon atom by another one. The
knowledge of such geometric symmetries helps in chemical computations; see, e.g., [1–3].

1.3. Group Theory: A Mathematical Tool for Studying Symmetries

Since symmetries are useful, once we know one symmetry, it is desirable to know all the symmetries
of a given physical system. In other words, once we list the properties which are preserved under
the original symmetry transformation, it is desirable to find all the transformations that preserve
these properties.

If a transformation f preserves the given properties, and the transformation g preserves these
properties, then their composition h(x) = f(g(x)) also preserves these properties. For example, if
the lowest energy level of the molecule does not change when we rotate it 60◦, and does not change
when we rotate it 120◦ around the same axis, then it also will not change if we first rotate it 60◦ and then
120◦, to the total of 180◦.

Similarly, if a transformation f does not change the given properties, then the inverse transformation
f−1 also does not change these properties. So, the set of all transformations that preserve given properties
is closed under composition and inverse; such a set is called a transformation group or symmetry group.
Mathematical analysis of such transformation is an important part of group theory.

1.4. Problems of Scientific Computations: A Brief Reminder

In this paper, we argue that symmetries can be used in scientific computations beyond geometric
symmetries. To explain our idea, let us briefly recall the need for scientific computations.

One of the main objectives of science is to be able to predict future behavior of physical systems. To
be able to make these predictions, we must find all possible dependencies y = F (x1, . . . , xn) between
different physical quantities. Often, we only know the general form of the dependence, i.e., we know
that y = G(x1, . . . , xn, c1, . . . , cm) for a known expression G(x1, . . . , cm), but we do not know the exact
values of the corresponding parameters c1, . . . , cm. These values must be determined from the empirical
data. For example, Newton’s equations provide a general description of how the acceleration of each
celestial body depends on its spatial location, but this description contains masses ci of celestial bodies;
these masses must be determined based on the astronomical observations.
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In general, to be able to predict the value of a desired quantity y for which we know the form of the
dependence y = G(x1, . . . , xn, c1, . . . , cm), we must do the following:

• first, we use the known observations x(k)i and y(k) of xi and y to find the parameters ci of the
corresponding dependence from the condition that y(k) ≈ G(x

(k)
1 , . . . , x

(k)
n , c1, . . . , cm);

• after that, we measure the current values xi of the corresponding quantities, and use
these measured values and the reconstructed values of the parameters ci to estimate y as
y = G(x1, . . . , xn, c1, . . . , cm).

In scientific computation, the first problem is known as the inverse problem and the second problem
as the forward problem. Usually:

• the forward problem is reasonably straightforward: it consists of applying a previously known
algorithm, while

• an inverse problem is much more complex since it requires that we solve a system of equations,
and for this solution, no specific algorithm is given.

1.5. Inverse Problem As the Problem of Finding the Inverse Transformation: Ideal Case When
Measurement Errors Can be Ignored

We assume that we know the form of the dependence y = G(x1, . . . , xn, c1, . . . , cm) between the
quantities xi and y; the only unknowns are the parameters c1, . . . , cm. We want to find the values of
these parameters ci based on the measurement results.

In the idealized case when we can ignore the measurement uncertainty, the measured values x(k)i and
y(k) coincide with the actual values of the corresponding quantities. Thus, based on each measurement
k, we can conclude that y(k) = G(x

(k)
1 , . . . , x

(k)
n , c1, . . . , cm). So, each measurement leads to an equation

that with m unknowns c1, . . . , cm.
In general, we need m equations to find m unknowns. Thus, in this idealized case, it is sufficient

to perform m measurements, and then determine the desired values c1, . . . , cm from the corresponding
systems of m equations with n unknowns c1, . . . , cm:

y(1) = G(x
(1)
1 , . . . , x(1)n , c1, . . . , cm);

. . .

y(m) = G(x
(m)
1 , . . . , x(m)

n , c1, . . . , cm).

The dependence y = G(x1, . . . , xn, c1, . . . , cm) is often highly non-linear; so, to find the desired
values ci, we need to solve a system of nonlinear equations. Such systems are often difficult to solve
(in precise terms, the problem of solving a system of non-linear equations is known to be NP-hard; see,
e.g., [4,5]).

Once the measurements of the quantities x(k)i have been performed, the problem of solving the above
system of equations can be equivalently reformulated as follows:
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• we have a transformation f : IRm → IRm which maps an m-dimensional tuple c = (c1, . . . , cm)

into an m-dimensional tuple y = f(c) with components y = (y1, . . . , ym) which are determined
by the formula yk = G(x

(k)
1 , . . . , x

(k)
n , c1, . . . , cm);

• we know the measured values ymeas =
(
y(1), . . . , y(m)

)
;

• we want to find the tuple c for which f(c) = ymeas.

One way to solve this system is to find the inverse transformation f−1, and then to apply this inverse
transformation to the tuple ymeas consisting of the measured values of the quantity y, resulting in the
desired tuple c = f−1(ymeas).

1.6. Inverse Problem: General Case

So far, we have considered the ideal case, when the measurement errors are so small that they can be
safely ignored. In most practical situations, measurement errors must be taken into account. Because of
the measurement errors, the measurements results ỹ(k) and x̃(k)i are, in general, different from the actual
(unknown) values y(k) and x(k)i of the corresponding quantities: ỹ(k) = y(k)+∆yk and x̃(k)i = x

(k)
i +∆xki,

where ∆yk
def
= ỹ(k) − y(k) and ∆xki

def
= x̃

(k)
i − x

(k)
i are the corresponding measurement errors.

The formula y(k) = G(x
(k)
1 , . . . , x

(k)
n , c1, . . . , cm) relates the actual (unknown) values of the

corresponding quantities. To determine the coefficients ci from the observed values ỹ(k) and
x̃
(k)
i , we need to describe this formula in terms of the measurement results ỹ(k) and x̃

(k)
i .

Substituting y(k) = ỹ(k) − ∆yk and x
(k)
i = x̃

(k)
i − ∆xki into this formula, we conclude that

ỹ(k) −∆yk = G(x̃
(k)
1 −∆xk1, . . . , x̃

(k)
n −∆xkn, c1, . . . , cm).

Usually, the measurement errors ∆yk and ∆xki are relatively small, so we can expand the above
expression in Taylor series and ignore terms which are quadratic (or of higher order) in terms of
these measurement errors. Thus, we conclude that ỹ(k) = G(x̃

(k)
1 , . . . , x̃

(k)
n , c1, . . . , cm) + ∆k, where

∆k
def
= ∆yk −

n∑
i=1

hki ·∆xki and hki
def
=

∂G

∂xi
.

In many practical situations, measurement errors ∆yk and ∆xki are independent and normally
distributed, with zero mean and known variances σ2

k and σ2
ki; see, e.g., [6]. In this case, the values

∆k are also normally distributed with zero mean and variances Vk = σ2
k +

n∑
i=1

h2ki · σ2
ki. Thus,

according to the Maximum Likelihood Method, the best estimate for the parameters ci is the one
that comes from the Least Squares method and minimizes the sum S(ỹ(1), . . . , x̃

(1)
1 , . . . , c1, . . . , cm)

def
=

K∑
k=1

(
ỹ(k) −G(x̃

(k)
1 , . . . , x̃

(k)
n , c1, . . . , cm)

)2
Vk

; see, e.g., [7].

In the general case, when the probability distributions of measurement errors may be different from
normal, the Maximum Likelihood method may lead to the minimization of a different functional S.
The corresponding values ci can be found from the fact that when S attains its minimum, we have

Di(ỹ
(1), . . . , x̃

(1)
1 , . . . , c1, . . . , cm) = 0, where Di

def
=
∂S

∂ci
.

In the absence of measurement errors, the measurement results coincide with the actual values, and
thus, the solution ci to the system of equations Di = 0 coincides with the no-noise solution c(0)i to the
system of m equations ỹ(k) = G(x̃

(k)
1 , . . . , x̃

(k)
n , c1, . . . , cn), 1 ≤ k ≤ m. Since the measurement errors

are small, the measurement results ỹ(k) and x̃(k)i are close to the actual values y(k) and x(k)i , and thus,
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the solution ci to the system is close to the non-noise solution c
(0)
i , i.e., ci = c

(0)
i + ∆ci, where the

differences ∆ci are small. Substituting the expressions ci = c
(0)
i + ∆ci into the formula for Di, we

get Di(c
(0)
1 + ∆c1, . . . , c

(0)
m + ∆cm) = 0. Expanding Di in Taylor series and ignoring terms which are

quadratic or higher order in ∆ci, we get a system of linear equationsDi(c
(0)
1 , . . . , c

(0)
m )+

m∑
i=1

dij ·∆cj = 0,

where dij
def
=
∂Di

∂cj
. Solving systems of linear equations is computationally feasible and efficient.

Thus, once we know how to efficiently solve the inverse problem in the idealized no-noise case, we
can also efficiently extend the corresponding algorithm to the general noisy case:

• first, we solve the non-noise system ỹ(k) = G(x̃
(k)
1 , . . . , x̃

(k)
n , c1, . . . , cn), 1 ≤ k ≤ m, and get the

approximate values c(0)i ;

• then, we find the differences ∆ci by solving the above system of linear equations

Di(c
(0)
1 , . . . , c

(0)
m ) +

m∑
i=1

dij ·∆cj = 0; and

• finally, we compute ci = c
(0)
i + ∆ci.

In other words, the main computational complexity of solving the inverse problem occurs already in
the non-noise case: once this case is solved, the general solution is straightforward. Because of this
fact, in this paper, we concentrate on solving the no-noise problem—keeping in mind that the above
linearization procedure enables us to readily extend the no-noise solution to the general case.

1.7. Often, Computations Can be Simplified if We Represent the to-be-Inverted Transformation f As
a Composition

In many practical situations, we can make computations easier if, instead of directly solving a complex
inverse problem, we represent it as a sequence of easier-to-solve problems.

For example, everyone knows how to solve a quadratic equation a ·x2 + b ·x+c = 0. This knowledge
can be effectively used if we need to solve a more complex equation a · x4 + b · x2 + c = 0. For that, we
represent a · x4 + b · x2 + c as a · y2 + b · y + c, where y = x2. Then:

• first, we solve the equation a · y2 + b · y + c and find y;

• next, we solve an equation x2 = y with this y and find the desired value x.

In general, if we represent a transformation f as a composition f = f1 ◦ . . .◦fn of transformations fi,
then the inverse transformation f−1 can be represented as f−1n ◦ . . . ◦ f−11 . Thus, if we can represent the
original difficult-to-invert transformation f as a composition of several easier-to-invert transformations
fi, this will simplify the inversion of f .

1.8. Conclusion: Transformations (and Transformation Groups) Can Help in Scientific Computations

In transformation terms, solving an inverse problem means finding the inverse transformation,
and simplification of this process means using compositions—and a possibility to invert each of the
composed transformations. For this idea to work, the corresponding class of transformations should be
closed under composition and inverse, i.e., it should form a transformation group.
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In a transformation group, the multiplication of two transformations f and g is their composition f ◦g,
and the inverse element to a transformation f is the inverse transformation f−1.

1.9. How Symmetries and Groups Can Help in Scientific Computations: General Idea Summarized

The inverse problem of scientific computations—the problem of estimating the parameters of
the model which are the best fit for the data—is often computationally difficult to solve. From
the mathematical viewpoint, this problem can be reduced to finding the inverse f−1 to a given
transformation. The computation of this inverse can be simplified if we represent f as a composition
of easier-to-invert transformations f = f1 ◦ . . .◦fN ; then, we can compute f−1 as f−1 = f−1N ◦ . . .◦f

−1
1 .

2. How To Use Symmetries (and Groups) in General Scientific Computations: General Idea

2.1. Main Idea: Reminder

An inverse problem of interval computations consists of finding an inverse f−1 to a given
transformation f . This inverse is sometimes difficult to compute. To simplify computation of f−1,
we try to represent f as a composition of easier-to-invert transformations fi.

2.2. Which Transformations Are the Easiest-to-Invert

Which transformations are easier to invert? Inverting a transformation f : IRm → IRm means solving
a system of m equations fk(c1, . . . , cm) = y(k) with m unknowns c1, . . . , cm.

The simplest case is when we have a system of linear equations. In this case, there are well-known
feasible algorithms for solving this system (i.e., for inverting the corresponding linear transformation).
It would be nice if we could always only use linear transformations, but alas, a composition of linear
transformations is always linear. So, to represent general non-linear transformations, we need to also
consider some systems of non-linear equations.

For nonlinear systems, in general, the fewer unknowns we have, the easier it is to solve the system.
Thus, the easiest-to-solve system of non-linear equations is the system consisting of a single nonlinear
equation with one unknown.

2.3. Resulting Approach to Scientific Computing

We would like to represent an arbitrary transformation f as a composition of linear transformations
and functions of one variable.

2.4. The Corresponding Representation is Always Possible

We are interested in transformations
f : IRm → IRm

which can be obtained as multiple compositions of:
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• (reversible) linear transformation and

• transformations of the type (x1, . . . , xn) → (f1(x1), . . . , fm(xm)) which consist of applying
(reversible) smooth (differentiable) functions of one variable to the components of the input tuple.

One can easily check that such transformations form a group G: namely, it is a transformation group
generated by the union of two smaller transformation groups—the group of linear transformations and
the group of component-wise transformations.

To analyze which transformations can be approximated by compositions from this group, let us
consider its closure G (in some reasonable sense as described, e.g., in [8–10]). This closure also forms a
group. It is known (see, e.g., [8–10]) that if a group of smooth (differentiable) transformations is closed
(in some reasonable sense) and contains all invertible linear transformations, then it coincides either with
the group of all linear transformations, or with the group of all projective transformations, or with the
group of all smooth transformations. Since some transformations (x1, . . . , xn)→ (f1(x1), . . . , fm(xm))

from the group G are not linear and not projective (in 1-D case, this means not fractionally linear), we
thus conclude that the closure G coincides with the group of all invertible smooth transformations.

By definition of the closure, this means that any differentiable transformation f : IRm → IRm can be
approximated, with any given accuracy, by a transformation from the group G, i.e., by a composition of
linear and component-wise transformation. Since in practice, we only know the values and dependencies
with certain accuracy anyway, this means that, from the practical viewpoint, any transformation can be
represented as a composition of linear and component-wise transformations.

2.5. Comments

• The same arguments show that we can still approximate a general transformation if, instead of
generic non-linear functions fi(xi), we allow only one specific not-fractionally-linear function,

e.g., the sigmoid function s0(x) =
1

1 + exp(−x)
; see, e.g., [9,11,12].

• Linear and component-wise transformations are not only computationally convenient: from the
physical viewpoint, they can be viewed as symmetries in the sense that they preserve some
structure of the original system. For example, for polynomial systems, linear transformations
preserve the order of the polynomial: after such a transformation, quadratic systems remain
quadratic, and cubic systems remain cubic. In their turn, component-wise transformations preserve

independence: e.g., dynamical systems
dxi
dt

= hi(xi) which describe n independent subsystems
retain the same independence structure after component-wise transformations xi → x′i = fi(xi).

2.6. Once We Know the Corresponding Representation, We Can Solve the Inverse Problem

Our objective is to find the tuple of the parameters c = (c1, . . . , cm) by solving a system of non-linear
equations f(c) = ymeas. Our idea is to find the inverse transformation f−1 and then to compute c as
c = f−1(ymeas).
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Once we know how to represent the transformation f as a composition f = f1 ◦ . . . ◦ fN of
easy-to-invert linear and component-wise transformations f1, . . . , fN , then we have f−1 = f−1N ◦. . .◦f

−1
1 .

Thus, we can efficiently compute c = f−1(ymeas) as

c = f−1N (f−1N−1(. . . f
−1
1 (ymeas) . . .)),

i.e., by starting with the tuple ymeas and by sequentially applying easy-to-compute transformations f−11 ,
f−12 , . . . , f−1N .

2.7. To Make This Idea Practically Useful, We Need to be Able to Represent a Generic Transformation
As a Desired Composition

For this method to be useful, we need to be able to represent a general non-linear transformation
f : IRm → IRm as a composition of linear and component-wise transformations.

In some cases, the desired representation can be obtained analytically, by analyzing a specific
expression for the transformation f . One of such cases is described in the next section.

To obtain such a representation in the general case, we can use the fact that the desired compositions

f(x) = f1 ◦ f2 · . . . ◦ fN−1(x) ◦ fN(x) = f1(f2(. . . (fN−1(fN(x))) . . .))

correspond to computations by multi-layer neural networks. Namely:

• we start with the input layer, in which we input m values x1, . . . , xm;

• in the first processing layer, we apply the transformation fN to the inputs x and get m intermediate
results – components of the tuple fN(x);

• in the second processing layer, we apply the transformation fN−1 to the results fN(x) of the first
layer and thus, get the tuple fN−1(fN(x));

• . . .

• finally, at the last (N -th) processing layer, we apply the transformation f1 to the results
f2(. . . (fN(x)) . . .) of the previous processing layer, and thus, get the desired tuple

f(x) = f1(f2(. . . (fN(x)) . . .)).

A general linear transformation has the form yk =
m∑
i=1

wik · xi−wk0; the corresponding layer consists

of m linear neurons each of which takes, as inputs, all the signals from the previous layer and compute

the corresponding value
m∑
i=1

wik · xi −wk0. Similarly, a non-linear transformation yi = fi(xi) consists of

m non-linear neurons each of which take only one input xi and transforms it into the value fi(xi).
This is a usual arrangement of neural networks. For example, in one of the most widely used 3-layer

neural network with K hidden neurons:

• we first compute K linear combinations of the inputs yk =
m∑
i=1

wki · ci − wk0;

• then, we apply, to each value yk, a function s0(y) of one variable s0(y), resulting in zk = s0(yk);

usually, a sigmoid function s0(y) =
1

1 + exp(−y)
is used;
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• finally, we compute a linear combination y =
K∑
k=1

Wk · zk −W0.

(It is worth mentioning that a similar universal approximation result is known for neural networks:
we can approximate an arbitrary continuous transformation (with any given accuracy) by an appropriate
3-layer neural network, i.e., as a composition of linear transformations and functions of one variable;
see, e.g., [9,11,12].)

Neural networks are widely used in practice; one of the main reasons for their practical usefulness is
that an efficient backpropagation algorithm is known for their training, i.e., for computing the weights
wki and Wi for which the neural network represent the given dependence y = F (x), i.e., for which,
for given inputs x, we get the desired output y = F (x); see, e.g., [11]. Since a general representation
of a transformation f(c) as a composition of linear and component-wise functions is equivalent to its
representation by the corresponding multi-linear neural network, we can use the general backpropagation
algorithm to find the coefficients of the corresponding neurons and thus, to find a representation of the
original non-linear transformation f(c) as the composition of linear and component-wise functions; see,
e.g., [9,11,12].

As we have mentioned, once such a representation is found, we can invert each of the components and
thus, easily compute c = f−1(ymeas), i.e., solve the inverse problem in the non-noise case. As described
earlier, we can then use linearization to transform this idealized no-noise solution into a solution which
takes into account noise (=measurement errors).

3. Case Study: Finding Reaction Parameters of Multiple Binding Sites

3.1. Case Study: Description

The general description of the above methodology is rather complicated. However, in some specific
computational problems, it is possible to directly find the desired decomposition into linear and
component-wise functions—which makes the application of the above ideas much simpler.

Let us show that such a simpler application is possible for a specific important problem of chemical
computations: the problem of finding reaction parameters of multiple binding sites.

When there is a single binding site at which a ligand L can bind to a receptor R, the corresponding
chemical kinetic equations L + R → LR and LR → L + R with intensities k+ and k− lead to the
following equilibrium equation for the corresponding concentrations [L], [R], and [LR]:

k+ · [L] · [R] = k− · [LR].

From this, we get
[R]

[LR]
=
kd
[L]

, where we denoted kd
def
=
k−

k+
. Thus,

[R] + [LR]

[LR]
= 1 +

kd
[L]

=
kd + [L]

[L]
.

Hence, the bound proportion of the receptor B def
=

[LR]

[R] + [LR]
depends on the concentration [L] of the

ligand as

B =
[L]

kd + [L]
.
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The presence of the bound ligands can be experimentally detected by the dimming of the fluorescence.
The original intensity of the fluorescence is proportional to the original concentration [R](0) of the
receptor; since some of the receptor molecules got bound, this original concentration is equal to
[R](0) = [R] + [LR]. The dimming is proportional to the concentration [LR] of the bound receptor.
Thus, the relative decrease in the fluorescence intensity is proportional to the ratio B.

Let us now consider the case of several (S) binding sites. Each binding site can be bound by one
ligand molecule. Let us denote the ligand molecule bound to the s-th site by L(s). In these terms, for
example, the molecule in which two ligands are bound to the first and the third sites will be denoted
by L(1)L(3)R. For each binding site s, we have reactions L + R → L(s)R and L(s)R → L + R with
intensities k+s and k−s . We assume that the reactions at different binding sites are independent, so that
the the intensities with which the ligand attached to the s-th site does not depend on whether other
binding sites are bound or not. For example, for s′ 6= s, the reactions L + L(s′)R → L(s)L(s′)R and
L(s)L(s′)R → L + L(s′)R have the same intensities k+s and k−s which do not depend on s′. Because of
this independence, we can summarize all the reactions in which a ligand is added to or deleted from the
s-th binding site into two reactions: R−s + L → R+s with intensity k+s and a reaction R+s → L + R−s

with intensity k−s , where R−s is the total concentration of all the receptor molecules for which the s-th
binding site is free, and R+s is the total concentration of all the receptor molecules for which there is a
ligand bound to the s-th binding site.

These summarized reactions lead to the following equilibrium equation for the corresponding
concentrations [L], [R−s], and [R−s]:

k+ · [L] · [R−s] = k− · [R+s].

From this, we get
[R−s]

[R+s]
=
kds
[L]

, where we denoted kds
def
=
k−s
k+s

. Thus,

[R−s] + [R+s]

[R+s]
= 1 +

kd
[L]

=
kd + [L]

[L]
,

and hence,
[R+s]

[R−s] + [R+s]
=

[L]

kds + [L]
.

Similarly to the case of the single binding site, the presence of bound ligands dims the fluorescence.
Let ws be the dimming (per unit concentration) caused by the presence of the ligand at the s-th site. The
total dimming Ds caused by all the molecules at which the ligand is bound of the s-th site is thus equal
to Ds = ws · [R+s]. Since the different binding sites are independent, it is reasonable to assume that the
dimmings corresponding to different binding sites simply add up. Thus, the overall dimming D is equal
to the sum of the dimmings Ds corresponding to different binding sites s, i.e., to

D =
S∑

s=1

Ds =
S∑

s=1

ws · [R+s].
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The original intensity of the fluorescence I is proportional to the original concentration [R](0) of the
receptor: I = k · [R](0), where for every s, we have [R](0) = [R−s] + [R+s]. Thus, the relative dimming

B
def
=
D

I
takes the form

B =
D

I
=

S∑
s=1

ws · [R+s]

k · [R](0)
=

S∑
s=1

ws · [R+s]

k · [R](0)
=

S∑
s=1

ws

k
· [R+s]

[R−s] + [R+s]
.

Substituting the above expression for the ratio
[R+s]

[R−s] + [R+s]
into this formula, we conclude that

B =
S∑

s=1

ws

k
· [L]

kds + [L]
,

i.e.,

B =
S∑

s=1

rs · [L]

kds + [L]
(1)

where we denoted rs
def
=
ws

k
.

3.2. Inverse Problem Corresponding to the Case Study

The problem is to find the values rs and kds from the observations. In other words, we observe the
bound proportions y(k) for different ligand concentrations [L] = x(k), and we want to find the values rs
and kds for which

y(k) =
S∑

s=1

rs · x(k)

kds + x(k)
(2)

3.3. How to Use Group-Theoretic Ideas to Simplify the Corresponding Computations: Analysis of
the Problem

The system (2) is a difficult-to-solve system of nonlinear equations with 2S unknowns. To simplify
the solution of this system, let us represent its solution as a composition of linear transformations and
functions of one variable.

By adding all S fractions
rs · x
kds + x

, we get a ratio of two polynomials
P (x)

Q(x)
. Here, Q(x) is the product

of all S denominators x+ kds, and is, thus, a S-th order polynomial with the leading term xS:

Q(x) = xS + qS−1 · xS−1 + . . .+ q1 · x+ q0 (3)

Similarly, since P (x) is divisible by x, we get P (x) = pS · xS + pS−1 · xS−1 + . . .+ p1 · x.

The equations y(k) =
P (x(k))

Q(x(k))
can be equivalently represented as y(k) ·Q(x(k)) = P (x(k)), i.e., as

y(k) · (x(k))S + qS−1 · y(k) · (x(k))S−1 + . . .+ q1 · y(k) · x(k) + q0 · y(k) =

pS · (x(k))S + pS−1 · (x(k))S−1 + . . .+ p1 · x(k) (4)
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This is a system of linear equations with 2S unknowns pi and qi. Solving this system of linear
equations is relatively easy.

Once we solve this linear system and find the values qi, we can find the parameters kds from the
condition that for x = −kds, we have x + kds = 0 and thus, the product Q(x) of all such terms is equal
to 0. The equation Q(−kds) = 0 is a nonlinear equation with one unknown, i.e., exactly the type of
nonlinear equation that we want to solve.

Finally, once we find all the values kds, the Equation (2) becomes a linear system of equations for the
remaining unknowns rs.

Thus, the decomposition of the original difficult-to-invert transformation into a composition of
easier-to-invert transformations (linear transformations and functions of one variable) leads to the
following algorithm for computing the parameters of multiple binding sites.

3.4. Inverse Problem Corresponding to the Case Study: Resulting Algorithm

We start with the values y(k) of the bound proportion corresponding to different ligand concentrations
x(k). Our objective is to find the parameters rs and kds of different binding sites s = 1, . . . , S. To
compute these parameters, we do the following:

• first, we solve the linear system (4) with 2S unknowns pi and qi;

• we then use the computed values qi to form the polynomial (3) and to solve the equation
Q(−x) = 0 with one unknown x; as a result, we get 2S solutions kds;

• we then substitute the resulting values kds into the formula (1) and solve the resulting system of S
linear equations with S unknowns rs.

3.5. Comment

Our numerical experiments confirmed the computational efficiency of the new algorithm.

4. Conclusions

Geometric symmetries has been effectively used to simply scientific computations, in particular,
computations related to chemical problems. In this paper, we show that non-geometric “symmetries”
(transformations) can also be very helpful in scientific computations. Specifically, we show
that the inverse problem—the problem of finding the parameters of the model based on the
measurement results—can be solved by computing the inverse to a transformation describing the forward
problem—the problem of predicting the measurement results based on the known values of the model’s
parameters. In general, the computation of such an inverse (i.e., solving the corresponding system
of non-linear equations) is a complex computational problem. This computation can be simplified if
we can represent the to-be-inverted forward transformation as a composition of several easier-to-invert
transformations, e.g., linear and component-wise transformations. In some cases, such a representation
can be obtained by analyzing the original transformation; such a case related to computing parameters
of multiple binding sites is described in the paper. In general, to find such a composition, we can use
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the fact that the desired representation means that the to-be-inverted transformation is computed by an
appropriate multi-layer neural network; then, the backpropagation algorithm (typical for training neural
networks) can be used to compute the corresponding representation.
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