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Abstract: In this paper, we investigate into the numerical and analytical relationship
between the dynamically generated quadrature squeezing and entanglement within a coupled
harmonic oscillator system. The dynamical relation between these two quantum features is
observed to vary monotically, such that an enhancement in entanglement is attained at a fixed
squeezing for a larger coupling constant. Surprisingly, the maximum attainable values of
these two quantum entities are found to consistently equal to the squeezing and entanglement
of the system ground state. In addition, we demonstrate that the inclusion of a small
anharmonic perturbation has the effect of modifying the squeezing versus entanglement
relation into a nonunique form and also extending the maximum squeezing to a value beyond
the system ground state.
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1. Introduction

Entanglement is a fundamental resource for non-classical tasks in the field of quantum
information [1]. It has been shown to improve communication and computation capabilities via the
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notion of quantum dense coding [2], quantum teleportation [3], unconditionally secured quantum
cryptographic protocols [4,5], and quantum algorithms for integer factorization [6]. For any quantum
algorithm operating on pure states, it has been proven that the presence of multi-partite entanglement is
necessary if the quantum algorithm is to offer an exponential speed-up over classical computation [7].
Note, however, that a non-zero value of entanglement might not be the necessary condition for quantum
computational speed up of algorithm operating on mixed states [8]. In addition, in order to achieve these
goals practically, it is necessary to maintain the entanglement within the quantum states which are fragile
against the decohering environment. An approach would be to employ an entangled state with as large
an entanglement as possible, and the idea is that the production of such entangled state could be tuned
through the operation of quantum squeezing.

Indeed, the relation between quantum squeezing and quantum entanglement has been actively
pursued in recent years [9–18]. Notably, the creation of entanglement is shown experimentally to
be able to induce spin squeezing [9,10]. Such entanglement-induced squeezing has the important
outcome of producing measuring instruments that go beyond the precision of current models. In
addition, quantum squeezing is found to be able to induce, enhance and even preserve entanglement in
decohering environments [11–13]. Previously, we have investigated the relation between the squeezing
and entanglement of the ground state of the coupled harmonic oscillator system [16,17]. The ground state
entanglement entropy was found to increase monotonically with an increase in quadrature squeezing
within this system. When a small anharmonic perturbing potential is added to the system, a further
enhancement in quadrature squeezing is observed. While the entropy-squeezing curve shifts to the right
in this case, we realized that the entanglement entropy is still a monotonically increasing function in
terms of quadrature squeezing.

In this paper, we have extended our earlier work discussed above by investigating into the dynamical
relation between quadrature squeezing and entanglement entropy of the coupled harmonic oscillator
system. Coupled harmonic oscillator system has served as useful paradigm for many physical systems,
such as the field modes of electromagnetic radiation [19–21], the vibrations in molecular systems [22],
and the formulation of the Lee model in quantum field theory [23]. It was shown that the coupled
harmonic oscillator system possesses the symmetry of the Lorentz group O(3, 3) or SL(4, r) classically,
and that of the symmetry O(3, 2) or Sp(4) quantum mechanically [24]. In addition, the physics of
coupled harmonic oscillator system can be conveniently represented by the mathematics of two-by-two
matrices, which have played a role in clarifying the physical basis of entanglement [25]. In Section 2 of
this paper, we first described the coupled harmonic oscillator model. It is then followed by a discussion
on the relation between the dynamically generated squeezing and entanglement of the coupled oscillator
systems, which we have determined quantitatively via numerical computation. In Section 3 of the paper,
we present analytical results in support of the numerical results obtained in Section 2. Here, we illustrate
how the problem can be solved in terms of two-by-two matrices. Then, in Section 4 of the paper, we
study how the inclusion of anharmonicity can influence the relation between the dynamically generated
squeezing and entanglement. Finally, we give our conclusion in Section 5 of the paper.
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2. Dynamical Relation of Quantum Squeezing and Entanglement in Coupled Harmonic
Oscillator System

The Hamiltonian of the coupled harmonic oscillator system is described as follow:

H =
p21
2m1

+
1

2
m1ω

2
1x

2
1 +

p22
2m2

+
1

2
m2ω

2
2x

2
2 + λ(x2 − x1)

2 (1)

where x1 and x2 are the position co-ordinates, while p1 and p2 are the momenta of the oscillators. The
interaction potential between the two oscillators is assumed to depend quadratically on the distance
between the oscillators, and is proportional to the coupling constant λ. For simplicity, we have set
m1 = m2 = m and ω1 = ω2 = ω. This Hamiltonian is commonly used to model physical systems such
as the vibrating molecules or the squeezed modes of electromagnetic field. In fact, the model has been
widely explored [26–28] and is commonly used to elucidate the properties of quantum entanglement in
continuous variable systems [29–35].

Next, let us discuss on the relation between the squeezing and entanglement of the lowest energy
eigenstate of this coupled harmonic oscillator system. Note that

H |g⟩ = E0 |g⟩ (2)

with |g⟩ being the ground state and E0 being the lowest eigen-energy of the coupled oscillator system
with Hamiltonian given by Equation (1). Entanglement between the two oscillators can be quantified by
the von Neumann entropy:

SvN = −Tr [ρl ln ρl] (3)

where ρl is the reduced density matrix. For squeezing parameter, we shall adopt the dimensionless
definition:

Sx = − ln
σx1

σ
(0)
x1

(4)

with σx1 =
√
⟨x2

1⟩ − ⟨x1⟩2 being the uncertainty associated with the first oscillator’s position and the
normalization constant σ(0)

x1 =
√
h̄/2mω being the uncertainty associated with the harmonic oscillator’s

position. For simplicity, we shall evaluate only the position squeezing in the first oscillator.
Indeed, the position uncertainty squeezing and the entanglement entropy of the ground state of this

oscillator have been solved analytically by previous studies [36,37] as follows:

Sx = − ln

√
h̄

2mω
1+γ
2√

h̄
2mω

= − ln

√
1 + γ

2
(5)

where γ = 1/
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1 + 4λ/mω2; and
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As shown in Reference [17], by eliminating γ between Equations (5) and (6), the relation between
the squeezing parameter and the von Neumann entropy of the ground state of the coupled harmonic
oscillators is obtained as follow:

SvN =
(ξ + 1)2

4ξ
ln

(
(ξ + 1)2

4ξ

)
− (ξ − 1)2

4ξ
ln

(
(ξ − 1)2

4ξ

)
(7)



Symmetry 2014, 6 298

with
ξ =

√
2e−2Sx − 1 (8)

This relation is shown as a solid line in Figure 1.

Figure 1. A plot on the dynamical relation between entanglement and squeezing
obtained numerically for coupled harmonic oscillator system with the coupling constant
λ = 0.75 (squares), 2 (triangles), 3.75 (circles) and 6 (crosses). Note that the ground
state entanglement-squeezing curve given by Equation (7) is plotted as a solid curve for
comparison. In addition, the values of the maximum attainable squeezing and entanglement
for various λ have been plotted as stars.
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In this paper, we have gone beyond the static relation between squeezing and entanglement based on
the stationary ground state. In particular, we have explored numerically into the dynamical generation
of squeezing and entanglement via the quantum time evolution, with the initial state being the tensor
product of the vacuum states (|0, 0⟩) of the oscillators. Note that the obtained results hold true for any
initial coherent states (|α1, α2⟩) since the entanglement dynamics of the coupled harmonic oscillator
system is independent of initial states [38]. In general, the system dynamics is either two-frequency
periodic or quasi-periodic depending on whether the ratio of the two frequencies, f1 = 1 and
f2 =

√
1 + 4λ, are rational or irrational. By yielding the values of the squeezing parameter and the

entanglement entropy at the same time point within their respective dynamical evolution, we obtained
the dynamical relations between the squeezing and entanglement for different coupling constants
λ = 0.75, 2, 3.75 and 6, as shown in Figure 1. Interestingly, the results show a smooth monotonic
increase of the dynamically generated entanglement entropy as the quadrature squeezing increases for
each λ. In addition, the dynamically generated entanglement entropy is observed to be larger for a fixed
squeezing as λ increases. It is surprising that the maximum attainable values of these two quantum
entities determined dynamically are found to fall consistently on the system ground states’ squeezing
and entanglement relation as given by Equations (7) and (8) for all values of λ. More importantly, this
relation also serve as a bound to the entanglement entropy and squeezing that are generated dynamically.
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3. Analytical Derivation on the Dynamical Relation between Quantum Squeezing
and Entanglement

In this section, we shall perform an analytical study on the dynamical relationship between quantum
squeezing and the associated entanglement production. We first yield the second quantized form of the
Hamiltonian of the coupled harmonic oscillator system as follow:

H = a†1a1 + a†2a2 + 1 +
λ

2
{(a†1 + a1)− (a†2 + a2)}2 (9)

Then, the time evolution of the annihilation operator aj (as well as the creation operator a†j) can be
determined according to the following Heisenberg equation of motion:

d

dt
aj =

1

i
[aj, H] (10)

From this, we obtain:
d

dt
ã = Aã (11)

with ã = (a1 a
†
1 a2 a

†
2)

T and
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)
(12)

Note that

B = i

(
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)
(13)

and

C = i

(
λ λ

−λ −λ

)
(14)

Due to the symmetry in the coupled oscillator system, the matrix A is symmetric in the form of a
two-by-two matrix although it is not symmetric in its full four-by-four matrix form. This symmetric
property enables a simple evaluation of the time dependent annihilation and creation operators of
the oscillators:

ã(t) = F ã(0) (15)

where
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and

K =

(
1 β

β 1

)
(20)

with Ω = f2 =
√
1 + 4λ and β = (1 + Ω)/(1− Ω). We then have:
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where

η1 =
(1− Ω)2

8Ω
eiΩt
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(1 + Ω)2

8Ω
e−iΩt

η3 =
i(1− Ω)(1 + Ω)
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With these results, we are now ready to determine the analytical expressions of both the quantum
entanglement and squeezing against time. For entanglement, we shall employ the criterion developed
by Duan et al. [39] for quantification since it leads to simplification of the analytical expression while
remaining valid as a measure of entanglement in coupled harmonic oscillator systems. According to this
criterion, as long as

SD = 2− (∆u)2 − (∆v)2 > 0 (25)

the state of the quantum system is entangled. Note that u = x1 + x2 and v = p1 − p2 are two EPR-type
operators, whereas ∆u and ∆v are the corresponding quantum fluctuation. This allows us to express the
entanglement measure SD as follow:

SD(t) = 2(⟨a†1a1⟩ − ⟨a†1⟩⟨a1⟩+ ⟨a†2a2⟩ − ⟨a†2⟩⟨a2⟩+
⟨a†1a

†
2⟩ − ⟨a†1⟩⟨a

†
2⟩+ ⟨a1a2⟩ − ⟨a1⟩⟨a2⟩) (26)

Note that the short form ⟨O⟩ used in Equation (26) implies ⟨α1, α2|O(t)|α1, α2⟩, where |α1, α2⟩
represents a tensor product of arbitrary initial coherent states. Recall that the subsequent results are
indepedent of the initial states as mentioned in the last section. After substituting Equations (21)–(24)
into Equation (26), we obtain the analytical expression of entanglement against time:

SD(t) = (Ω2 − 1) sin2Ωt (27)
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In coupled harmonic oscillator systems, SD has a unique monotonic relation with SvN (see Figure 2).
For squeezing, we have

Sx(t) = − ln

√
⟨x2

1⟩ − ⟨x1⟩2
0.5

= − ln

√
⟨a†21 ⟩ − ⟨a†1⟩2 + ⟨a21⟩ − ⟨a1⟩2 + ⟨a†1a1⟩ − ⟨a†1⟩⟨a1⟩+ ⟨a1a†1⟩ − ⟨a1⟩⟨a†1⟩

(28)

Then, by substituting Equations (21)–(24) into Equation (28) as before, we obtain the analytical
expression of squeezing against time:

Sx(t) = − ln

√
1− Ω2 − 1

2Ω2
sin2 Ωt (29)

We can also obtain an analytical expression between SD and Sx by substituting Equation (27) into
Equation (29) with some rearrangement:

SD = 2Ω2 (1− e−2Sx) (30)

It is important to note that Sx can only span a range of values 0 ≤ Sx ≤ S
(m)
x , where

S
(m)
x = − ln

√
(Ω2 + 1)/2Ω2. Furthermore, for a coupled harmonic oscillator system with a fixed value

of λ, the dynamically generated squeezing can be higher than the squeezing in the system’s ground state.
The analytical result given by Equation (30) is plotted in Figure 3 for λ = 0.75, 2, 3.75, 6 and 10, with
each curve begins at Sx = 0, SD = 0 and ends at Sx = S

(m)
x , SD = S

(m)
D = Ω2 − 1. In fact, the set

of end points given by Sx = S
(m)
x , SD = S

(m)
D gives rise to the solid curve in Figure 3. Specifically, the

maximum entanglement and the maximum squeezing parameter relates as follow:

S
(m)
D =

1− ξ2

ξ2
(31)

with

ξ =

√
2e−2S

(m)
x − 1 (32)

Note that Equation (32) is the same as Equation (8), and Equation (31) corresponds to the ground state
solid curve of Figure 1. This allows us to deduce the monotonic relation between SD and SvN, which
is performed by evaluating the relation between SD of the maximum entangled state and SvN of the
ground state at equal amount of squeezing. Indeed, the resulting derived relationship shown as solid line
in Figure 2 is valid due to the fact that the link between SD(t) and SvN(t) is found to be expressible by
precisely the same curve. Thus, we have concretely affirmed the one to one correspondence between SD

and SvN through this relationship. More importantly, we have clearly demonstrated that the maximum
entanglement attained dynamically is the same as the degree of entanglement of a ground state with the
same squeezing.
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Figure 2. This plot shows the monotonic relation between SD and SvN in coupled
harmonic oscillator systems. SD(t) and SvN(t) are plotted as squares (λ = 0.75), triangles
(λ = 2), circles (λ = 3.75) and crosses (λ = 6). The relation between the ground state von
Neuman entropy given by SvN = (ξ+1)2

4ξ
ln
(

(ξ+1)2

4ξ

)
− (ξ−1)2

4ξ
ln
(

(ξ−1)2

4ξ

)
and the maximum

dynamically generated entanglement given by S
(m)
D = 1−ξ2

ξ2
is plotted as solid curve. Note

that both SvN and S
(m)
D are functions of the squeezing parameter Sx and ξ =

√
2e−2Sx − 1.

0 0.5 1 1.5
0

5

10

15

20

25

30

35

40

45

S
vN

S
D

Figure 3. A plot on the dynamical relation between entanglement and squeezing given by
Equation (30) for coupled harmonic oscillator system. The relation is dependent on λ and
the curves from top to bottom are with respect to λ = 10, 6, 3.75, 2, and 0.75 respectively.
Note that the thick solid curve represents the values of the maximum attainable squeezing
and entanglement for the range 0 < λ < 10.
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When projected into the x1 − p2 or x2 − p1 plane, the initial coherent state can be represented by
a circular distribution with equal uncertainty in both x and p direction. During the time evolution,
the circular distribution is being rotated and squeezed. As a result, squeezing and entanglement are
generated such that the distribution becomes elliptical in the x1 − p2 or x2 − p1 plane with rotation
of the ellipse’s major axis away from the x- or p-axis which creates entanglement. The generation of
squeezing and entanglement reaches their maximum values at the same time when the major axis of the
elliptical distribution has rotated 45◦ away from the x- or p-axis. Note that at this point, squeezing is
merely in the collective modes. On the other hand, as discussed in Reference [37], the ground state wave
function of the coupled harmonic oscillator system is separable in their collective modes. In both cases,
entanglement and squeezing relates uniquely as given by Equation (7) and (31).

4. Quantum Squeezing and Entanglement in Coupled Anharmonic Oscillator Systems

Next, let us investigate the effect of including an anharmonic potential on the dynamical relation
between squeezing and entanglement through the following Hamiltonian systems:

H =
p21
2m1

+
1

2
m1ω

2
1x

2
1 +

p22
2m2

+
1

2
m2ω

2
2x

2
2 + λ(x2 − x1)

2 + ϵ(x4
1 + x4

2) (33)

For simplicity, we consider only the quartic perturbation potential. For previous studies of entanglement
in coupled harmonic oscillators with quartic perturbation, see Reference [40] and the references therein.
Again, we choose the initial state to be the tensor product of the vacuum states. We then evolve the state
numerically through the Hamiltonian given by Equation (33). For the numerical simulation, we consider
only a small anharmonic perturbation, i.e., ϵ = 0.1 and 0.2. Note that we have truncated the basis size at
M = 85 at which the results are found to converge.

With a small anharmonic perturbation, the dynamically generated entanglement entropy is no longer
a smooth monotonically increasing function of the quadrature squeezing as before (see Figure 4).
This implies that for coupled anharmonic oscillator systems, the dynamically generated degree of
entanglement cannot be characterized through a measurement of the squeezing parameter. In addition,
when the anharmonic potential is included, the maximum attainable squeezing is much enhanced. This
effect is clearly shown in Figure 4, where we observe that the maximum dynamical squeezing extends
far beyond the largest squeezing given by the coupled anharmonic oscillator system’s ground state at
different λ. In addition, as we increase the anharmonic perturbation from 0.1 to 0.2, we found that
the maximum attainable squeezing continues to grow with extension going further beyond the largest
squeezing given by the ground state of the coupled anharmonic oscillator system.
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Figure 4. The effect of anharmonicity (ϵ = 0.1) on the dynamical relation between
quadrature squeezing and entanglement. Note that we have employed the following
parameter: (a) λ = 0.75; (b) λ = 2; (c) λ = 3.75; and (d) λ = 6. We have plotted
the ground state entanglement-squeezing curve of the coupled anharmonic oscillator system
with ϵ = 0.1 as solid curve for comparison.
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Figure 5. The effect of anharmonicity (ϵ = 0.2) on the dynamical relation between
quadrature squeezing and entanglement. Note that we have employed the following
parameter: (a) λ = 0.75, (b) λ = 2, (c) λ = 3.75, and (d) λ = 6. We have plotted
the ground state entanglement-squeezing curve of the coupled anharmonic oscillator system
with ϵ = 0.2 as solid curve for comparison.
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5. Conclusions

We have studied into the dynamical generation of quadrature squeezing and entanglement for both
coupled harmonic and anharmonic oscillator systems. Our numerical and analytical results show
that the quantitative relation that defines the dynamically generated squeezing and entanglement in
coupled harmonic oscillator system is a monotonically increasing function. Such a monotonic relation
vanishes, however, when a small anharmonic potential is added to the system. This result implies the
possibility of characterizing the dynamically generated entanglement by means of squeezing in the
case of coupled harmonic oscillator system. In addition, we have uncovered the unexpected result
that the maximum attainable entanglement and squeezing obtained dynamically matches exactly the
entanglement-squeezing relation of the system’s ground state of the coupled harmonic oscillators. When
an anharmonic potential is included, we found that the dynamically generated squeezing can be further
enhanced. We percieve that this result may provide important insights to the construction of precision
instruments that attempt to beat the quantum noise limit.
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