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Abstract: An innovative classification and back-propagation-network tree (CABPN tree) 

approach is proposed in this study to estimate the cycle time of a job in a wafer fabrication 

factory, which is one of the most important tasks in controlling the wafer fabrication 

factory. The CABPN tree approach is an extension from the traditional classification and 

regression tree (CART) approach. In CART, the cycle times of jobs of the same branch are 

estimated with the same value, which is far from accurate. To tackle this problem, the 

CABPN tree approach replaces the constant estimate with variant estimates. To this end, 

the cycle times of jobs of the same branch are estimated with a BPN, and may be different. 

In this way, the estimation accuracy can be improved. In addition, to determine the optimal 

location of the splitting point on a node, the symmetric partition with incremental re-learning 

(SP-IR) algorithm is proposed and illustrated with an example. The applicability of the 

CABPN tree approach is shown with a real case. The experimental results supported its 

effectiveness over several existing methods.  

Keywords: cycle time; estimation; classification and regression tree; symmetric partitioning; 

back propagation network; wafer fabrication 

 

1. Introduction 

The cycle time (flow time, manufacturing lead time) of a job is the time required for the job to go 

through the factory. Therefore, it is subject to capacity constraints, the factory congestion level, the 

quality of job scheduling, and many other factors. As a result, the cycle time of a job is highly 
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uncertain. Cycle time management activities include cycle time estimation, internal due date 

assignment, job sequencing and scheduling, and cycle time reduction (see Figure 1). In practice, 

shortening the cycle times of jobs is considered an effective way to improve the responsiveness to 

changes in demand [1]. In addition, according to [2], the number of defects per die has a positive 

relationship with the cycle time, which means shortening the cycle time can improve product quality. 

Further, estimating the cycle time of a job helps establish the internal due date for the job. 

Figure 1. Cycle time management activities. 

 

In the literature, various types of methods have been proposed to estimate the cycle time of a job in 

a factory. For example, probability-based statistical methods, such as queuing theory and regression, 

have been proposed. In [3], Kingman’s formula that considers utilization, the coefficient of variation 

of arrival times, and the mean service time was proposed to analyze the cycle time of a job. However, 

that can only be applied to a single process step, and may be ineffective when applied to a whole 

production line [1]. Furthermore, in these studies, some restrictive assumptions were made, such as 

exponential processing time distribution [4]. Recently, Pearn et al. [5] fitted the waiting time of a job 

in a wafer fabrication factory with a Gamma distribution. After adding the waiting time to the release 

time, the cycle time can be derived, which is one of the most important tasks in controlling a wafer 

fabrication factory. However, the fitted distribution quickly became invalid, making some cycle time 

estimates far from accurate [6]. Chen [7] fitted a fuzzy linear regression (FLR) equation to estimate the 

cycle time of a job in a wafer fabrication factory. A precise range of the cycle time was also 

determined. To the same purposes, Chien et al. [8] fitted a nonlinear regression equation instead. 

Chen [6] applied classification and regression tree (CART) to estimate the cycle time of each job in a 

wafer fabrication factory. Principal component analysis (PCA) was also applied to generate 

independent variables from the original ones, which then served as the new inputs to CART. 

The application of artificial neural networks (ANNs) is also a mainstream in this field. For example, 

a self-organization map (SOM) was developed in Chen [9] to classify the jobs in a wafer fabrication 

factory into a number of categories. Chen [10] and Chang and Hsieh [11] have constructed back 

propagation networks (BPNs) (or feed-forward neural networks, FNNs) to estimate the cycle time of a 

job based on the attributes of the job and the current factory conditions. These studies indicated that 

linear methods are incapable of estimating the cycle time of a job, which supported the application of 

nonlinear methods such as ANNs. In addition, to improve the effectiveness of an ANN approach, 

classifying jobs before (or after) estimating the cycle times have been shown to be a viable strategy. To 

this end, several classifiers were applied, such as k-means (kM) [12], fuzzy c-means (FCM) [13], and 

SOM [9,14]. A common feature of these classifiers is that all attributes of a job are considered at the 

same time. In contrast, there are classifiers that consider only some of the job attributes, such as 

CART. The joint use of CART and BPN for estimating the cycle time of a job has rarely been 

discussed in this field.  
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An innovative classification and back-propagation-network tree (CABPN tree) approach is 

proposed in this study to estimate the cycle time of a job in a wafer fabrication factory. The CABPN 

tree approach is an extension from the traditional classification and regression tree (CART) approach. 

The significance of doing so is fourfold: 

(1) In CART, the cycle times of jobs of a branch are estimated with the same value, which is not 

accurate. In the proposed CABPN tree approach, a BPN is constructed for each branch to 

estimate the cycle times of jobs, which is expected to enhance the estimation accuracy; 

(2) Although clusterwise models such as SUPPORT and treed Gaussian process models have been 

used in various fields, they have not been applied to estimating the cycle time of a job in a 

manufacturing system; 

(3) Compared with the existing methods, the proposed CABPN tree approach classifies jobs based 

on fewer job attributes. On one hand, it is easier to implement. On the other hand, it is possible 

to assign more jobs to a branch; 

(4) The existing classifiers in this field, such as kM, FCM, and SOM, classify jobs based on their 

attributes rather than their compatibilities with the estimation mechanism. However, the 

compatibility with the estimation mechanism is important, and may be more influential to the 

estimation performance. In this regard, CART considers the estimation performance in 

classifying jobs, which makes it more suitable for the same purpose. 

In addition, to determine the optimal location of the splitting point on a node, the symmetric 

partition with incremental re-learning (SP-IR) algorithm is proposed. The proposed CABPN tree 

approach is a hybrid approach that fulfills both the classification and regression tasks. Table 1 is used 

to compare the proposed CABPN tree approach with some existing methods. 

Table 1. A comparison of the classification and back-propagation-network (CABPN) tree 

approach and some existing methods. 

Method Classifier Estimation method Easiness to use Accuracy 

BPN [11] – BPN Easy Moderate 
SOM-BPN [14] SOM BPN Moderate High 
Pearn et al. [5] – Gamma Distribution Fitting Easy Low 
SOM-FBPN [9] SOM FBPN Difficult High 
kM-FBPN [12] kM FBPN Difficult High 
PCA-CART [6] PCA-CART CART Easy Moderate 

CABPN tree SP-IR BPN Easy High 

The proposed CABPN tree approach is introduced in Section 2. In addition, the SP-IR algorithm is 

illustrated with a small example. Subsequently, in Section 3, a real case containing the data from a 

wafer fabrication factory was used to evaluate the effectiveness of the proposed methodology. Several 

existing methods in this field have been applied to the same case to make a comparison. The 

advantages and/or disadvantages of each method were discussed. Finally, Section 4 concludes this 

paper and puts forward some directions that can be explored in future studies. 
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2. Methodology 

There are five steps in the proposed methodology: data normalization, cycle time estimation using 

the BPN approach, CABPN tree growing, stopping, and pruning, as illustrated in Figure 2. 

Figure 2. The five steps of the CABPN tree approach. 

 

In the traditional CART approach, the cycle times of jobs assigned to a branch (b) are estimated 

with the same value y(b) that is equal to the average of the historical cycle times: 
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  j  G(b) (1)

where, G(b) represents the set of jobs of branch b; CTj is the cycle time of job j. However, such a 

treatment is far from accurate. For this reason, in this study, a BPN is constructed for each branch to 

estimate the cycle times of jobs assigned to this branch: 

BPN ( )j by  jx  (2)

where, BPNb is the BPN constructed for branch b to estimate the job cycle times. The comparison of 

CART and the proposed methodology is illustrated in Figure 3. In CART, jobs satisfying x1 > Δ1 and 

x3 > Δ3 are classified into the same category. The cycle times of these jobs are estimated with y1. In the 

proposed methodology, jobs satisfying x2 > Δ2 and x5 > Δ5 are classified into the same category. A 

BPN is then constructed to estimate the cycle times of these jobs. Obviously, the conditions 
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established by the proposed methodology are different from those established by CART. The 

differences between CART and the proposed CABPN tree are summarized in Table 2. 

Figure 3. Comparison of (a) classification and regression tree (CART) and (b) the 

proposed methodology. 

(a) (b) 

Table 2. The differences between CART and the proposed methodology. 

Method 
Cycle times of jobs of 

a category 
Tree splitting 

method 
Regression 

type 
Regression 

method 

CART the same Gini, etc. Linear LR 
CABPN tree different the SP-IR algorithm Nonlinear BPN 

2.1. Normalization 

First, the collected data are normalized into [0.1, 0.9]: 

min
( ) 0.8 0.1

max min

x x
N x

x x


  


 (3)

Lemma 1. The normalized value can be converted back to 

( ( ) 0.1)(max min )
( ( )) min

0.8

N x x x
x U N x x

 
    (4)

Conversely, the ranges of the inputs and output of the BPN are set to [0, 1]. In this way, the future 

value may be greater than the historical maximum or less than the historical minimum [9]. 

Theorem 1. Assume max x/min x = ξ. The future value of x, say xf, may be greater than max x by  

(12.5 − 12.5/ξ)% or less than min x by (12.5ξ – 12.5)%. 

Proof. The historical values of x are normalized into [0.1, 0.9]. However, the BPN accepts an input 

between 0 and 1. For this reason, the normalized value of a future value xf according to the historical 

maximum and minimum, N(xf), may be up to 1, 
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To the contrary, N(xf) may be as small as 0, 
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Theorem 1 is proven. 

It is also acceptable to normalize an input into a narrower range, such as [0.2, 0.8] or [0.3, 0.7], to 

allow for a larger or smaller future value. However, the fluctuation in the input will be further 

smoothened in this way; that is not beneficial to fit an exact relationship between the input and 

the output. 

2.2. Estimating the Cycle Times of Jobs Using a BPN 

Subsequently, a BPN is constructed to estimate the cycle times of jobs. The BPN is configured as 

follows. There are K inputs to the BPN including the attributes of a job and the factory conditions 

when the job was released into the factory. A lot of past studies have shown that a BPN with a single 

hidden layer can achieve a satisfactory approximation performance [12–17]. In addition, several ways 

have been proposed in the literature to determine the number of neurons in the hidden layer,  

e.g., [18,19]. A common practice is to set it to the double of the number of inputs [9,17], i.e., 2K. The 

activation/transformation functions for the input and hidden layers are the linear activation function 

and the hyperbolic tangent sigmoid function, respectively: 

(linear activation) ( )f x x  (9)

(hyperbolic tangent sigmoid) 
1

( )
1 x

f x
e




 (10)

Inputs to the BPN are multiplied by the weights of the connections between the input and hidden 

layers, then are summed on each neuron in the hidden layer. After being compared with the threshold 

on the neuron, only significant signals will be transformed and outputted as:  
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where, 
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hjl is the outputted signal from hidden-layer neuron l for job j; θh 
l  is the threshold on hidden-layer 

neuron l; wh 
kl is the weight of the connection between input-layer neuron k and hidden-layer neuron l. 

Signals outputted from the hidden-layer neurons are transmitted to the neuron in the output layer in 

the same manner. Finally, the output from the BPN is generated as: 

jo
1

1
o
jn

e





 (14)

where, 

o o o
j jn I    (15)
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   (16)

θo is the threshold on the output-layer neuron; wo 
l  is the weight of the connection between  

hidden-layer neuron l and the output-layer neuron. oj is then compared with the normalized cycle time 

of job j to calculate the estimation error and to measure the estimation accuracy in terms of the sum of 

squared error (SSE): 

the estimation error = ( )j jN CT o  (17)

2

1

SSE ( ( ) )
n

j j
j

N CT o


   (18)

Subsequently, a lot of algorithms can be applied to train a BPN, such as the gradient descent (GD) 

algorithm, the conjugate gradient algorithm, the Levenberg-Marquardt (LM) algorithm, the  

Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm, and others. For a recent comparison of these 

algorithms, refer to [17]. Among these algorithms, the LM algorithm has a faster convergence speed, 

and therefore is applied in the proposed methodology, as described below. 

First, placing the inputs and the BPN parameters in vectors 

1[ ... ]j jKx xjx  (19)

and 

β = [wh 
11, …, wh 

KL, θ
h 
1 , …, θh 

L , wo 
1 , …, wo 

L , θo] (20)

respectively. Then, the network output oj can be represented with 

( , )jo f jx   (21)
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Substituting Equation (21) into Equation (18), 

2

1

SSE ( ( ) ( , ))
n

j
j

N CT f


  jx   (22)

To find out the optimized values of , an iterative procedure is used in the LM algorithm: 

(1) Specify the initial values of β, e.g., β = [1, 1, ..., 1]. 

(2) Replace β by β + δ, where δ = [wh 
11, …, wh 

KL, θh 
1 , …, θh 

L , wo 
1 , …, wo 

L , θo]: 

( , )jo f jx    (23)

(3) Approximating the right-hand side by its linearization gives 

( , ) ( , )f f j j jx x J δ    (24)

where,  

( , ) /f  j jJ x    (25)

is the gradient vector of f with respect to β. SSE becomes 

SSE  


n

j
jCTN

1

)((  – f(xj,β) – Jjδ)2 (26)

(4) The optimal value of δ can be obtained by taking the derivative of SSE with respect to δ and 

setting the result to zero. 

(5) Return to Step (2). 

Artificial neural networks such as BPN, radial basis function (RBF) network, and support vector 

regression (SVR) are effective methods to carry out nonlinear approximation. However, the dynamic 

environment in a wafer fabrication factory is quite complex. A number of studies (e.g., [11,12]) have 

shown that the relationship between the attributes and cycle time of a job in such an environment 

cannot be described with a single function. Therefore, jobs have to be classified before estimating the 

cycle times. Direct applications of BPN, RBF, or SVR are not very effective. 

2.3. BPN Tree Growing 

This step is to grow the CABPN tree using a recursive partitioning technique that selects variables 

and split points according to a pre-specified criterion. In the traditional CART approach, such criteria 

include Gini, towing, ordered towing, and maximum deviance reduction [15,16]. 

In the beginning, all jobs are assigned to the current node. Assume jobs of the current node are put in a set 

G = {j(p) | p = 1 ~ q}. Sorting the data of these jobs along attribute k gives another set Gk = {jk 
(p) | p = 1 ~ q}, 

k = 1 ~ K. Splitting Gk at the point between jk 
(r) and jk 

(r+1) gives two subsets Gk 
1  = {jk 

(p)|p = 1 ~ r} and  

Gk 
2  = {jk 

(p) | p = r + 1 ~ q}, i.e., the splitting point is between jobs r and r + 1. Two BPNs, indicated with 

BPN1(x,β1) and BPN2(x,β2), are constructed to estimate the cycle times of jobs in the two subsets, 

respectively. An optimal split on the current node is the one that minimizes the impurity measure 

Imp(k,r): 
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if p r
o
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1

2

k
p

k
p

j

j

x β

x β
 (28)

k = 1 ~ K (29)

r = 1 ~ q – 1 (30)

To help solve this problem, the symmetric partition with incremental re-learning (SP-IR) algorithm 

is proposed as follows: 

Step 1: Set k = 1; 

Step 2: Sort the jobs along attribute k; 

Step 3: Partition Gk into two equal subsets, i.e., r = q/2; 

Step 4: Construct and train two BPNs to estimate the cycle times of jobs in the two subsets; 

Step 5: Calculate the impurity measure Imp(k,r); 

Step 6: Move the splitting point one job forward. Re-train BPN1 by adding the data of the new job; 

Step 7: Re-calculate Imp(k,r). If it is improved, return to Step 6; otherwise, go to Step 8; 

Step 8: Move the splitting point one job backward. Re-train BPN2 by adding the data of the new job; 

Step 9: Re-calculate Imp(k,r). If it is improved, return to Step 8; otherwise, go to Step 9; 

Step 10: Compare the results of Steps 7 and 9. The better result determines the optimal location of 

the splitting point along attribute k; 

Step 11: k = k + 1; 

Step 12: If k = K, stop; otherwise, return to Step 2. 

The retraining process uses the parametric values at the end of the previous training as the initial 

setting, and train the BPN with fewer epochs. In this way, it is likely that the new optimal solution will 

be close to that in the previous training. 

An example is provided in Table 3 to illustrate the SP-IR algorithm. At first, set k to 1, so G1 = {j1, 

j2, j7, j5, j6, j4, j3, j10, j8, j9}. Set r to 5, so G1 
1  = {j1, j2, j7, j5, j6} and G1 

2  = {j4, j3, j10, j8, j9}. Two BPNs, 

BPN1 and BPN2, were constructed to estimate the cycle times of jobs in the two subsets, respectively. 

The impurity measure Imp(k,r) was calculated as 5.06 × 10−4. The improvement in Imp(k,r) by moving 

the splitting point was summarized in Figure 4. Obviously, the optimal splitting point was r = 4, i.e., 

one job backward. In this way, jobs were partitioned into two subsets {j1, j2, j7, j5} (xj1 ≤ 0.304) and  

{j6, j4, j3, j10, j8, j9} (xj1 > 0.304). The minimum impurity was 1.21 × 10−4. Subsequently, the data were 

partitioned along the second attribute in the same way, and the results were summarized in Figure 5. 

The jobs were partitioned into {j5, j10, j1, j3} (xj2 ≤ 0.440) and {j6, j9, j2, j7, j8, j4} (xj2 > 0.440). The 

minimum impurity was 6.04 × 10−6. After comparing the two results, the better way for the current 

node is to partition the jobs along the second attribute, because the impurity can be reduced to a 

smaller value (see Figure 6). 
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Table 3. An illustrative example. 

j xj1 xj2 N(CTj) 

1 0.100 0.391 0.100 

2 0.112 0.677 0.176 

3 0.575 0.440 0.582 

4 0.546 0.900 0.546 

5 0.304 0.100 0.288 

6 0.305 0.466 0.436 

7 0.232 0.716 0.267 

8 0.861 0.895 0.795 

9 0.900 0.672 0.900 

10 0.720 0.286 0.511 

Figure 4. The results of moving the splitting point along the first attribute. 

 

Figure 5. The results of moving the splitting point along the second attribute. 

 

Figure 6. The splitting result of the current node. 

 

x2  0.440

BPN1 BPN2
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2.4. Stopping 

The growing of a CABPN tree stops if any of the following conditions has been satisfied: 

(1) The improvement in the performance measure, i.e., the impurity measure, has become 

insignificant with more branches; 

(2) A certain number of nodes have been generated; 

(3) The depth of the tree has reached a certain level. 

2.5. Pruning 

A large CABPN tree may overfit, while a small CABPN tree may not reflect the inherent structure 

of the data. Cost-complexity pruning is usually used to tackle this issue. The cost-complexity of a 

CABPN tree T is the sum of SSE and the penalty on the complexity/size of the tree: 

( ) SSE | |C T T    (31)

The results of cost-complexity pruning are a nested subset of CABPN trees starting from the largest 

tree and ending with the smallest tree (i.e., a tree with only a single node). The effectiveness of a 

subtree can be evaluated by cross-validation or using another (testing) data. 

3. Applications 

A real case containing the data of 200 jobs from a dynamic random access memory (DRAM) 

manufacturing factory was used to evaluate the effectiveness of the proposed methodology (see 

Table 4). The factory is located in Taichung Scientific Park of Taiwan, and has a monthly capacity of 

about 20,000 pieces of wafers. Jobs in a batch of about 25 wafers are released into the factory in a 

relatively stable pattern. The prioritized first-come first-serve (p-FCFS) policy is used to sequence jobs 

on each machine, i.e., jobs are first sequenced according to their priorities, then by their arrival times at 

the machine. The relationship between the cycle times and five attributes of jobs were fitted to 

estimate the cycle time of a new job. The backward elimination of regression analysis is applied to 

screen potential variables, for which the adjusted coefficient of determination (the adjusted R2) is used 

to evaluate the effectiveness of deleting a variable. Finally, four attributes are chosen: xj1 (the job size), 

xj2 (the queue length before the bottleneck), xj3 (the average waiting time of jobs already finished), and 

xj4 (factory utilization). Jobs in the collected data were of the same product type and priority. The 

average and standard deviation of the cycle times were 1225 and 206 h. Obviously, there was a 

considerable fluctuation in the cycle times. The data of the first 150 jobs were used as the training 

examples, while the remaining data were reserved for testing. 

The collected data were normalized into [0.1, 0.9], as shown in Table 5. This step is not required in 

the traditional CART method. Subsequently, a CABPN tree was to be built for the normalized data. 

For each category, a BPN was constructed to estimate the cycle times of jobs. BPN was implemented 

using the Neural Network Toolbox of MATLAB 2006a with the following topology: 

(1) A single hidden layer with eight nodes; 

(2) Number of epochs per replication: 1000; 
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(3) Training algorithm: the LM algorithm; 

(4) Stop training if the mean squared error (MSE) < 10−4 or 1000 epochs have been run; 

(5) Early stopping: After each epoch of training, the BPN is applied to the testing data. If the 

performance, measured in terms of MSE, begins to deteriorate, the training process stops to 

avoid overfitting. 

Table 4. The collected data. 

j xj1 xj2 xj3 xj4 CTj 

1 24 175 441 97% 863 
2 23 154 256 97% 1342 
3 23 171 45 87% 956 
4 23 183 466 85% 1391 
5 23 163 90 100% 1153 
6 24 181 332 89% 1321 
  …    

198 23 181 68 98% 1099 
199 22 168 206 89% 1314 
200 23 164 261 91% 1575 

Table 5. The normalized data. 

j xj1 xj2 xj3 xj4 CTj 

1 0.670 0.609 0.853 0.786 0.105 

2 0.448 0.128 0.500 0.795 0.501 

3 0.431 0.504 0.100 0.449 0.181 

4 0.475 0.788 0.900 0.386 0.541 

5 0.424 0.324 0.184 0.897 0.345 

6 0.562 0.749 0.645 0.525 0.483 

  …    
198 0.545 0.737 0.144 0.817 0.300 

199 0.348 0.450 0.406 0.536 0.477 

200 0.437 0.346 0.511 0.584 0.692 

The CABPN tree was grown using the proposed SP-IR algorithm. The criteria for stopping the 

CABPN tree growing include: 

(1) The improvement in the SSE was less than 5%; 

(2) More than 10 nodes have been generated; 

(3) The depth of the CABPN tree has reached the third level. 

These stopping criteria are also beneficial to avoid overfitting. 

Then, the CABPN tree was pruned by minimizing the cost-complexity measure, for which α was set 

to 0.001, because in this case most SSE values ranged between 0.001 and 0.01. Finally, the CABPN 

tree was built, as shown in Figure 7. In total, there were seven BPNs for estimating the cycle times of 

jobs of the corresponding nodes. The cost-complexity measure of the CABPN tree was 0.06574. After 

converting to the un-normalized value, the minimal SSE was 3718 h2. 
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Figure 7. The built CABPN tree. 

 

For a comparison, the traditional CART method was also applied to this case, for which MATLAB 

2006a was used. The criterion for choosing a split was Gini. In addition, impure nodes must have 10 or 

more jobs to be split. Subsequently, the CART tree was pruned based on an optimal pruning scheme 

that first prunes branches contributing to the least improvement in SSE. Finally, the results were 

shown in Figure 8. The minimal SSE was 2,398,777 h2, much greater than that obtained using the 

CABPN tree approach. However, such a difference was for the training data.  

Figure 8. The CART tree. 

 

The two approaches were applied to the testing data. The estimation results using the proposed 

methodology were shown in Figure 9. The performances of CABPN tree and CART were compared in 

terms of mean absolute error (MAE), mean absolute percentage error (MAPE), and root mean  

squared error (RMSE): 

1

1
MAE | ( ) |

n

j j
j

CT U o
n 

   (32)

N(x1)  0.525384

BPN1

BPN3

N(x3)  0.396809 N(x3)  0.837438

N(x2)  0.359185 N(x2)  0.525154 N(x4)  0.509299

BPN2 BPN5BPN4 BPN7BPN6
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Figure 9. The estimation results of the testing data. 

 

The results are summarized in Table 6. According to the experimental results, 

(1) Obviously, the estimation accuracy, measured in terms of MAE, MAPE, or RMSE, using the 

proposed CABPN tree approach was much better than that by the traditional CART approach. 

The advantage was the most obvious (up to 23%) in the RMSE regard. 

(2) On the other hand, the numbers of jobs of nodes in the CABPN tree were summarized in Table 7. 

Obviously, the numbers of jobs assigned to the two nodes of a branch were close using the 

proposed methodology (see Figure 10), due to the symmetric property of the SP-IR algorithm. 

It gave enough examples to train the BPN of each node. In contrast, some nodes in the CART 

tree, such as node 8, had very few examples (see Table 8). 

Table 6. Comparison of the performances of the two approaches. 

Method MAE MAPE RMSE

CART 97 8.0% 126 
CABPN Tree 75 5.7% 97 

Table 7. The number of jobs of each node in the CABPN tree. 

Node # 1 2 3 4 5 6 7 

No. of jobs 40 17 21 20 14 21 17 
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Figure 10. The symmetric property of the SP-IR algorithm. 

 

Table 8. The number of jobs of each node in the CART tree. 

Node # 1 2 3 4 5 6 7 8 9 

No. of Jobs 27 16 37 18 10 29 2 5 6 

(3) Starting with different initial conditions, a BPN will converge to different results, so does the 

CABPN tree approach, which means it is likely to further improve the estimation accuracy of 

the CABPN tree approach in an iterative way or with carefully chosen initial conditions. 

(4) However, the training time required for the CABPN tree approach was 297 s, much longer than 

that required for the CART approach (less than 5 s). Obviously, the efficiency of the proposed 

methodology needs to be improved somehow. 

(5) A sensitivity analysis was performed to assess the effects of α on the estimation performance of 

the CABPN tree approach. The results are summarized in Figure 11. Obviously, a large value 

of α resulted in fewer branches, which was not conducive to the estimation accuracy for such 

diverse jobs. Conversely, the stopping criterion of the maximum number of nodes has a 

positive effect (see Figure 12). With more nodes, the estimation accuracy of the CABPN tree 

approach became better; however, the effects were not unlimited. 

Figure 11. The effects of α. 
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Figure 12. The effects of the maximum number of nodes (the stopping criterion). 

 

(6) The CABPN tree approach is computationally more intensive than its counterpart CART. The 

computation time required for the CABPN tree approach depends on the number of jobs, the 

size of each BPN (including the number of hidden layers and the number of nodes in each 

hidden layer), and the stopping criteria of the CABPN tree. It is almost instantaneous to find a 

feasible solution by changing the weights of the BPN, but it takes time to evolve the solution to 

the optimal one. In this case, the CABPN tree approach was implemented on a PC with an Intel 

Dual CPU E2200 2.2 GHz and 2.0G RAM. It took about 3 min to estimate the cycle times of 

jobs. In contrast, the CART approach took only 15 s. Obviously, there is considerable room for 

improving the efficiency of the CABPN tree approach. 

(7) To further elaborate the effectiveness of the proposed methodology, another existing  

method—the hybrid kM and BPN approach [12]—was also applied to this case to make a 

comparison, in which the features of a job category were extracted using kM. The results are 

summarized in Table 9. The proposed methodology also outperformed the kM-BPN approach. 

Table 9. Comparison with the hybrid k-means and back propagation networks (BPN) 

approach. 

Method MAE MAPE RMSE 

kM-BPN 82 6.3% 101 
The proposed methodology 75 5.7% 97 

4. Conclusions and Future Research Directions 

An innovative combination of CART and BPN is formed in this study to estimate the cycle time of 

a job in a wafer fabrication factory, which is always considered as one of the most important tasks in 

controlling a wafer fabrication factory. After embedding an individual BPN into each node of a 

classification tree, the CABPN tree approach is proposed, so that the cycle times of jobs of the same 

node will be estimated with the same BPN, instead of a single value as in the traditional CART 

approach. Such a treatment is expected to improve the estimation accuracy. However, to determine the 

optimal location of the splitting point on a node is a challenging task. To tackle this issue, the SP-IR 
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algorithm is proposed to generate quite symmetric partitioning results. In this way, most BPNs can be 

trained with enough examples. 

The effectiveness of the proposed CABPN tree approach was evaluated with a real case from a 

DRAM manufacturing factory. According to the experimental results, 

(1) The estimation accuracy, measured in terms of MAE, MAPE, or RMSE, was significantly 

improved after applying the CABPN tree approach; 

(2) On the other hand, there is considerable room for improving the efficiency of the CABPN tree 

approach, owing to the extensive BPN learning; 

(3) The estimation accuracy of the CABPN tree approach can be further improved in an iterative 

way or with carefully chosen initial conditions. 

The symmetric property of the SP-IR algorithm aims to reserve enough examples for each node, 

however, may cause the CABPN tree to be trapped in the local optimum. This issue can be 

investigated in a future study. 
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