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Abstract: Symmetry operations of layers periodic in two dimensions restrict the geometry
the lattice according to the five two-dimensional Bravais types of lattices. In order-disorder
(OD) structures, the operations relating equivalent layers generally leave invariant only
a sublattice of the layers. The thus resulting restrictions can be expressed in terms of
linear relations of the a2, b2 and a · b scalar products of the lattice basis vectors with
rational coefficients. To characterize OD families and to check their validity, these lattice
restrictions are expressed in the bases of different layers and combined. For a more familiar
notation, they can be expressed in terms of the lattice parameters a, b and γ. Alternatively,
the description of the lattice restrictions may be simplified by using centered lattices.
The representation of the lattice restrictions in terms of scalar products is dependent on the
chosen basis. A basis-independent classification of the lattice restrictions is outlined.
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1. Introduction

Already in the early days of structure characterization by diffraction methods, it had been observed
that many solid compounds do not a feature long-range order despite being built according to strict and
unambiguous chemical rules. One of these systems, the mineral, wollastonite (CaSiO3) [1], and the
isotypic inorganic compounds, Madrell’s salt (NaPO3) and NaAsO3 [2], sparked the development of the
order-disorder (OD) theory [3]. The OD theory can be considered as the crystallographic theory of local
symmetry and has, since its inception, been developed into a versatile theory for the explanation and
description of polytypism, diffuse scattering, non-crystallographic absences, twinning and as a means
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to classify structures by “symmetry principles” [4]. The fruitful application of OD theory to all major
classes of compounds—from minerals to biological macro-molecules [5]—demonstrates the universality
of the underlying concepts. A concise introduction to OD theory was given by Ferraris et al. [6].

OD theory is based on the geometric (and as a consequence, energetic) equivalence of pairs of adjacent
layers, which is expressed by the vicinity condition (VC) [7]. Slightly varying wordings of the VC have
been given [7–11]. Usually, it is stated as three propositions:

• (VCα) OD structures are composed of a finite number of kinds of layers with two-dimensional
lattices;

• (VCβ) The intersection of the lattices of all layers of an OD structure is a two-dimensional lattice;

• (VCγ) Equivalent sides (layers in which both sides are not equivalent, i.e., not related by
symmetry, can adopt one of 17 layer group types, which correspond to the 17 plane group types.
These layer groups and layers are said to be polar) of equivalent layers are faced by adjacent layers
in such a way that the thus formed pairs of layers are equivalent.

Structures that fulfill the VC and that are not necessarily periodic in three dimensions are called
proper OD structures, as opposed to fully-ordered structures [8]. The infinite number of stacking
possibilities (polytypes) arising from a proper OD structure are said to belong to the same OD family.
The local symmetry of a polytype is described by a groupoid [10], a generalization of the group concept.
By abstracting from metric parameters, these groupoids are classified into OD groupoid families, which
take the role of space group types in classical crystallography. Two alternative versions of VCβ have
been proposed, leading to a stricter and a broader VC (VCα and VCγ are independent of VCβ and
remain unchanged): The stricter VCβ′ [9,10] reads as:

• (VCβ′) All layers of an OD structure possess the same lattice.

and, on the other hand, the broader VCβ′′ [10] as:

• (VCβ′′) The intersection of the lattices of two adjacent layers of an OD structure is a
two-dimensional lattice.

VCβ′′ differs subtly from VCβ in that, whereas every given pair of layers possesses a common
two-dimensional lattice, there can be polytypes in which these common lattices become more sparse with
the increasing distance of the layers, and therefore, the whole polytype does not feature two-dimensional
periodicity parallel to the layer planes. All polytypes of OD structures fulfilling VCβ, on the other
hand, possess a common two-dimensional lattice parallel to the layer planes. As a consequence, OD
structures in which layers are related by operations with a non-crystallographic rotation angle fulfill
VCβ′′, but not VCβ.

Most documented OD structures fulfill the strict and, from a theoretical point of view, less demanding
VCβ′. Therefore, most work on OD theory, so far, like the derivation of the 400 OD groupoid
families [12], is based on VCβ′. Moreover, a notation based on Hermann–Mauguin symbols for
the designation of OD groupoid families has only been developed for families fulfilling VCβ′ [8,13].
Nevertheless, during our structural investigations, we have encountered polytypic structures where
the inequality of the lattices of adjacent layers is the decisive factor giving rise to the OD character
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(e.g., KOH·2H2O [14] and K2HAsO4 · 2.5H2O [15]). Therefore, a complete OD theory must consider
the more general VCβ and VCβ′′.

The existence of certain symmetry operations of a layer imposes a minimum Bravais class of the layer
lattice (the symmetry of the lattice can also accidentally belong to a higher-symmetry Bravais class [16])
and, therefore, restricts the geometry of the lattice. In OD structures, the layer lattices can additionally
be restricted by operations relating distinct layers or by the combination (i.e., intersection) of the lattice
restrictions of distinct layers. For the special case VCβ′, these restrictions correspond to those of the
Bravais types of lattices, as will be recapitulated in Section 2.3. In OD structures fulfilling VCβ or
VCβ′′, but not the more strict VCβ′, the operations relating equivalent layers generally leave invariant
only a sublattice of the layers. In this case, they lead to non-crystallographic layer lattice restrictions,
which can be expressed as linear relationships of the scalar products of the primitive lattice basis vectors,
as will be discussed in Section 2.4.

This representation has proven to be a useful computational device for the automated analysis of
OD structures (like the derivation of stacking possibilities [17], polytypes with a maximum degree
of order [18,19], family (superposition) structures [7], etc.). For this purpose, the lattice restrictions
have to be transformed into different bases (Section 2.5) and combined (Section 2.6). A more familiar
representation in terms of the lattice parameters a, b and γ will be developed in Section 2.7.
An alternative, and perhaps more convenient, description may be obtained by using centered lattices,
as shown in Section 2.9. The representation of lattice restrictions by scalar products is dependent on the
chosen basis. A basis-independent classification will be outlined in Section 2.11. Finally, examples are
given in Section 2.12, and the discussed relations are derived in the Appendix.

2. Results and Discussion

2.1. Notations and Conventions

A layer is a connected, two-dimensionally periodic subspace of the three-dimensional Euclidean space
E3 with continuously finite and non-zero thickness. Every point of an OD structure can be assigned to
either a layer or the interface between two layers, which need not be planar (Figure 1). Thus, every layer
is connected to exactly two neighbors. For simplicity, in the following text, all layers are normal to [001].
Layers are said to be equivalent or of the same kind if they are congruent or enantiomorphous [8],
i.e., related by an isometry. When pairs of (not necessarily adjacent or equivalent) layers are considered,
they will be called Li and Lj , and the corresponding lattice basis vectors are (ai,bi) and (aj,bj).
Subscripts are omitted if only one layer is examined. The lattice parameters of the layer Li will be
written as ai = |ai|, bi = |bi| and γi = ai∧bi. The notation a∧b designates (depending on the context)
the measure of the angle between a and b or the angle itself (the origin being the vertex of the angle).
Scalar products of vectors are indicated by a dot: a · b = |a||b| cos(a ∧ b), matrix multiplication by
juxtaposition. For brevity, a · a = |a|2 is shortened to a2. The metric tensor of layer Li is:

Gi =

(
a2
i ai · bi

ai · bi b2
i

)
(1)
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Figure 1. Schematic representation of an OD structure composed of layers of one kind
viewed down [010]. Black curves indicate the interface between layers. c0 is the vector
normal to the layer (lattice) planes with a length of one layer width. Layer names are
indicated to the right.
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Since the position of the different layers relative to one another is of no concern for the following
discussion, layer lattices are regarded as vector lattices or translation groups. Thus, the lattice of layer
Li is Li = {nai + mbi|n,m ∈ Z}. Accordingly, if Lj ⊂ Li, Lj is said to be a strict sublattice of Li,
and Li is considered as the larger lattice of the two, despite defining a smaller unit cell. Lattice vectors
are designated by u; arbitrary directions are given as ua + vb. Rotation angles are denominated by
ψ. The linear part of isometries of E3 (motions) is represented by the matrix M ; matrices of affine
transformations operating on lattice basis vectors are written as P . I2 is the 2 × 2 identity matrix.
The 2× 3 matrixA and the 3× 1 column vectors V and U are used to describe the linear relationships
of the scalar products a2, b2 and a ·b. Q andR are 3×3 transformation matrices operating on V andU .
o is the column vector of zero coefficients. The “×” symbol will be used in analogy to the cross-product
of two coordinate vectors with respect to an orthonormal coordinate system:xy

z

×
x′y′
z′

 =

yz′ − zy′zx′ − xz′

xy′ − yx′

 (2)

λ and l are real numbers.

2.2. Partial Operations

The operations relating equivalent layers are called partial operations (POs) [8] to highlight that they
are not necessarily valid for the whole structure. A PO transforming Li into Lj is called σ-PO if i 6= j

or λ-PO if i = j [8]. Expressed in the coordinate system of Li, the linear part of a PO has the form:

M =

m11 m12 0

m21 m22 0

0 0 ±1

 (3)

In the context of layer lattice restrictions, only the action of the operation on the lattice basis vectors
is relevant:

(aj,bj) = (ai,bi)

(
p11 p12

p21 p22

)
= (ai,bi)P (4)
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with pij = mij . Thus, the following discussion will be based on these two-dimensional lattice
transformations, which correspond to the point group operations in two dimensions that map the origin
onto itself, viz., rotations around the origin (including the identity) and mirror operations at lines passing
through the origin. Since, according to VCβ (or VCβ′′), the common sublattice of adjacent layers is a
two-dimensional lattice, all elements pij ∈ Q [20] and, henceforth, only rational P are considered. In
the special case of VCβ′, P is integral. Since POs are isometries, det(P ) = ±1. Since two-dimensional
lattices are symmetric by a two-fold rotation, mirroring at a line and the perpendicular line, as well as
rotation by ψ and ψ + π are equivalent lattice transformations (i.e., both transform a given lattice into
two identical lattices). Thus, P and −P represent equivalent lattice transformations. An overview of all
kinds of σ-POs and the corresponding lattice transformations is compiled in Table 1.

Table 1. Kinds of σ-partial operations (POs) and the corresponding two-dimensional lattice
transformations. Rotations by ψ and ψ + π represent equivalent lattice transformations. The
identity operation and rotations by ψ = π are listed separately from other rotations, since
they impose different lattice restrictions, as will be shown below.

σ-PO Type and orientation of element det(M) Lattice transformation det(P )

rotation or screw by ψ = π axis parallel to layer plane 1
}

mirroring −1
glide plane normal to layer plane −1

translation – 1
identity or rotation by π


1

glide or mirroring plane parallel to layer plane −1
inversion – −1

screw by ψ = π axis normal to layer plane 1

screw by ψ 6= π axis normal to layer plane 1
}

rotation by ψ or ψ + π
rotoinversion by ψ 6= 0, π axis normal to layer plane −1

Note: With the non-zero translational component normal to layer plane.

2.3. Layer Lattice Restrictions in the Case of Layer Groups and VCβ′

The necessity to restrict the geometry of lattices was recognized when deriving the symmetry groups
of periodic objects in Euclidean space, viz., the crystallographic frieze, rod, plane, layer and space
groups. Indeed, the symmetry operations of a periodic object may not be compatible with every lattice,
resulting in the assignment of symmetry groups to Bravais types of lattices (usually shortened to “Bravais
lattices”, but spelled out here to emphasize that it is a set of an infinity of lattices; the resulting classes
of symmetry groups are called Bravais flocks) [16]. Note that the lattice may also accidentally be of
a higher symmetry than is imposed by the group (e.g., an orthorhombic layer with a square lattice).
There are five Bravais types of lattices in two dimensions [21], listed in Table 2 with the corresponding
restriction of the lattice geometry in the standard primitive setting.

In the context of OD theory, not only layer symmetry operations (λ-POs), but also σ-POs restrict the
layer lattice. If all layers possess the same lattice (i.e., VCβ′ holds), the linear part of all (λ- and σ-) POs
must map this two-dimensional lattice onto itself. Thus, all polytypes of an OD family that fulfills VCβ′

share the same common two-dimensional lattice, and the OD family can be assigned to one of the five
two-dimensional Bravais types of lattices and, as consequence, to one of the four two-dimensional lattice
systems although in two dimensions, the classifications into lattice and crystal systems are identical, the
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notion of lattice system is used here, since in three (or more) dimensions, groups assigned to the same
Bravais type of lattices belong to the same lattice system, but not necessarily to the same crystal system
e.g., the space groups P3 and P6 both belong to the hexagonal lattice system, but to the trigonal and the
hexagonal crystal system, respectively [16].

Table 2. The five Bravais types of lattices in two dimensions, the corresponding lattice
system and the restrictions of the geometry expressed in the lattice parameters a, b and γ and
in the scalar products of the basis vectors. The primitive bases are chosen according to [21].

Bravais type of lattices Lattice system
Lattice restriction in standard primitive setting

Free parameters
Lattice parameters Basis vectors

mp oblique – – 3
op rectangular γ = π

2 a · b = 0 2
oc rectangular a = b a2 = b2 2
tp square a = b, γ = π

2 a2 = b2, a · b = 0 1
hp hexagonal a = b, γ = 2π

3 a2 = b2, a · b = −a2

2 1

2.4. Layer Restrictions Introduced by General POs

Unless noted otherwise, in the following sections, only the general VCβ′′ is assumed. When analyzing
and describing these general OD structures, the interplay of three notions has to be considered:

(1) The POs relating equivalent layers and, in particular, the corresponding two-dimensional lattice
transformations, defined by their type (rotation or mirroring) and the rotation angle ψ (rotation) or
the location of the mirror line (mirroring);

(2) The relationship of the lattices of the layers related by these POs. For example, in the special case
of VCβ′, the lattices are identical;

(3) The restrictions of the geometry of the layer lattices.

By defining a PO and the relationship of the lattices, restrictions of the lattice geometries are imposed.
For example:

• If the lattice transformation is a four-fold rotation and the lattices are identical, then the lattices
must belong to the tp Bravais type of lattices;

• If the lattice transformation is a mirroring at the line parallel to a+b and the lattices are identical,
then the lattices must belong to the mc or the higher-symmetry tp or hp Bravais types of lattices.

In return, by defining a PO and a lattice restriction, the relationship of the lattices can be deduced.
The matrix P representing a two-dimensional lattice transformation describes both the type of the

operation and the relationship of the lattices. Thus, by imposing a concrete matrix P relating the lattices
of two equivalent layers, the geometries of both layers are restricted. These restrictions can be derived
(see Appendix 1.1) by virtue of P representing an isometry (i.e., |ai| = |aj| = a, |bi| = |bj| = b and
ai ∧ bi = aj ∧ bj = γ have to hold). Thus, by enumerating all matrices P describing two-dimensional
point group operations, all lattice restrictions imposed by POs can be derived. Moreover, P will usually
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be used when (manually or automatically) analyzing an OD structure, making it necessary to derive the
lattice restrictions from these matrices.

The description of OD families by symbols (in analogy to the symmetry group symbols), on the other
hand, will typically not be based on the matrix representation of POs, but on a generalization of the
printed symbols for symmetry elements [22]. Thus, the opposite direction, viz., deducing the matrix
representation of a PO given by its type and symmetry element and the lattice restriction are necessary
and will be described in Section 2.8.

The lattice restriction imposed by the matrix P representing an isometry can be expressed by linear
relationships between the scalar products a2

i = a2
j , b

2
i = b2

j and ai · bi = aj · bj . These relationships
can be conveniently represented by the subspaces of the three-dimensional Euclidean space E3, where
the three dimensions represent the elements of the metric tensor Gi, viz., a2

i , b
2
i and ai · bi, respectively.

The metric tensor of a two-dimensional lattice is positive-definite, and the elements fulfill:

a2
i > 0 (5)

b2
i > 0 (6)

and
(ai · bi)2 < a2

ib
2
i (7)

whereby the latter inequality can also be written as det(Gi) > 0. These (a2
i ,b

2
i , ai · bi) triples describe

an open, convex subset of E3. The boundary set is an elliptical cone with the apex located at the origin
(Figure 2a). It is understood that if in the next sections, lattice restrictions are described as lines or
planes in E3, actually, only the line or plane segment obtained by intersection with this subset represents
two-dimensional lattices. Likewise, if a lattice parameter is said to be free, it may only be chosen such
that the corresponding triple of scalar products is a member of this subset.

Figure 2. Graphical representation of (a) the (a2,b2, a · b) triples of discrete
two-dimensional lattices and (b) metrics of lattices of the op (a · b = 0, horizontal plane),
oc (a2 = b2, vertical plane) and tp (intersection of both planes) Bravais types of lattices
in the standard primitive settings [21]. The boundary of the set of (a2,b2, a · b) triples of
positive-definite G is black on the outside and red on the inside.
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Since there is at least one free lattice parameter, the lattice restrictions can be expressed by a system
of two linear equations according to:

A

 a2

b2

a · b

 =

(
a11 a12 a13

a21 a22 a23

) a2

b2

a · b

 =

(
0

0

)
(8)

where A is a rational 2 × 3 matrix. A can be made unique by, for example, writing it in reduced row
echelon form, i.e., applying the Gaussian elimination algorithm on the system of linear equations and
making the leading non-zero elements of the matrix one. Three cases can be distinguished, based on the
number of free parameters: if rank(A) = 0, all three lattice parameters are free; if rank(A) = 1, the
solutions of the system of linear equations are located on a plane (two free parameters), which will be
described by V , the coordinates of a vector normal to the plane. Finally, if rank(A) = 2, the solutions
are located on a line passing through the origin (one free lattice parameter), which will be described by
U , the coordinates of a vector parallel to this line. The three kinds of lattice restrictions are compiled in
Table 3 and will be discussed in the following paragraphs based on the type of the lattice transformation
represented by P .

Table 3. Possible matrix representations P of two-dimensional point group operations
relating the lattices of Li and Lj and the resulting restrictions of the lattice vectors, ordered
by the number of free parameters.

Operation det(P ) tr(P ) Free parameters Lattice restriction

identity or two-fold rotation 1 ±2 3 –

mirroring −1 0 2

(a2i ,b
2
i ,ai · bi)V = 0,

V =

VxVy
Vz

 =

 p12

−p21
−2p11



rotation by ψ 6= 0, π 1 | tr(P )| < 2 1

U × (a2i ,b
2
i ,ai · bi)T = o,

U =

UxUy
Uz

 =

 2p21

−2p12
p22 − p11



2.4.1. Identity Operation or Two-Fold Rotation (Table 3, Line 1)

If P has the form P = ±I2, i.e., it describes the identity operation or a two-fold rotation, the lattice
is only restricted by Equations (5)–(7), since every two-dimensional lattice is symmetric by these two
operations. Thus, the valid lattices are represented by a three-dimensional subset of E3 (Figure 2a).
This is the lattice restriction of layer groups in the oblique lattice system.

2.4.2. Mirror Operation (Table 3, Line 2)

A matrix P representing a mirror operation fulfills:

det(P ) = −1 (9)
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and
tr(P ) = p11 + p22 = 0 (10)

The lattice restriction induced by P corresponds to a plane in E3, which is described by an equation:

(a2
i ,b

2
i , ai · bi)V = 0 (11)

with V 6= o. V can be derived from P (see Appendix 1.1) by:

V =

VxVy
Vz

 =

 p12

−p21
−2p11

 (12)

Since P is rational, so are the coefficients of V .
Two examples of this kind of restriction are depicted in Figure 2b: The horizontal plane represents the

lattices fulfilling Equation (11) with V = (0, 0, 1)T or a · b = 0 and the vertical plane V = (1,−1, 0)T

or a2 = b2. Lattices of the op and oc Bravais types of lattices (i.e., lattices of layers in both rectangular
lattice systems) must fulfill these restrictions, respectively. Examples of non-crystallographic restrictions
of this kind are given in Sections 2.12.1 and 2.12.2.

The set of solutions of Equation (11) contains (a2
i ,b

2
i , ai · bi) triples of positive-definite Gi

(i.e., the lattice restriction is valid), only if V fulfills:

VxVy <
V 2
z

4
(13)

which is always the case for V of Equation (12), obtained from P fulfilling Equations (9) and (10).
All V 6= o representing parallel vectors (i.e., all λV , λ 6= 0) describe the same lattice restriction.
Notably, the equivalent lattice transformations represented by P and −P lead to the same lattice
restriction (V and −V ).

Since the matrix P representing a mirror operation must fulfill det(P ) = −1 and tr(P ) = 0, a lattice
restriction of Equation (11) with given V is obtained from exactly two matrices P :

P =
±1

l

(
−Vz

2
Vx

−Vy Vz
2

)
(14)

where

l =

√
V 2
z

4
− VxVy > 0 (15)

is a scale factor: l(V ) = 1 for the form given in Equation (12) and l(λV ) = |λ|l(V ). V can be made
unique by division by l and making Vx > 0. This form has the advantage that it can immediately be
connected to the matrices ±P , which impose this restriction. Alternatively, the uniqueness of V can,
for example, be achieved by making the elements integral, coprime and Vx > 0.

2.4.3. Rotation by ψ 6= 0, π (Table 3, Line 3)

The matrix P representing a rotation by ψ 6= 0, π has to fulfill:

det(P ) = 1 (16)
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and
|p11 + p22| < 2 (17)

since p11 +p22 = tr(P ) = 2 cosψ. The lattice restriction imposed by such a matrix corresponds to a line
in E3, which is described by the equation:

U × (a2
i ,b

2
i , ai · bi)T = o (18)

with U 6= o. Alternatively, the equation can be written as:

(a2
i ,b

2
i , ai · bi) = λUT (19)

with λ ∈ R. U can be deduced from P (see Appendix 1.1) by:

U =

UxUy
Uz

 =

 2p21

−2p12

−p11 + p22

 (20)

Since P is rational, so are the coefficients of U . The lattice restriction resulting from the identity or
two-fold rotation (three free parameters) can be considered as a special case of Equations (18) and (20),
since the corresponding matrices P = ±I2 lead to U = o, and as a consequence, Equation (18) is
always fulfilled. Nevertheless, it seems more clear to treat the unrestricted case as a distinct case, and
here, only U 6= o are considered.

An example of this kind of restriction is given by the intersection of the horizontal and the vertical
plane in Figure 2b: this line represents the lattices fulfilling a2 = b2 and a · b = 0 or U = (1, 1, 0)T ,
corresponding to the metrics of lattices of the tp Bravais types of lattices (lattices of layers in the square
lattice system) in the reduced setting. An actual example of a non-crystallographic lattice restriction of
this kind will be detailed in Section 2.12.3.

The set of solutions of Equation (18) contains (a2
i ,b

2
i , ai · bi) triples of positive-definite Gi

(i.e., the lattice restriction is valid) only if:

U2
z < UxUy (21)

which is always the case for U derived according to Equation (20) from matrices P fulfilling
Equations (16) and (17). All U 6= o representing parallel vectors (i.e., all λU , λ 6= 0) describe the
same lattice restriction. U can, for example, be made unique by making the elements integral and
coprime and Ux positive. As opposed to the case of two free parameters, the lattice restrictions described
by a given U are derived from an infinity of matrices P . For example, the matrix representations:

P =

(
0 −1

1 0

)
(22)

and

P =

(
4
5
−3

5
3
5

4
5

)
(23)

of rotations by ψ = π
2

and ψ = tan−1
(
3
4

)
, respectively, both lead to U = (1, 1, 0)T (i.e., square lattices)

(Figure 3).
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Figure 3. Two pairs of equivalent layers Li, Lj with square metrics (a2
i = b2

i = a2
j = b2

j ,
ai · bi = aj · bj = 0). The layers of each pair are related by rotation by (a) ψ = π

2
and

(b) ψ = tan−1
(
3
4

)
. Lattice points exclusive to Li and Lj are represented by red and black

dots; those belonging to both lattices by blue dots with larger size.
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2.5. Transformation of Lattice Restrictions

If the layers Li and Lj are not equivalent, their lattices are related by:

(aj,bj) = (ai,bi)

(
p11 p12

p21 p22

)
= (ai,bi)P (24)

with det(P ) 6= 0 (but not necessarily fulfilling det(P ) = ±1). From VCβ′′, it follows that P is rational.
If the lattice of layer Li is restricted as described in Section 2.4, additional restrictions are imposed on
the lattice of layer Lj . To express the restriction in terms of the layer Lj , the need arises to apply lattice
transformations to the representations of lattice restrictions introduced in Section 2.4. Moreover, in many
cases, it is convenient to use different cell settings of a layer for structural descriptions. In these cases, P
is usually integral, unless switching from a centered to a primitive setting. If V i describes the restriction
of the lattice of Li according to Equation (11), then the lattice of Lj is likewise restricted according to
Equation (11) with vector V j related to V i by:

V j =

 p222 p212 −p12p22
p221 p211 −p11p21

−2p21p22 −2p11p12 p11p22 + p12p21

V i (25)

In analogy, the vector U i of Equation (18) transforms according to:

U j =

 p211 p212 2p11p21

p221 p222 2p12p22

p11p12 p21p22 p11p22 + p12p21

U i (26)
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As expected, if V i represents a valid lattice restriction (i.e., fulfills Equation (13)), then so does V j ,
and likewise, if U i fulfills Equation (21), then so does U j , provided that det(P ) 6= 0, as is derived in
Appendix 1.3. Moreover, the rationality of V j and U j is preserved for rational P .

2.6. Combination of Lattice Restrictions

The lattice of a layer may be restricted by symmetry operations (Section 2.3), σ-POs (Section 2.4)
or the lattice restrictions of a different layer (Section 2.5). The combination (i.e., intersection) of these
restrictions is used to determine the lattice restrictions of an OD family: a representative layer n-tuple
of adjacent layers containing each kind of layer exactly once is considered. The lattices of all layers
are expressed with respect to an arbitrarily chosen global lattice. The restrictions imposed by the layer
symmetries and the σ-POs are transformed into the global lattice (Section 2.5) and combined. If the OD
family is valid, the global lattice is described by one to three free parameters. This restriction is then
transformed back into the lattice bases of the individual layers. As a consequence, in an OD family,
every layer lattice has the same number of free parameters. For example, in an OD family containing
a square layer, b/a and γ of all layers are fixed, even if they only belong to the oblique layer system.
The combination of two lattice restrictions is compiled in Table 4, and the different cases are detailed in
the following sections, whereby the trivial cases (combination with no restrictions) are not listed.

Table 4. Combination of lattice restrictions with V 1, V 2, U 1, U 2 6= o.

Restriction 1 Restriction 2 Condition Resulting Restriction

(a2,b2,a · b)V 1 = 0 (a2,b2,a · b)V 2 = 0 V 1 × V 2 = o (a2,b2,a · b)V 1 = 0

(a2,b2,a · b)V 1 = 0 (a2,b2,a · b)V 2 = 0 U =

UxUy
Uz

 = V 1 × V 2 U2
z < UxUy U × (a2,b2,a · b)T = o

(a2,b2,a · b)V 1 = 0 (a2,b2,a · b)V 2 = 0 U =

UxUy
Uz

 = V 1 × V 2 U2
z ≥ UxUy invalid

(a2,b2,a · b)V 1 = 0 U2 × (a2,b2,a · b)T = o V 1U
T
2 = 0 U2 × (a2,b2,a · b)T = o

(a2,b2,a · b)V 1 = 0 U2 × (a2,b2,a · b)T = o V 1U
T
2 6= 0 invalid

U1 × (a2,b2,a · b)T = o U2 × (a2,b2,a · b)T = o U1 ×U2 = o U1 × (a2,b2,a · b)T = o

U1 × (a2,b2,a · b)T = o U2 × (a2,b2,a · b)T = o U1 ×U2 6= o invalid

2.6.1. Two Times Two Free Lattice Parameters (Table 4, Lines 1–3)

The lattice restrictions read as:
(a2,b2, a · b)V k = 0 (27)

with k = 1, 2. If the V k represent parallel vectors (V 1 × V 2 = o), both restrictions are equivalent
and, thus, identical to the resulting restriction. If V 1 × V 2 6= o, the number of free parameters
is reduced to one. The possible lattices are described by Equation (18) with U = V 1 × V 2. An
example is given in Figure 2b: the horizontal plane, described by V 1 = (0, 0, 1)T , represents metrics
of lattices in the op Bravais type of lattices and the vertical plane, described by V 2 = (1,−1, 0)T , the
metrics of lattices in the oc Bravais type of lattices. The intersection of these two planes is found by
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calculating U = V 1 × V 2 = (1, 1, 0)T , which represents a line corresponding to the metrics of lattices
in the tp Bravais type of lattices. Thus, if an OD structure is made up of orthorhombic primitive and
orthorhombic c-centered layers and both layers possess the same (primitive) lattice, the lattices of both
layers must be square.

Solutions with positive-definite G exist only for U fulfilling Equation (21). For example, a lattice
cannot be restricted by a ·b = 0 and a ·b = 1

2
a ·a represented by V 1 = (0, 0, 1)T and V 2 = (1, 0,−2)T ,

respectively, since the resulting restriction represented by U = V 1 × V 2 = (0,−1, 0)T corresponds to
the lattice restriction a2 = a · b = 0, which is not the case for any two-dimensional lattice. An example
of the combination of lattice restrictions resulting in non-crystallographic lattice restrictions is given in
Section 2.12.4.

2.6.2. Two and One Free Lattice Parameters (Table 4, Lines 4–5)

The lattice restrictions are given by:

(a2,b2, a · b)V 1 = 0 (28)

and:
U 2 × (a2,b2, a · b)T = o (29)

If V 1 and U 2 represent perpendicular vectors (V 1U
T
2 = 0), the second restriction is a strict subset

of the first and accordingly equivalent to the resulting restriction. If V 1U
T
2 6= 0, only the trivial solution

a2 = b2 = a ·b = 0, which does not describe a two-dimensional lattice, is common to both restrictions.

2.6.3. Two Times One Free Lattice Parameter (Table 4, Lines 6–7)

The lattice restrictions read as:
U k × (a2,b2, a · b)T = o (30)

with k = 1, 2. The restrictions are equivalent if the U k are parallel (U 1 × U 2 = o) and, therefore,
identical to the resulting restriction. If U 1 × U 2 6= o, only the trivial solution a2 = b2 = a · b = 0,
which does not describe a two-dimensional lattice, is common to both restriction.

2.7. Expression of Lattice Restrictions in Terms of the Lattice Parameters

The lattice restrictions in terms of linear equations of the scalar products a2, b2 and a · b have
been proven useful for the analysis of OD families. Nevertheless, an expression in terms of the lattice
parameters a, b and γ may seem more natural. Moreover, one may be interested in the possible relative
values of a and b. These expression are compiled in Table 5 and will be described in detail in the
next paragraphs.
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Table 5. Layer lattice restriction expressed in the lattice parameters a, b and γ and example
Bravais types of lattices in the standard primitive setting [21].

Lattice restriction Subcase a, b γ Example bravais Lattice

none – free free oblique

(a2,b2,a · b)V = 0,

V =

VxVy
Vz


Vx = Vy = 0,
Vz 6= 0

free π
2

rectangular primitive (γ = π
2

)

Vx = 0, VyVz 6= 0 a
b
>
∣∣∣Vy

Vz

∣∣∣ cos−1
(
− Vyb

Vza

)
Vy = 0, VxVz 6= 0 b

a
>
∣∣∣Vx
Vz

∣∣∣ cos−1
(
−Vxa
Vzb

)
VxVyVz 6= 0 b

a
∈
(
|Vz |−2l
2|Vy|

,
|Vz |+2l
2|Vy|

)
cos−1

(
−Vxa
Vzb
− Vyb

Vza

)
Vz = 0 b =

√
−Vy

Vx
a free rectangular c-centered (a = b)

U × (a2,b2,a · b))T = o,

U =

UxUy
Uz

 – b =
√
Uy

Ux
a cos−1

(
Uz√
UxUy

)
hexagonal (a = b, γ = 2π

3
),

square (a = b, γ = π
2

)

Note: l is the scale factor defined in Equation (15).

2.7.1. Two Free Parameters (Table 5, Lines 2–6)

To express Equation (11) in terms of the lattice parameters, two cases have to be distinguished: Vz 6= 0

(Table 5, Lines 2–5) and Vz = 0 (Table 5, Line 6). If Vz 6= 0, Equation (11) can be written as:

a · b = −Vxa
2 + Vyb

2

Vz
(31)

which translates into:

γ = cos−1
(
−Vxa
Vzb
− Vyb

Vza

)
(32)

Concerning the restrictions of the relation between a and b, there are four subcases: If Vx = Vy = 0,
then γ = π

2
and a > 0 and b > 0 are free. If Vx = 0, Vy 6= 0, then a

b
>
∣∣∣VyVz ∣∣∣. If Vx 6= 0, Vy = 0, then

b
a
>
∣∣∣VxVz ∣∣∣. If VxVy 6= 0, then:

b

a
∈
(
|Vz| − 2l

2|Vy|
,
|Vz|+ 2l

2|Vy|

)
(33)

where l is the scale factor defined in Equation (15).
If Vz = 0, Equation (11) can be written as:

b =

√
−Vy
Vx
a (34)

and γ is free. This case corresponds to the lattice transformation where the mirror line is the bisector of
ai ∧ bi. An example is the standard primitive setting of centered rectangular lattices where a = b [21].
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2.7.2. One Free Parameter (Table 5, Line 7)

Equation (18) can be written in terms of a, b and γ as:

b =

√
Uy
Ux
a (35)

and

γ = cos−1

(
Uz√
UxUy

a

)
(36)

2.8. Determinateness of Transformation Matrices

To interpret the layer group and OD groupoid family symbols (see Section 2.10), the printed symbols
for symmetry elements [22] must be converted into transformation matrices. Since the linear part M
of any PO can only take the form of Equation (3), the task is reduced to determining the matrix P ,
representing the two-dimensional lattice transformation, and extending it by m33 = ±1, depending on
the type of operation. If the lattice restriction of the OD family is defined sufficiently, P is unambiguous
and independent of the lattice parameters a, b and γ. The matrices representing rotations by ψ = 0, π

are always unambiguously defined. In any basis, the corresponding matrix reads as:

P = ±I2 (37)

2.8.1. Two Free Parameters

If the geometry of a lattice is restricted according to Equation (11), it can be unambiguously associated
with two mirror operations represented by the matrix ±P ′ according to Equation (14). The matrix
representing a mirror operation is only unambiguously defined if the latter is one of these two operations,
as derived in Appendix 1.4. Thus, only mirror operations at lines that are left invariant by the operations
represented by ±P ′ are unambiguously defined. The matrix representation P of a mirror operation at a
line parallel to ua + vb is:

P =


P ′ if P ′

u
v

 =

u
v


−P ′ if − P ′

u
v

 =

u
v

 (38)

or dependent on the actual lattice metrics otherwise. The matrix representing a rotation by ψ 6= 0, π

is never unambiguously defined if there are two free lattice parameters.

2.8.2. One Free Parameter

The matrices representing mirror operations at a line parallel to ua + vb and normal to ua + vb and
rotations by ψ are given in Table 6 and derived in Appendix 1.4.
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Table 6. Matrices P representing two-dimensional lattice transformations if the lattice
restriction reads as U × (a2,b2, a · b)T = o (one free parameter).

Operation P

Mirror at a line parallel to ua+ vb 1
o

(
m− nUzUx n(

Uy
Ux
− 2U

2
z

U2
x
) + 2mUz

Ux

n −m+ nUzUx

)
†

Mirror at a line normal to ua+ vb 1
o

(
−m+ nUzUx −n(UyUx − 2U

2
z

U2
x
)− 2mUz

Ux

−n m− nUzUx

)
†

Rotation by ψ

cosψ − Uz sinψ√
UxUy−U2

z

− Uy sinψ√
UxUy−U2

z
Ux sinψ√
UxUy−U2

z

cosψ + Uz sinψ√
UxUy−U2

z


Note: m = u2 + v2

2U2
z−UxUy

U2
x

+ 2uv Uz

Ux
, n = 2(uv + u2 Uz

Ux
), o = u2 + v2

Uy

Ux
+ 2uv Uz

Ux
.

2.9. Representation Using Centered Lattices

For convenience, crystallographers commonly use the concept of centered lattices. For example,
a rectangular centered lattice (a′,b′) is decomposed into the 0 and 1

2
(a + b) cosets of a primitive

rectangular sublattice (a,b). Whereas using primitive lattices over centered lattices generally simplifies
computational problems and mathematical reasoning, since there is no need to keep track of centering
vectors, centered lattices may be more descriptive. Thus, in the following paragraphs, possible centered
settings will be described, excluding the three free parameter case.

2.9.1. Two Free Parameters

If the lattice of a layer Li is restricted according to Equation (11), the restriction can be associated
with two mirror operations at perpendicular lines, represented by the matrices ±P of Equation (14).
Thus, a description that suggests itself is in terms of rectangular centered lattices: since P is rational,
both perpendicular mirror lines are parallel to an infinity of non-zero lattice vectors. The shortest of
these two sets of vectors, a′i and b′i, span a rectangular lattice L′, which is invariant under the application
of the mirror operations represented by ±P . As expected, also in this setting, there are two free lattice
parameters, viz., a′ = |a′| and b′ = |b′|, whereas γ′ = a′ ∧ b′ = π

2
is fixed.

The coset decomposition of L′ in Li furnishes the centering vectors of Li. If the coset decompositions
are {L′} or {L′, 1

2
(a′i + b′i)L

′}, then Li is a rectangular primitive or a rectangular c-centered lattice,
respectively. In these two cases, the lattice Lj generated from Li by the operation represented by P is
identical to Li. In all other cases, Li 6= Lj .

The intersection Li ∩ Lj is invariant under the mirror operation described by P , and therefore, it is
always either a rectangular primitive or a rectangular c-centered lattice: if u ∈ Li∩Lj , then u ∈ Lj , and
thus, it was generated from a vector u′ ∈ Li. Since P 2 = I2, the mirror image of u ∈ Li is u′ ∈ Lj .
Thus, u′ ∈ Li ∩ Lj .
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2.9.2. One Free Parameter

As has been shown in Section 2.4.3, a lattice restriction with one free parameter cannot be related to a
unique transformation matrixP , and thus, the choice of a suitable basis is not as obvious as in the case of
two free parameters. In OD families fulfilling VCβ, the sublattice common to all polytypes is an obvious
choice. Otherwise, if square or hexagonal sublattices can be found, these would probably represent a
good bases for centered lattices (the centering vectors are again determined by coset-decomposition).

For any lattice restricted according to Equation (18), a rectangular sublattice can be found: Since
Ux, Uz ∈ Q, from Equation (18), it follows that the ratio of ai · bi to a2

i is rational:

ai · bi =
qa2

i

r
(39)

with q ∈ Z, r ∈ Z \ {0}. Thus, (ai, qai − rbi) spans a rectangular sublattice (which is not necessarily
the largest rectangular sublattice of Li). For example, a hexagonal lattice can always be represented by
rectangular c-centered lattices with b =

√
3a (or a =

√
3b) (Figure 4). Nevertheless, as opposed to the

case of two free parameters, this is not necessarily a convenient setting. Indeed, hexagonal lattices are
usually described in the primitive setting, since it is more descriptive.

Figure 4. The primitive (ap,bp) and c-centered (ac,bc) settings of a hexagonal lattice.
Lattice points are indicated by black dots, the unit-cells of the primitive and centered cells
by black and red lines, respectively.

ap=ac

bp

bc

2.10. Extension of the Notation for OD Groupoid Families

Symbols describing OD groupoid families based on the Hermann–Mauguin notation were developed
by Dornberger–Schiff and Grell–Niemann [8,13] for OD families fulfilling VCβ′. A shortening and an
update of the notation was proposed by Fichtner [4,23]. Until a more general notation is developed, a
few ad hoc adaptations are proposed below to enable the description of OD groupoid families fulfilling
only VCβ or VCβ′.

2.10.1. Notation for Layers with All of the Same Lattice (VCβ′)

As has been stated in Section 2.3, if the layers of an OD family all feature the same lattice, the latter
must be invariant under application of any σ- or λ-PO. Therefore, the OD family can be associated with
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one of the five two-dimensional Bravais types of lattices [16], and all σ- and λ-POs only appear in the
directions of the crystallographic point groups (with the exception of cubic point groups, which are not
possible for layers). The OD groupoid symbol contains the Hermann–Mauguin symbol of the layer group
type of every kind of layer. The direction lacking translational symmetry is indicated by parentheses. The
σ-POs are listed in curly braces below or besides the layer group symbols. The direction is implicitly
derived from the place in the symbol. For tetragonal, trigonal and hexagonal OD families, five- and
seven-placed symbols are used, since the σ-POs are not necessarily equivalent in all directions of {110}
or {120}. If the translational components of the σ-POs are not indicated by intrinsic translations of
screws or glides, they are specified additionally in brackets. The bracket-notation is likewise used for
adjacent layers of different kind. Examples of OD groupoid family symbols composed of layers of one
and two kinds are:

p 2 2 (4) 2 2 nr−s,2 n2,r+s

 4
+

4
−

nr+s,r−s

 n2,s n2,−r

 (40)

and
pmm(m) pmm(m)

[r, s]
(41)

Equation (40) describes an OD family made up of layers of one kind with tetragonal p(4)22 symmetry.
The operations of the layer group and the σ-POs are given in the [100], [010], [001], [110] and [110]

directions. Thus, given a layer Li, one possible orientation of the adjacent layer Lj is related to
Li by four-fold rotoinversions or by glides with planes parallel to either of the five given directions.
Equation (41) describes an OD family made up of layers of two kinds, both with orthorhombic pmm(m)

symmetry and the same lattice. The origins of the layer Li and of one possible orientation of the adjacent
layer Lj are connected by the vector rai + sbi + c0, where c0 is a vector normal to the layer planes.

2.10.2. Adapted Notation

In OD families with partially overlapping layer lattices, σ-POs can appear in arbitrary (rational)
directions. If they appear in non-crystallographic directions, the notation for OD families described
above is not adequate. Therefore, it is proposed to list all symmetry elements in the same direction in
columns with the direction given in the column head. The σ-POs are listed besides, not below, the layer
group symbols, since the positions in the layer group symbol and the σ-PO list do not stand for the same
direction. As an example consider the symbol of an OD groupoid family of non-polar layers:

p(4)11

{
[120]

2s

[210]

2r

[130]

n2, r
2
+ s

2

[310]

n2, r
2
− s

2

}
(42)

Note that since the positions of the layer group symbol are not used for the σ-POs, the tetragonal layer
group is indicated using the usual three-placed symbol. In this case, the σ-POs are listed only up to the
lattice of the layer and not relative to the common sublattice of both adjacent layers to save space.
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To indicate the relationship of the lattices of layers of different kinds, the base (a′,b′) of the layer is
expressed in terms of the base (a,b) of a (arbitrarily chosen) global lattice either in the subscript of the
Bravais symbol or in curly braces after the Bravais symbol. Thus, the layer group symbol may read as:

p{a′ = a + b,b′ = a− b}nm(a) (43)

or
pa′=a+b,b′=a−bnm(a) (44)

Finally, as has been stated in Section 2.8, the direction and rotation angle of a σ-PO does, in some
cases, not fully describe the operation. It may, therefore, be necessary to indicate additional restrictions
of the global lattice. If the global lattice is restricted according to Equation (11) (two free parameters),
it is chosen to be rectangular, as described in Section 2.9. The rectangular lattice restriction is indicated
by writing “op”—the symbol for the rectangular primitive Bravais type of lattices [21]—in front of the
OD groupoid family symbol. If the global lattice is restricted according to Equation (18) (one free
parameter), the restriction of the global lattice is written in front of the OD-family symbol in angle
brackets. Depending on the case, this may be more favorably done in terms of vectors or lattice
parameters: e.g., “〈a · b = −a2

2
,b2 = a2〉” or “〈a = b, γ = 120◦〉”. The primitive settings of the

square (〈a · b = 0,b2 = a2〉) and hexagonal (〈a · b = −a2

2
,b2 = a2〉) lattices may be abbreviated

by the symbols tp and hp of the corresponding Bravais types of lattices [21]. An example where the
specification of the lattice restriction and the indication of the location of the layer relative to the global
lattice is necessary is given in Section 2.12.2.

2.11. Basis-Independent Classification of Lattice Restrictions

The lattice restrictions presented in the previous sections were expressed in terms of scalar products
of the basis vectors and, thus, are dependent on the choice of the (primitive) basis. To compare two
lattice restrictions for equivalence (i.e., the existence of primitive settings in which both restrictions are
identical) in the case of two free parameters, the lattices are expressed as centered rectangular lattices, as
described in Section 2.9.1, and the centering vectors are compared (taking into account the permutations
of the basis vectors). In the case of only one free parameter, a canonical representation of both lattice
restrictions obtained by lattice reduction is compared.

2.12. Examples

2.12.1. Example 1: Lattice Restrictions Induced by Mirror Operations

In Figure 5, the lattice basis vectors of three times six different pairs of layers (Lki , L
k
j ), k = 1, . . . , 6,

where the lattices of Lki and Lkj are related by mirror operations, are represented. The mirror line is
parallel to ai (Figure 5a), normal to ai (Figure 5b) or the bisector of ai ∧ bi (Figure 5c). In all three
cases, there are two free parameters, and the lattice restriction can be written as in Equation (11) with
V = (−1, 0, 2)T (Figure 5a,b) and V = (1,−4, 0)T (Figure 5c). Whereas the σ-POs in Figure 5a,b
are different, the lattice transformations and, as a consequence, the lattice restrictions in both cases are
equivalent, since mirroring at a line and at the perpendicular line are equivalent lattice transformations.
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In the examples of Figure 5a,b, if ai is fixed, then the end point of bi can be moved along a line normal
to ai. In Figure 5c, |bi|/|ai| is fixed and the angle γi = ai ∧ bi is free. In terms of the lattice parameters
a, b, γ, the lattice restrictions read as b > a

2
, γ = cos−1( a

2b
) (Figure 5a,b) and a = 2b (Figure 5c).

Figure 5. Lattice basis vectors of pairs of layers (Lki , L
k
j ), related by σ-POs, where the

lattice transformation component is a mirror operation with line (a) parallel to ai; (b) normal
to ai and (c) bisecting ai ∧ bi. Basis vectors of Lki and Lkj are represented by black and blue

arrows, respectively; the mirror line by a red line. The lattice restriction is (a,b) ai · bi =
a2
i

2

and (c) |ai| = 2|bi|.
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2.12.2. Example 2: POs of the Same Kind, Different OD Families

In Figure 6, two pairs of equivalent layers (Lki , L
k
j ), k = 1, 2 with symmetry p11(1) are schematized.

In both cases, Lki and Lkj are related by screws and rotations with axes parallel to [100] (expressed in the
coordinate system of either layer or the common lattice of both layers) and intrinsic translation vectors
nai
5

with n = 0, 1, 2, 3, 4. Nevertheless, both figures represent different OD families. In Figure 6a, the
linear part of the σ-POs expressed in the coordinate system of layer Li is:

M =

1 2
5

0

0 1 0

0 0 1

 (45)

whereas it is:

M =

1 4
5

0

0 1 0

0 0 1

 (46)

in Figure 6b. Both cases can be distinguished by the restriction of the lattices. Since the lattices are
related by a mirror operation, there are two free parameters and the lattices are restricted according to
Equation (11) with V = (−1, 0, 5)T (Figure 6a) and V = (−2, 0, 5)T (Figure 6b). These restrictions
expand to ai · bi =

a2
i

5
, and ai · bi =

2a2
i

5
, respectively. To describe the layer stacking according

to the ad hoc notation of Section 2.10, the layers are expressed relative to global rectangular lattices
(ai, 5bi − ai) and (ai, 5bi − 2ai), whose unit cells are indicated by dashed lines in Figure 6. Since the
given layers are polar, a second layer contact is needed to fully describe an OD family. If the other sides
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of the layers contact via a glide with the plane parallel to the layer planes, the proposed OD groupoid
family symbols read as:

O pb′=a
5
+b

5
1 1 (1)

2r′

2 2
5
+r′

2 4
5
+r′

2 6
5
+r′

2 8
5
+r′

− (−)


{ − − (nr,s) }

and

O pb′= 2a
5
+b

5
1 1 (1)

2r′

2 2
5
+r′

2 4
5
+r′

2 6
5
+r′

2 8
5
+r′

− (−)


{ − − (nr,s) }

(47)

with r′ = 0 in the example of Figure 6. Since the axes of the screws are parallel to the [100] direction,
the directions of the POs can be given implicitly by the position in the symbol. If the rectangular
sublattice is chosen as the setting of the layers, they possess non-Bravais centering with four centering
vectors n

5
(a + b) and n

5
(2a + b) (n = 1, 2, 3, 4), respectively.

Figure 6. Pairs of layers (Lki , L
k
j ) related by two-fold rotations and screws with axes parallel

to [100] viewed down [001]. Layers are represented by triangles, which are painted white
and black for Lki and Lkj , respectively. The lattice points are represented by circles and
crosses; the unit cells by black and red parallelograms, respectively. The unit cell of the
common lattice of both layers is indicated by dashed lines. σ-POs transforming Lki into
Lkj are indicated to the right using the standard graphical and printed symbols [22,24].
Screws with unusual intrinsic translation vectors (6= a

2
) are represented by the graphical

symbol for 21 screws. (a) k = 1; (b) k = 2.

Li
Lj

ai=aj

bi

bj

28/5

26/5

24/5

22/5

2
28/5

26/5

24/5

22/5

2

2

(a)

Li
Lj

ai=aj

bi

bj

26/5

22/5

28/5

24/5

2
26/5

22/5

28/5

24/5

2

2

(b)

2.12.3. Example 3: KOH·2H2O

Partially overlapping layer lattices related by rotation are observed in KOH·2H2O. The structure
belongs to an OD family of non-polar layers of one kind. The layers possess orthorhombic symmetry
pbm(a). Adjacent layers are related by four-fold screws with the axis parallel to the stacking direction
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[001] (Figure 7). Therefore, the lattices are restricted according to Equation (18), and there is only one
free lattice parameter. In this case, U = (1, 4, 0)T , or in terms of the lattice parameters: b = 2a, γ = π

2
.

The linear part of the 4−4 operation relating Li and Lj reads as:

M =

0 2 0
1
2

0 0

0 0 1

 (48)

Figure 7. Schematic representation of a pair of equivalent adjacent layers (Li, Lj) with
pbm(a) symmetry in the crystal structure of KOH·2H2O. Arrows represent hydroxyl ions
moved from an averaged position in the direction of the arrow. Arrows are filled on one and
outlined on the other side, representing the connectivity of the hydroxyl ions to layers Ln+1

or Ln−1. Layers Li and Lj are painted in black and red, respectively. Symmetry elements
have been left out for clarity.

ai

bi

aj

bj

Li

Lj

The square lattice (a,b) = (2ai,bi) is common to all layers (VCβ is fulfilled), and therefore, the
structure is best described in terms of this lattice. The OD groupoid family symbol then reads as:

tp pa′=2abm(a)



[210] [210] [001]

2r 2 3
4
+s 4+

4

2 1
2
+r 2 5

4
+s 4−4

n2, 1
2
−s n2, 7

4
+r 4

+

n2,1−s n2, 1
4
+r 4

−


(49)

Note that the directions of the σ-POs are given with respect to the layer lattices, not the common
square sublattice. The intrinsic translations are given with respect to the primitive lattice vector in the
given direction. For example, the intrinsic translations along [210] are given relative to 2ai+bi = a+b.
In the actual structure, (r, s) = (1

2
, 1
4
); thus, one possible orientation of the layer Lj is generated from Li

by a screw with intrinsic translation 1
2
(a + b) = (ai + bi

2
).

2.12.4. Example 4: Layers of Different Kinds

In Figure 8, three different OD families composed of an alternating stacking of non-polar layers of two
kinds are depicted. All layers possess p2m(m) symmetry. The basis (aj,bj) of one possible orientation
of layer Lkj , k = 1, 2, 3 is related to the basis (ai,bi) of layer Lki by (aj,bj) = (ai − bi, ai + bi)
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(Figure 8a), (aj,bj) = (ai−2bi, 2ai+bi) (Figure 8b) and (aj,bj) = (ai−bi, 2ai+bi) (Figure 8c). Due
to the orthorhombic layer group p2m(m), each layer lattice must be rectangular (ai · bi = aj · bj = 0).
Moreover, according to the rules given in Section 2.6, the lattices must be square in Figure 8a,b (ai = bi,
aj = bj , γi = γj = π

2
) or fulfill bi =

√
2ai, bj =

√
2aj , γi = γj = π

2
in Figure 8c. Thus, the lattices are

restricted according to Equation (18) with U = (1, 1, 0)T (Figure 8a,b) and U = (1, 2, 0)T (Figure 8c).
Although, in all three cases, the layers Lki and Lkj are restricted by the same lattice restrictions, the
individual layers of each pair feature different lattice metrics. The lattice parameters are linked by
aj =

√
2ai (Figure 8a), aj =

√
5ai (Figure 8b) and aj =

√
3ai (Figure 8c). In the OD family depicted in

Figure 8a, the lattice Lj is a common sublattice of all layers. Thus, the OD family fulfills VCβ. The point
group of the family (the group generated by the linear parts of all POs [10]) is 422. In the examples in
Figure 8b,c, on the other hand, polytypes with no translational symmetry exist; thus, only VCβ′′ is
fulfilled. The non-crystallographic point groups of both cases are written as ∞2 (The equivalence of
such point groups is not obvious. Consider, for example, the point groups of rotations by ψ = qπ/

√
2

and by ψ = qπ/
√

3, q ∈ Q, which would both be written as∞, but possess only one common element).
The OD family symbols could be written according to the modifications of Section 2.10 as:

tp p2m(m) pa′=a+b,b′=a−b2/m1(1)

[r, s]
(Figure 8a) (50)

tp p2m(m) pa′=2a+b,b′=a−2b2/m1(1)

[r, s]
(Figure 8b) (51)

〈a · b = 0,b2 = 2a2〉 p2m(m) pa′=2a+b,b′=a−b2/m1(1)

[r, s]
(Figure 8c) (52)

Figure 8. Pairs of non-equivalent layers (Lki , L
k
j ), k = 1, 2, 3 with p2m(m) symmetry each,

viewed down [001]. Layers are represented by triangles, which are painted in white and
black for Li and Lj , respectively. The lattice vectors are represented by crosses and circles;
the unit cells by black and red squares, respectively. (a) (aj,bj) = (ai − bi, ai + bi);
(b) (aj,bj) = (ai − 2bi, 2ai + bi); (c) (aj,bj) = (ai − bi, 2ai + bi).

bi

bj

ai

ajLi
Lj1
1

(a)

bi

bj

ai

ajLi

Lj

2

2

(b)

bi

bj

ai

ajLi
Lj3
3

(c)
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The indication of the lattice restriction is redundant, since it can be deduced from the symmetry
groups and the relations of the layers. Nevertheless, it is spelled out for clarity.

2.12.5. Example 5: Centered Layers

In Figure 9, the lattices of two equivalent layers Li and Lj with c22(2) symmetry are represented by
crosses and circles, respectively. The bases of the centered setting of the layers are (ai,bi) and (aj,bj)

and the lattice parameters a, b and γ. The transformation matrix with respect to (ai,bi) reads as:

P =

(
1
7

12
7

4
7

1
7

)
(53)

Figure 9. A pair of equivalent layers (Li, Lj) with c22(2) symmetry related by a screw
by ψ = cos−1

(
1
7

)
, viewed down [001]. The lattices are represented by crosses and circles,

respectively. The unit cells of the centered and primitive settings of the layers are represented
by solid and dotted lines drawn in black (Li) and red (Lj). The common lattice Li ∩ Lj is
represented by dashed lines. The directions of the σ-POs are indicated by arrows.

ai

bi

aj

bj

ai'

bi'
bj'

aj'

[210]i≘[130]i

[320]i≘[510]i
_

'

'

Substitution into Equation (20) and simplification by common factors leads to U = (1, 3, 0)T or
b =
√

3a, γ = π
2
. The transformation matrix with respect to the primitive basis (a′i,b

′
i) = 1

2
(a−b, a+b)

of the Li layer reads as:

P ′ =

(
3
7

8
7

8
7

5
7

)
(54)

Substitution into Equation (20) and simplification by common factors leads to U = (1, 1,−2)T or in
terms of the lattice parameters: b′ = a′, γ′ = 2π

3
. Thus, the primitive settings of the Li and Lj layers

possess hexagonal metrics, and in this example, the expression of the symmetry operations may be more
convenient in the primitive setting. Expression of centered layer groups in the primitive setting is in
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principle realized in the seven-placed OD groupoid symbols of hexagonal and trigonal OD families. The
largest common lattice Li ∩ Lj of the Li and Lj layers is spanned by (a′′,b′′) = (3a′i + 2b′i,−2a′i + b′i)

and likewise possesses hexagonal metrics. This is indicated in Figure 9 by dashed lines. The matrices
P and P ′ represent a rotation by ψ = cos−1

(
1
7

)
. Using the generalization of the printed symbols for

screws [8], the adapted OD groupoid family symbol could be written as:

< b =
√

3a, γ =
π

2
> c22(2)


[001]

2π/ cos−1
(
1
7

)+
2π/ cos−1( 1

7)

2π/ cos−1
(
−1

7

)−
2π/ cos−1(− 1

7)

[210]

2r

2r+ 5
7

[320]

2s

2s+ 12
7

 (55)

or, perhaps more concisely, using the seven-placed notation as:

hp p211(2)211


[001] [130] [510]

2π/ cos−1
(
1
7

)+
2π/ cos−1( 1

7) 2r 2s

2π/ cos−1
(
−1

7

)−
2π/ cos−1(− 1

7)

 (56)

Clearly, the usual notation for screws and rotations is cumbersome for non-crystallographic rotation
angles, and further adaptations are needed. The non-crystallographic point group of the OD family
is∞2.

3. Conclusions

It has been shown that operations relating equivalent layers in OD families, as well as the existence
of non-equivalent layers lead to lattice restrictions that can be expressed as linear relations of the
scalar products of the lattice basis vectors with rational coefficients. These relations are a concise and
convenient computational device for the analysis of OD families. Nevertheless, these considerations
only scratch the surface of a theory of OD structures composed of layers with different translational
groups, and significantly more work is needed. For example, a classification of OD families based on
these restrictions in analogy to the assignment of symmetry groups to Bravais types of lattices still has
to be worked out. Besides the analysis of the OD structures, the presented considerations might also be
interesting in the case of twinning, where two twin mates contact via equivalent planar interfaces.
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Appendix

1. Derivation of the Relations Used in the Previous Sections

1.1. Lattice Restrictions Induced by POs

Layers Li and Lj are of the same kind, with lattices spanned by (ai,bi) and (aj,bj). The lattices are
related by:

(aj,bj) = (ai,bi)

(
p11 p12

p21 p22

)
= (ai,bi)P (A1)

with pij ∈ Q. The metric tensor transforms according to:

Gj = P TGiP (A2)

Since layers Li and Lj are of the same kind, Gi = Gj , and therefore:

Gi = P TGiP (A3)

Expansion leads to three equations of the form:

(a2
i ,b

2
i , ai · bi)V k = 0 (A4)

with

V 1 =

p211 − 1

p221
2p11p21

 (A5)

V 2 =

 p212
p222 − 1

2p12p22

 (A6)

and

V 3 =

 p11p12

p21p22

p11p22 + p12p21 − 1

 (A7)

Equation (A4) is either always true (V k = o) or represents a plane in E3 where the three dimensions
represent a2

i , b
2
i and ai · bi, respectively.

1.1.1. Mirroring

If P represents a mirror operation, then det(P ) = −1 and tr(P ) = p11 + p22 = 0 and, as a
consequence, p211 = p222 = −p11p22 = 1− p12p21. Substitution into Equations (A5)–(A7) gives:

V 1 = −p21V (A8)

V 2 = p12V (A9)
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and
V 3 = p11V (A10)

with

V =

VxVy
Vz

 =

 p12

−p21
−2p11

 6= o (A11)

Thus, all V i are parallel (or zero), and since at least one V i 6= o, the possible solutions are always
described by the plane:

(a2,b2, a · b)V = 0 (A12)

1.1.2. Rotation

If P represents a rotation by ψ, then det(P ) = 1. If ψ = 0, π, then p12 = p21 = 0 and
p11 = p22 = ±1, and therefore, V i = o, i = 1, 2, 3. Thus, the lattice is not restricted.

If ψ 6= 0, π, then | tr(P )| = |p11 + p22| < 2, and therefore, p11p22 6= 1 and, also, p12p21 6= 0.
Thus, V 1,V 2 6= o. The imposed lattice restrictions can be derived by calculating the intersections of
Equations (A5)–(A7) by forming the cross-products V k × V l or, more simply, geometrically: from the
scheme in Figure A1, it follows that:

a sinψ = p21b sin γ (A13)

and
b sinψ = −p12a sin γ (A14)

with a = |ai| = |aj|, b = |bi| = |bj|, p12, p21, sinψ and sin γ all non-zero, and thus:

b2
i = −p12

p21
a2
i (A15)

Figure A1. Pair of lattices (ai,bi) and (aj,bj) related by a rotation by ψ. The lattice basis
vectors are drawn in black and red; the vectors p12ai and p21bi in blue.

ai

biψ

γ

aj

bj

p21bi

asinψ=
p21bsinγ

γ
bsinψ=
-p12asinγ

p12ai

Since d = 1, p11p22 = p12p21 + 1, thus Equations (A4) and (A7) expand to:

p11p12a
2
i + p21p22b

2
i + 2p12p21ai · bi = 0 (A16)

Substitution of Equation (A15) into Equation (A16) gives:

(p11 − p22)a2 + 2p21ai · bi = 0 (A17)
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Equations (A15) and (A17) can be written as:

(a2
i ,b

2
i , ai · bi) = (a2

j ,b
2
j , aj · bj) = λUT , λ ∈ R (A18)

or equivalently as:
U × (a2

i ,b
2
i , ai · bi)T = o (A19)

with

U =

UxUy
Uz

 =

 2p21

−2p12

−p11 + p22

 (A20)

1.2. Valid Lattice Restrictions

In Appendix 1.1, lattice restrictions of the forms of Equations (A12) and (A18) were derived
from σ-POs relating equivalent lattices. In this section, it will be shown which forms the vectors in
Equations (A12) and (A18) can take, so that solutions with positive-definite tensors Gi exist, i.e., lattices
(ai,bi) fulfilling a2

i > 0, b2
i > 0 and:

(ai · bi)2 < a2
ib

2
i (A21)

Moreover, the range of the valid lattice parameters a, b and γ will be derived.

Two Free Parameters

If Vz 6= 0, Equations (A12) and (A21) combine to:

V 2
x (a2

i )
2 + V 2

y (b2
i )

2 + (2VxVy − V 2
z )a2

ib
2
i < 0 (A22)

By setting r =
b2
i

a2
i
> 0, the inequality becomes:

V 2
y r

2 + (2VxVy − V 2
z )r + V 2

x < 0 (A23)

For Vx = 0, this inequality simplifies to:

1

r
>
V 2
y

V 2
z

(A24)

and for Vy = 0 to:

r >
V 2
x

V 2
z

(A25)

If VxVy 6= 0, the left side of Equation (A23) is a second degree polynomial in r with discriminant:

∆ = 4V 2
z l

2 (A26)

where

l2 =
V 2
z

4
− VxVy (A27)

Equation (A23) has solutions if the left side polynomial has two distinct roots (∆ > 0), and therefore,
only V fulfilling:

V 2
z − 4VxVy > 0 (A28)
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represent valid lattice restrictions. The roots of Equation (A23) are:

r1,2 =
V 2
z − 2VxVy ± 2Vzl

2V 2
y

(A29)

or after substitution of VxVy = V 2
z

4
− l2:

r1,2 =
(Vz ± 2l)2

4V 2
y

(A30)

Due to VxVy 6= 0, Vz 6= ±2l; thus, both roots are positive and distinct (since Vz 6= 0 and l > 0), and
valid r are:

r ∈
(

(|Vz| − 2l)2

4V 2
y

,
(|Vz|+ 2l)2

4V 2
y

)
(A31)

For Vz = 0, Equation (A12) simplifies to:

Vxa
2
i + Vyb

2
i = 0 (A32)

which is only fulfilled for VxVy < 0, a special case of Equation (A28).

One Free Parameter

From a2 > 0, b2 > 0 and Equations (A18) and (A21), it follows directly that:

U2
z < UxUy (A33)

1.3. Transformations of Lattice Restrictions

The lattices Li and Lj spanned by (ai,bi) and (aj,bj) are related by:

(aj,bj) = (ai,bi)

(
p11 p12

p21 p22

)
= (aj,bj)P (A34)

with d = det(P ) 6= 0. The metric tensors transform according to:

Gj = P TGiP (A35)

and
Gi = P−1,TGjP

−1 (A36)

Expansion leads to:
(a2

j ,b
2
j , aj · bj) = (a2

i ,b
2
i , ai · bi)Q (A37)

and
(a2

i ,b
2
i , ai · bi) = (a2

j ,b
2
j , aj · bj)

1

d2
R (A38)

with

Q =

 p211 p212 p11p12

p221 p222 p21p22

2p11p21 2p12p22 p11p22 + p12p21

 (A39)
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and

R =

 p222 p212 −p21p22
p221 p211 −p11p21

−2p21p22 −2p11p12 p11p22 + p12p21

 (A40)

Substitution of Equation (A38) into Equation (A12) gives:

((a2
j ,b

2
j , aj · bj)

1

d2
R)Vj = 0 (A41)

which is equivalent to:
(a2

j ,b
2
j , aj · bj)(RVj) = 0 (A42)

Right multiplication of both sides of Equation (A18) withQ gives:

(a2
j ,b

2
j , aj · bj) = λUT

i Q = λUT
j (A43)

from which it follows:
UT
j = UT

i Q (A44)

which can be written in terms of column vectors as:

U j = QTU i (A45)

To show that the lattice restriction described by V j is valid if the restriction described by V i is valid
(it fulfills Equation (A28)), i.e., that:

V j =

V ′xV ′y
V ′z

 (A46)

fulfills:
V ′xV

′
y <

V ′z
4

(A47)

substitution of Equation (A42) into Equation (A47) and factorization leads to:

d2VxVy < 2(p211p
2
22 + p212p

2
21)
V 2
z

4
(A48)

Since d 6= 0, d2 > 0 and p211p
2
22 + p212p

2
21 > 0, and thus, from VxVy <

Vz
4

, it follows that the inequality
of Equation (A48) is fulfilled if:

d2 ≤ 2(p211p
2
22 + p212p

2
21) (A49)

which can be written as:
(p11p22 + p12p21)

2 ≥ 0 (A50)

which is always true. In analogy to show that:

U j =

U ′xU ′y
U ′z

 (A51)
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fulfills:
U ′2z < W ′

xW
′
y (A52)

substitution of Equation (A43) into Equation (A51) and factorization gives:

d2U2
z < d2UxUy (A53)

which follows directly from U2
z < UxUy for d 6= 0.

1.4. Determinateness of Matrix Representations

If a lattice is restricted according to Equation (A12), it can be described as a rectangular centered
lattice with basis vectors (a′,b′). The matrix representing a mirror operation at a line parallel to ua′+vb′

reads as:

P ′ =
1

u2 + v2

(
u2 − v2 |b′|

|a′|2uv
|a′|
|b′|2uv −u2 + v2

)
(A54)

Since |b
′|
|a′| can vary, the matrix is only unambiguously defined if uv = 0, i.e., for matrices representing

mirror operations at lines parallel to a′ or b′.
If the lattice is restricted according to Equation (A18), a square coordinate system (a′,b′) can be

constructed according to:

(a′,b′) = (a,b)

1 −Uz√
UxUy−U2

z

0 Ux√
UxUy−U2

z

 = (a,b)T (A55)

Using the well-known mirror or rotation matrix P ′ in square coordinate systems, the matrix P is then
obtained by transformation of the basis:

P = TP ′T−1 (A56)

1.4.1. Mirroring at a Line Parallel to ua + vb

The vector ua + vb is expressed in terms of the base (a′,b′) as u′a′ + v′b′:(
u′

v′

)
= T−1

(
u

v

)
=

(
u+ Uz

Ux
k√

UxUy−U2
z

Ux
v

)
(A57)

The linear part P ′ of a mirror operation at a line parallel to u′a′ + v′b′ expressed in the square basis
(a′,b′) is:

P ′ =
1

u′2 + v′2

(
u′2 − v′2 2u′v′

2u′v′ −u′2 + v′2

)
(A58)

Thus, the matrix P expressed in the basis (a,b) is:

P = TP ′T−1

=
1

u′2 + v′2

(
u′2 − v′2 − 2u′v Uz

Ux
2u′v(Uy

Ux
− 2U

2
z

U2
x
) + 2Uz

Ux
(u′2 − v′2)

2u′v −(u′2 − v′2) + 2u′v Uz
Ux

)
(A59)

The matrix of a mirror operation at a line normal to ua+vb is obtained in analogy or by combination
with a rotation by π.
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1.4.2. Rotation by ψ

The matrix of a rotation by ψ reads in the square coordinate system (a′,b′) as:

P ′ =

(
cosψ − sinψ

sinψ cosψ

)
(A60)

The operation in the coordinate system (a,b) is then accordingly:

P = TP ′T−1 =

cosψ − Uz sinψ√
UxUy−U2

z

− Uy sinψ√
UxUy−U2

z

Ux sinψ√
UxUy−U2

z

cosψ + Uz sinψ√
UxUy−U2

z

 (A61)
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