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Abstract: This paper aims to construct conservation laws for a Benjamin–Bona–Mahony
equation with variable coefficients, which is a third-order partial differential equation. This
equation does not have a Lagrangian and so we transform it to a fourth-order partial
differential equation, which has a Lagrangian. The Noether approach is then employed to
construct the conservation laws. It so happens that the derived conserved quantities fail
to satisfy the divergence criterion and so one needs to make adjustments to the derived
conserved quantities in order to satisfy the divergence condition. The conservation laws
are then expressed in the original variable. Finally, a conservation law is used to obtain exact
solution of a special case of the Benjamin–Bona–Mahony equation.
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1. Introduction

The Benjamin–Bona–Mahony equation

ut + ux + uux − uxxt = 0 (1)
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was, for the first time, studied by Benjamin et al. [1]. It is also known as the regularized long-wave
equation and is applicable to shallow water waves and to the study of drift waves in plasma or the Rossby
waves in rotating fluids. See, for example, [2] and references therein. It should be noted, however, that
the BBM equation was also derived by Peregrine [3].

In the last two decades, various versions of the Benjamin–Bona–Mahony equation have been
investigated in the literature. A general form of the Benjamin–Bona–Mahony equation is [2]

ut + αux + βuux + δuxxt = 0 (2)

where α, β and δ are constants with the nonlinear and dispersion coefficients β 6= 0 and δ < 0,
respectively. For different values of the constants α, β and δ, Equation (2), results in various types
of nonlinear equations which are very useful in the study of various physical phenomena. See [2] and
references therein. However, in certain cases, the physical situations of the problem dictate us to consider
nonlinear equations with variable coefficients [2,4–8]. Recently, in [2] the variable coefficients version
of the Benjamin–Bona–Mahony equation

ut + α(t)ux + β(t)uux − δ(t)uxxt = 0 (3)

was investigated and some exact solutions were obtained using the classical Lie group method [9].
In this study, we consider the Equation (3), but with δ being an arbitrary constant, namely

ut + α(t)ux + β(t)uux + δuxxt = 0 (4)

where α(t) and β(t) are arbitrary functions of t. The objective of the study is to classify the Noether
operators and to construct conservation laws for the Equation (4).

Conservation laws are mathematical expressions of the physical laws, such as conservation of
energy, mass, momentum and so on. They play a very important role in the solution and reduction
of partial differential equations. Conservation laws have been widely used to investigate the existence,
uniqueness and stability of solutions of nonlinear partial differential equations. This can be seen in the
references [10–12]. They have also been employed in the development and use of numerical methods
(see for example, [13,14]). Recently, conserved vectors associated with Lie point symmetries have
been used to find exact solutions of some partial differential equations [15] and systems of ordinary
equations [16]. Noether theorem [17] gives us an elegant way to construct conservation laws provided a
Lagrangian is known for an Euler–Lagrange equation. Thus, the knowledge of a Lagrangian is essential
in this case.

It is worth mentioning that no Lagrangian exists for Equation (4) and as a result one can not invoke
Noether theorem. However, an interesting approach is employed to construct conservation laws for
Equation (4). It should be noted that the present approach, which we use here, fails to construct the
conservation laws for Equation (3), i.e., when δ is a function of t.

The paper is organized as follows. In Section 2 we briefly give the fundamental notations and
relations concerning the Noether symmetry approach. Section 3 obtains the Noether operators and
the corresponding conservation laws for the Equation (4). In Section 4, a conservation law is used
to obtain exact solution of a special case of the Benjamin–Bona–Mahony equation. Concluding remarks
are presented in Section 5.
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2. Fundamental Notations and Relations

Here we present some vital features of Noether operators concerning partial differential equations.
These results will be used in Section 3. The reader is referred to [17,18] for further details.

Consider the vector field

X = τ(t, x, z)
∂

∂t
+ ξ(t, x, z)

∂

∂x
+ η(t, x, z)

∂

∂z
(5)

which has the second-order prolongation X [2] given by

X [2] = τ(t, x, z)
∂

∂t
+ ξ(t, x, z)

∂

∂x
+ η(t, x, z)

∂

∂z
+ ζ1t

∂

∂zt
+

ζ2x
∂

∂zx
+ ζ1tt

∂

∂ztt
+ ζ2xx

∂

∂zxx
+ ζ1tx

∂

∂ztx
+ · · · (6)

where the expressions for ζ1t , ζ
2
x, ζ

1
tx and ζ2xx are given in [5]. The Euler–Lagrange operator is defined by

δ

δz
=

∂

∂z
−Dt

∂

∂zt
−Dx

∂

∂zx
+D2

t

∂

∂ztt
+D2

x

∂

∂zxx
+DxDt

∂

∂zxt
− · · · (7)

where the total differential operators are given by

Dt =
∂

∂t
+ zt

∂

∂z
+ ztt

∂

∂zt
+ zxt

∂

∂zx
+ · · · (8)

Dx =
∂

∂x
+ zx

∂

∂z
+ zxx

∂

∂zx
+ zxt

∂

∂zt
+ · · · (9)

Consider a partial differential equation of two independent variables, viz.,

E(t, x, z, zx, zt, ztt, zxx, · · · ) = 0 (10)

which has a second-order Lagrangian L, i.e., Equation (10) is equivalent to the Euler–Lagrange equation

δL

δz
= 0 (11)

Definition 1. The vector field X , of the form Equation (5), is called a Noether operator corresponding
to a second-order Lagrangian L of Equation (10) if

X [2](L) + {Dt(ξ
1) +Dx(ξ

2)}L = Dt(B
1) +Dx(B

2) (12)

for some gauge functions B1(t, x, z) and B2(t, x, z).

We now recall the following theorem.
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Theorem 1. (Noether [17]) If X , as given in Equation (5), is a Noether point symmetry generator
corresponding to a second-order Lagrangian L of Equation (10), then the vector T = (T 1, T 2)

with components

T 1 = τL+W
δL

δzt
+Dx(W )

δL

δztx
+Dt(W )

δL

δztt
−B1 (13)

T 2 = ξL+W
δL

δzx
+Dt(W )

δL

δztx
+Dx(W )

δL

δzxx
−B2 (14)

is a conserved vector for Equation (10) associated with the operator X , where W = η − ztτ − zxξ is
the Lie characteristic function.

3. Conservation Laws of Equation (4)

Consider the Benjamin–Bona–Mahony Equation (4). Here, we note that Equation (4) does not admit
a Lagrangian. Nevertheless, we can transform Equation (4) into a variational form by setting u = zx.
Thus, Equation (4) becomes a fourth-order equation, namely

ztx + α(t)zxx + β(t)zxzxx + δzxxxt = 0 (15)

It can easily be verified that a second-order Lagrangian of the Equation (15) is

L =
1

2

{
δzxxzxt − α(t)z2x − ztzx −

1

3
β(t)z3x

}
(16)

The substitution of L from Equation (16) into Equation (12) and splitting with respect to the
derivatives of z, yields an overdetermined system of linear PDEs

τz = 0, ηz = 0, ξz = 0, τx = 0, ξt = 0, ξx = 0, (17)

ηxx = 0, ηxt = 0, β′(t)τ + β(t)τt = 0, (18)

α′(t)ξ1 + β(t)ηx + α(t)τt = 0, (19)

− 1

2
ηt − α(t)ηx = B2

z , −1

2
ηx = B1

z , (20)

B1
t +B2

x = 0. (21)

After some lengthy calculations, the solution of the above system yields

τ = a(t) (22)

ξ = c1 (23)

η = c2x+ d(t) (24)

B1 = −1

2
c2z + f(t, x) (25)

B2 = −1

2
d′z − α(t)c2z + e(t, x) (26)

ft + ex = 0 (27)
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β′(t)a(t) + β(t)a′(t) = 0 (28)

α′(t)a(t) + α(t)a′(t) + β(t)c2 = 0 (29)

The analysis of Equations (28) and (29) prompts the following four cases:

Case 1. α(t) and β(t) arbitrary but not of the form contained in Cases 2–4.

In this case, we obtain two Noether point symmetries. These are given below together with their
corresponding gauge functions:

X1 =
∂

∂x
, B1 = f,B2 = e, ft + ex = 0 (30)

X2 = d(t)
∂

∂z
, B1 = f,B2 = −1

2
d′(t)z + e, ft + ex = 0 (31)

Invoking Theorem 1, and reverting back to the original variables, the two nontrivial conserved vectors
associated with these two Noether point symmetries are, respectively,

T 1
1 =

u2

2
+
δ

2
uuxx −

δ

2
u2x − f (32)

T 2
1 =

1

2
α(t)u2 +

1

3
β(t)u3 + δuuxt −

δ

2
uxut − e (33)

and

T 1
2 = −1

2
d(t)u− δ

2
d(t)uxx − f (34)

T 2
2 = −α(t)d(t)u− 1

2
d(t)

∫
utdx−

1

2
β(t)d(t)u2 − δd(t)uxt (35)

+
1

2
δd′(t)ux +

1

2
d′(t)

∫
udx− e

Here it can be seen that the above conserved vectors do not satisfy the divergence condition, viz.,
DiT

i|(4) = 0, as some excessive terms emerge that require some further analysis. By making a
slight adjustment to these terms, it can be shown that these terms can be absorbed into the divergence
condition. For,

Dt(T
1
1 ) +Dx(T

2
1 ) =

δ

2
uuxxt −

δ

2
uxuxt − ft − ex

= Dt(
δ

2
uuxx − f)−Dx(

δ

2
uxut + e) (36)

hence

Dt(T
1
1 −

δ

2
uuxx + f) +Dx(T

2
1 +

δ

2
uxut + e) = 0. (37)

We now redefine the conserved vectors in the parenthesis as:

T̄ 1
1 = T 1

1 −
δ

2
uuxx + f

=
1

2
u2 − δ

2
u2x (38)

T̄ 2
1 = T 2

1 +
δ

2
uxut + e

=
α(t)

2
u2 +

β(t)

3
u3 + δuuxt (39)
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Thus, the modified conserved vectors T̄ 1
1 and T̄ 2

1 satisfy the divergence condition. We observe that the
conserved vectors Equations (38) and (39) are local conserved vectors. Likewise, we can then construct
the second pair of the conserved quantities associated with T 1

2 and T 2
2 as:

T̄ 1
2 = −d(t)

2
u− δ

2
d(t)uxx (40)

T̄ 2
2 = −α(t)d(t)u− 1

2
d(t)

∫
utdx−

β(t)

2
d(t)u2 − δ

2
d(t)uxt +

δ

2
d′(t)ux

+
1

2
d′(t)

∫
udx (41)

Note that the conserved quantities Equations (40) and (41) are nonlocal conserved vectors, and since
d(t) is an arbitrary function of t, one obtains infinitely many nonlocal conserved vectors of Equation (4).
A special case of Equations (40) and (41), when d(t) = 1, is

T̄ 1
2 = −u

2
− δ

2
uxx (42)

T̄ 2
2 = −α(t)u− 1

2

∫
utdx−

β(t)

2
u2 − δ

2
uxt (43)

Case 2. α(t) = γ, β(t) = λ, where γ and λ are non-zero constants.

This case provides us with three Noether symmetry generators, namely,X1, X2 given by the operators
Equations (30) and (31) and X3 given by

X3 =
∂

∂t
with B1 = f,B2 = e, ft + ex = 0 (44)

The use of Noether conserved vector Equations (13) and (14) corresponding to X3 yields

T 1
3 = −1

2
γu2 − 1

6
λu3 +

δ

2
uxx

∫
utdx− f (45)

T 2
3 = γu

∫
utdx+

1

2

[ ∫
utdx

]2
+

1

2
λu2

∫
utdx+ δuxt

∫
utdx

−1

2
δux

∫
uttdx−

1

2
δu2t − e (46)

Again, the above conserved flow fails to satisfy the divergence criterion. Thus, by inheriting the same
procedure as in Case 1, the nontrivial conserved flows associated with X1, X2 and X3 are

T̄ 1
1 =

1

2
u2 − δ

2
u2x (47)

T̄ 2
1 =

γ

2
u2 +

λ

3
u3 + δuuxt (48)

T̄ 1
2 = −d(t)

2
u− δ

2
d(t)uxx (49)

T̄ 2
2 = −γd(t)u− 1

2
d(t)

∫
utdx−

λ

2
d(t)u2 − δ

2
d(t)uxt

+
δ

2
d′(t)ux +

1

2
d′(t)

∫
udx (50)
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and

T̄ 1
3 = −1

2
γu2 − 1

6
λu3 (51)

T̄ 2
3 = γu

∫
utdx+

1

2

[ ∫
utdx

]2
+

1

2
λu2

∫
utdx+ δuxt

∫
utdx

−1

2
δu2t (52)

respectively. The conserved vector Equations (47) and (48) is a local conserved vector whereas the
conserved vectors Equations (49) and (52) are nonlocal conserved quantities. It should be noted that one
can use Equations (49) and (50) to construct infinitely many nonlocal conserved vectors.

Case 3. α(t) = γeσt, β(t) = λeσt, where γ, σ and λ are nonzero constants.

Here we get three Noether point symmetries operators, viz., X1, X2 given by the operators
Equations (30) and (31) and X3 given by

X3 = e−σt
∂

∂t
with B1 = f,B2 = e, ft + ex = 0 (53)

The application of Theorem 1, with X3, gives

T 1
3 = −1

2
γu2 − 1

6
λu3 +

δ

2
e−σtuxx

∫
utdx− f (54)

T 2
3 = γu

∫
utdx+

1

2
e−σt

[ ∫
utdx

]2
+

1

2
λu2

∫
utdx+ δe−σtuxt

∫
utdx

−1

2
δe−σtux

∫
uttdx+

1

2
δσe−σtux

∫
utdx−

1

2
δe−σtu2t − e (55)

and as before, the modified conserved vectors are given by

T̄ 1
3 = T 1

3 −
δ

2
e−σtuxx

∫
utdx

= −γ
2
u2 − λ

6
u3 (56)

T̄ 2
3 = T 2

3 −
1

2
δσe−σtux

∫
utdx+

1

2
δe−σtux

∫
uttdx

= γu

∫
utdx+

1

2
e−σt

[ ∫
utdx

]2
+

1

2
λu2

∫
utdx+ δe−σtuxt

∫
utdx

−1

2
δe−σtu2t (57)

Thus, the nontrivial conserved flows associated with X1, X2 and X3 are, respectively,

T̄ 1
1 =

1

2
u2 − δ

2
u2x (58)

T̄ 2
1 =

γ

2
eσtu2 +

λ

3
eσtu3 + δuuxt (59)

T̄ 1
2 = −1

2
d(t)u− 1

2
δd(t)uxx (60)
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T̄ 2
2 = −γeσtd(t)u− 1

2
d(t)

∫
utdx−

λ

2
eσtd(t)u2 − δ

2
d(t)uxt

+
δ

2
d′(t)ux +

1

2
d′(t)

∫
udx (61)

T̄ 1
3 = −γ

2
u2 − λ

6
u3 (62)

T̄ 2
3 = γu

∫
utdx+

1

2
e−σt

[ ∫
utdx

]2
+

1

2
λu2

∫
utdx+ δe−σtuxt

∫
utdx

−1

2
δe−σtu2t (63)

Case 4. α(t) = γ/a(t), β(t) = λ/a(t), where γ, λ are constants, with γ, λ 6= 0 and a(t) an arbitrary
function of t.

In this case, we obtain three Noether point symmetry generators, viz., X1, X2 given by
Equations (30) and (31) and X3 given by

X3 = a(t)
∂

∂t
with B1 = f,B2 = e, ft + ex = 0 (64)

Following the above procedure, the nontrivial local and nonlocal conserved quantities corresponding
to X1, X2 and X3, in this case, are

T̄ 1
1 =

δ

2
u2 − δ

2
u2x (65)

T̄ 2
1 =

γ

2
a(t)u2 +

λ

3
a(t)u3 + δuuxt (66)

T̄ 1
2 = −d(t)

2
u− δ

2
d(t)uxx (67)

T̄ 2
2 = − γ

a(t)
d(t)u− 1

2
d(t)

∫
utdx−

λ

a(t)
d(t)u2 − δ

2
d(t)uxt

+
δ

2
d′(t)ux +

1

2
d′(t)

∫
udx (68)

T̄ 1
3 = −1

2
γu2 − 1

6
λu3 (69)

T̄ 2
3 = γu

∫
utdx+

1

2
a(t)

[ ∫
utdx

]2
+

1

2
λu2

∫
utdx+ δa(t)uxt

∫
utdx

−1

2
δa(t)u2t (70)

respectively.

Remark 1. Remark: It should be noted that since the Lagrangian Equation (16) is invariant under the
spatial translation symmetry, this will give rise to the linear momentum conservation laws. Moreover,
if α(t) = γ, β(t) = λ, where γ and λ are non-zero constants, then the corresponding Lagrangian
Equation (16) is also invariant under the time translation symmetry and thus the linear momentum and
energy are both conserved.
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4. Exact Solution of Equation (4) for a Special Case Using Conservation Laws

First we recall a definition and theorem from [15] that we utilize in this Section.

Definition 2. Suppose thatX is a symmetry of Equation (10) and T a conserved vector of Equation (10).
Then if X and T satisfy

X(T i) + T iDj(ξ
j)− T jDj(ξ

i) = 0, i = 1, 2 (71)

then X is said to be associated with T .

Define a nonlocal variable v by T t = vx, T
x = −vt. Then using the similarity variables r, s, w with

the generator X =
∂

∂s
, we have T r = vs, T

s = −vr, and the conservation law is then rewritten as

DrT
r +DsT

s = 0,

where

T r =
T tDt(r) + T xDx(r)

Dt(r)Dx(s)−Dx(r)Dt(s)
(72)

T s =
T tDt(s) + T xDx(s)

Dt(r)Dx(s)−Dx(r)Dt(s)
(73)

Theorem 2. An n-th order partial differential equation with two independent variables, which admits a
symmetry X that is associated with a conserved vector T , is reduced to an ordinary differential equation
of order n− 1; namely, T r = k, where T r is defined by Equation (72) for solutions invariant under X .

We now use the above definition and theorem to obtain an exact solution of one special case of
Equation (4) by making use of its conservation law. We consider Case 2 of Section 3.

Recall that the Equation (4) with α(t) = γ, β(t) = λ, where γ and λ are non-zero constants, admits
(among others)

X1 =
∂

∂t
, X2 =

∂

∂x
(74)

and possesses the conservation law with conserved vector

T =

(
1

2
u2 − δ

2
u2x,

γ

2
u2 +

λ

3
u3 + δuuxt

)
(75)

that is associated with bothX1 andX2. We now define the combination ofX1 andX2 byX = ρX1+X2.
Thus, the canonical coordinates of X are given by

s = x, r = ρx− t, u = u(r) (76)

where u = u(r) is the invariant solution under X if u satisfies Equation (4) with α(t) = γ, β(t) = λ.
Employing Equation (72), the r-component of T given in Equation (75) is

T r =
1

2
u2 − αγ

2
u2 − δα2

2
u2r −

αλ

3
u3 + δα2uurr (77)
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Using Theorem 2 above, Equation (77) can be written as

1

2
u2 − αγ

2
u2 − δα2

2
u2r −

αλ

3
u3 + δα2uurr = k (78)

By letting ur = p(u), we have urr = p
dp

du
. Then Equation (78) reduces to the first order ordinary

differential equation

p′ − 1

2u
p =

1

p

(
λ

3δα
u2 − 1

2δα2
u+

γ

2δα
u+

k

δα2u

)
(79)

The integration of Equation (79) leads to the four parameter family of solutions

±
∫

(λu3/3δα− 2k/α2δ − u2/α2δ + γu2/δα + k1u
2)−

1
2du = ρx− t+ k2 (80)

of Equation (4) invariant under X = ρX1 +X2.

5. Concluding Remarks

In this paper we derived the conservation laws for the Benjamin–Bona–Mahony equation with
variable coefficients Equation (4). This equation does not have a Lagrangian. In order to use Noether
theorem, we transformed Equation (4) to a fourth-order Equation (15) which admits a Lagrangian. We
then employed the Noether theorem to derive the conservation laws for Equation (15). The derived
conserved vectors needed further adjustment to satisfy the divergence criterion. By reverting back to the
original variable u, we constructed the conserved vectors for our third-order Benjamin–Bona–Mahony
equation with variable coefficients Equation (4). The conserved vectors consisted of some local
and infinite number of nonlocal conserved vectors. Finally, we obtained an exact solution for the
Benjamin–Bona–Mahony equation using the double reduction theory. The importance of finding
conservation laws and their physical applications are mentioned in the paper.
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