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Abstract: Labile metal complexes have a useful coordination bond; which is weaker than a 

covalent C–C bond and is reversibly and dynamically formed and dissociated. Such labile 

metal complexes also can be used to construct chiral shapes and offer dynamic conversion 

of chiral molecular shapes in response to external stimuli. This review provides recent 

examples of chirality induction and describes the dynamic conversion systems produced by 

chiral metal complexes including labile metal centers, most of which respond to external 

stimuli by exhibiting sophisticated conversion phenomena. 
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1. Introduction 

Supramolecular chirality is found in biological systems and plays an essential role in the transfer of 

biological information in living systems [1–4]. The classic example of the F1 motor in ATP synthase 

shows that supramolecular chirality can regulate the rotational direction of protein motors to maintain 

homeostasis [5,6]. Helicity switching between a right-handed B-DNA helix and a left-handed Z-DNA 

may be involved in regulating gene expression and in DNA processing events [6,7]. Polyproline adopts 

two helical structures, a right-handed type I helical structure and a left-handed type II helical structure, 

which are interconverted through a change in media polarity [8] and other external stimuli [9,10]. The 

cis-trans conversion of peptidyl-prolyl bonds can be catalyzed by prolyl isomerase to change the entire 

protein structure and to determine the rate of protein folding [11,12]. In these examples, noncovalent 

interactions play an important role in determining the helical structure. Although some artificial systems, 
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such as small organic molecules [13–19], polymers [20–23], metamaterials [24], and assemblies [25–28], 

have been developed for chirality induction and switching in response to external stimuli, more 

sophisticated systems are required to mimic natural systems. 

Metal complexes have features desirable for supramolecular chirality, including chirality induction and 

switching through their dynamic coordination bonds. Metalloporphyrins and coordinatively unsaturated 

lanthanide complexes are typical examples for chirality induction exhibiting chirality sensing of 

external substrates via dynamic coordination [29–31]. Furthermore, the metal complexes can function 

as chiral building units for a variety of molecular geometries including linear, triangular, tetrahedral, 

octahedral, and higher polyhedral structures [32–35], some of which are easily converted to each other 

in response to environmental conditions. Their stereoisomers often have similar free energy, which 

results in labile metal complexes being generated as a racemate and/or coexisting in solution 

(Figure 1). Designing labile metal complexes with isomers having a free energy difference great 

enough to produce one isomer could provide a sophisticated structural conversion system through 

switching of this energy balance. Dynamic attachment and detachment features of coordination bonds 

can be applied to construct molecular machines. Sauvage et al. developed copper-mediated dynamic 

catenanes and rotaxanes [36,37]. The Cu(II) center prefers 5- or 6-coordination and possesses rapid 

ligand exchange character (5.7 × 109 s−1 for water exchange rate k1 of [Cu(H2O)5]2+ at 298 K) [38], and 

the Cu(I) center prefers 4-coordination geometry. Thus, Cu(II)/Cu(I) redox switching triggered ligand 

rearrangement between 5-coordination and 4-coordination, resulting in dynamic molecular machines. 

Figure 1. Representative enantiomeric pairs based on coordination geometries of metal 

complexes: (a) square planar; (b) tetrahedral; (c) trigonal pyramid; (d) octahedral with 

tris(bidentates); (e) octahedral with linear tetradentate; (f) square antiprism with 

tetra(bidentates); (g) square antiprism with tetra-armed cyclen. 

 

2. Supramolecular Chirality from Helicates to Foldamers 

Metallo-helicates are typical mimics of the DNA helical structures and so have been investigated 

thoroughly. Most helicates have been prepared from Cu(I) and Ag(I) metal centers and  

polybidentate ligands, in which the metal centers have tetrahedral geometry as demonstrated initially 

by Lehn et al. [39]. Several types of helicates, such as duplexes, triplexes, and their chiral derivatives 
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have been developed [40–42]. Recently, unique chiral helicates have been reported. Furusho and 

Yashima designed double-stranded metal helicate polymers, in which amidinium–carboxylate salt 

bridges and inert Pt(II)–acetylide coordination cooperated to provide a complementary one-handed 

duplex (Figure 2) [43]. A characteristic induced CD signal was observed in the Pt(II)–acetylide 

complex region, indicating that the chirality of the phenylethyl groups on the amidinium unites was 

transferred to the Pt(II) center to produce the preferred one-handed helical structure in solution. 

Figure 2. Double-stranded metal helicate polymer consisting of chiral amidine and an 

achiral carboxylic acid (R = octynyl). 

 

A new type of Cu(I) double-stranded helicate was also prepared from ketamine-bridged 

tris(bipyridine) ligands (Figure 3) [44]. The tetranuclear Cu(I) helicate prepared was a racemic mixture 

of right- and left-handed helical structures. Although the Cu(I) cation has a generally typical labile 

character [38], the racemate was successfully resolved to each enantiomer. The racemate was treated 

with chiral binaphthyl hydrogen phosphate anion and the diastereomeric salt obtained was treated 

further with NH4PF6 to obtain an optically pure enantiomer. During anion exchange, no racemization 

of the helicate was observed. 

Figure 3. Cu(I) double-stranded helicate consisting of ketamine-bridged tris(bipyridine). 

 

Fabbrizzi et al. prepared a dinuclear Cu(I) double-stranded helicate by condensation of  

R,R-1,2-cyclohexanediamine and 8-naphthylmethoxyquinoline-2-carbaldehyde, followed by complexation 

with [Cu(CH3CN)4](ClO4) (Figure 4) [45]. The one-handed helicate obtained was stabilized by the 

presence of four interstrand π–π interactions involving quinoline and naphthyloxymethylene moieties 

and showed a fully reversible one-electron oxidation despite the labile character of the Cu(I) centers. 

Because these helicate systems contain Schiff base binding sites that are easily and rapidly 

produced by mixing a primary amine and aldehyde in situ, the preparation of these helicates is 

convenient and suitable for systematic studies for discovering novel functions [46,47]. 
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Figure 4. Cu(I) double-stranded helicate stabilized by π–π interactions. 

 

Metal complexes consisting of a d8 transition metal cation, such as Ni(II), Pd(II), and Pt(II) 

complexes, favor a square planar structure suitable for construction of highly ordered chain architectures, 

including helices and sheets. Among these d8 metal complexes, Pd(II) complexes often are used for the 

construction of molecular strands [48], coordination capsules [49], and spherical complexes [50]. 

Because the Pd(II) center has a hemi-labile coordination bond, dynamic molecular motion and ligand 

exchange phenomena have been investigated by 1H NMR spectroscopy as well as other spectroscopic 

methods. Miyake recently synthesized a diastereomeric pair of left- and right-handed square planar 

Pd(II) complexes from a single chiral precursor NS,NS–PdCl2 complex (Figure 5) [51]. The precursor 

NS,NS–PdCl2 complex was prepared using the chiral ligand and Na2PdCl4, in which the Pd(II) center 

had a square planar structure coordinated by two tertiary amine nitrogens and two chloride anions. The 

precursor complex was converted quantitatively into the left-handed NS,NS–PdCl complex having a 

semi-contracted molecular shape upon addition of an equimolar amount of Et3N, during which one 

amide moiety was deprotonated to coordinate with the Pd(II) center. Both amine nitrogen-centered 

chiralities in these complexes possessed the S-configuration. The left-handed NS,NS–PdCl complex was 

rapidly inverted to the R-configuration to form the NR,NR–PdCl complex as the thermodynamic 

product. The half-life of the inversion was 1.5 min at 100 °C. Interestingly, microwave irradiation at 

120 °C directly converted the precursor NS,NS–PdCl2 complex to the right-handed NR,NR–PdCl complex. 

Since the Pd(II) center has a hemi-labile character, the NS,NS–PdCl complex could be trapped as a 

kinetic product and helicity inversion occurred rapidly under thermal condition and microwave irradiation. 

Figure 5. Synthesis and helicity inversion of diastereomeric Pd(II) complexes. Reproduced 

by permission of The Royal Society of Chemistry [48]. 
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Attaching chiral amine moieties at the formyl group of the ligand conveniently and effectively 

induced chiral Schiff base ligands for metal complexation that can provide dynamic covalent bonds 

and is a promising methodology for developing supramolecular chirality chemistry in combination with 
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metal complexes. Setsune developed single helicates of Pd(II)2 hexapyrroles (Figure 6) [52]. The Pd(II)2 

hexapyrolle with terminal formyl groups favored a closed form, in which helicity underwent rapid 

interchange between two enantiomers at room temperature. Introduction of (R)-(−)-1-cyclohexylethylamine 

to the two terminal formyl groups significantly slowed the conformational change rate and induced helical 

handedness as high as 85% diastereoselectivity. One-electron oxidation of the Pd(II)2 complex changed 

the chiroptical property by shifting the CD spectra at 699 nm to 741 nm with induction of an intense 

ESR signal at g = 2.001 due to formation of a π cation radical delocalized over the 2,2'-bisdipyrrin 

chromophore. 

Figure 6. Helicity induction by Schiff base formation between a chiral amine and  

Pd(II)2 hexapyrroles. 

 

Such helical shapes can be produced by multinuclear complex systems containing oxime ligands 

and transition metal and lanthanide cations, exhibiting dynamic structural conversions. Akine and 

Nabeshima investigated a molecular leverage system [53]. They employed a ligand that contained two 

benzocrown rings attached to a chiral ethylenediamine unit as a transducer that formed a tetranuclear 

Zn(II)3–La(III) complex (Figure 7). Complexation of a shorter diammonium guest H3N+–(CH2)n–NH3
+ 

(n = 4, 5, or 6) with the two crown rings produced a P-helical structure, while the longer guest  

H3N+–(CH2)12–NH3
+ induced an M-helical structure. 

Figure 7. Guest-induced helicity inversion of a tetranuclear metal complex. 

 

Stepwise helicity inversion of helical multinuclear complex also was accomplished by multisequential 

metal exchange (Figure 8) [54]. The chiral hexaoxime ligand favored a right-handed helical structure 

in the presence of three equivalents of Zn(II) cations, which could be inverted to a left-handed structure 

by addition of two more equivalents of Zn(II) cation (P→M). The helical direction was further inverted 
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in a stepwise manner to the right-handed (M→P) and the left-handed structures (P→M) by subsequent 

addition of Ba(II) cation and La(III) cation (74:26 for the left- and right-handed diastereomers). 

Figure 8. Stepwise multisequential helicity inversions of a hexaoxime–metal helicate. 

 

3. Dynamic Production and Inversion of Supramolecular Chirality in Octahedral  

Metal Complexes 

Chirality in octahedral systems is interesting because many metal cations favor octahedral geometry 

and can provide more complex, dynamic, and functional systems including triple helicates [55,56], 

circular helicates [57,58], tetrahedral clusters [59], and heteronuclear helicates consisting of lanthanide 

and transition metal cations [60–62]. Chirality induction in octahedral metal complexes has been 

widely investigated using chiral ligands, starting with Werner’s pioneering works [29,30], in which 

most metal centers were kinetically inert; their complexations often required long periods of time for 

completion, and purification procedures were required for obtaining diastereo- and enantiopure 

complexes. The dynamic supramolecular chirality systems discussed here include labile metal centers 

that allow dynamic ligand exchange and shape conversions. 

Recently, Scott et al. successfully induced optically pure metal complexes with a tris(diimine) 

ligand prepared from a suitable amine and aldehyde in situ [63,64]. The chiral phenylethylamine and 

2-pyridinecarboxaldehyde were added to a solution of Fe(II) cation, forming one optical isomer with 

an octahedral geometry (Figure 9). Combination of three sets of intramolecular π–π interactions 

between the pyridine and phenyl rings in addition to steric interactions caused by three-point chiralities 

in the chiral ligands provided high stereoselective formation. Since the Fe(II) complex prepared with 

2-pyridinecarboxaldehyde and chiral 2-butylamine produced four diastereomers [65], these weak π–π 

interactions played an important role in stereoselective complex formation. This synthetic method was 

used to prepare optically pure dinuclear triple helicate (Figure 10), which maintained its 

stereochemistry in water. Even at pH = 1.5, it decomposed only ~8% over 10 days. The triple helicate 

exhibited specific interaction with DNA and showed antimicrobial activity; the Λ enantiomer had 

greater binding affinity with DNA, produced greater stabilization of the DNA duplex, and exhibited 
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greater antimicrobial activity than the corresponding Δ enantiomer [66]. The corresponding triple 

helicate exhibited high, stereodependent toxicity to human colon cancer cell lines, but no significant 

toxicity to Gram-positive and Gram-negative bacteria [67]. The dinuclear helicates also exhibited 

enantioselective inhibition of amyloid-β aggregation [68]. Thus, these dinuclear helicates are strong 

candidates for new enantioselective pharmaceuticals. 

Figure 9. Diastereoselective complexation between a labile Fe(II) center and chiral 

tris(imine) ligand. 

 

Figure 10. Stereoselective formation of a dinuclear Fe(II) complex with a chiral 

tris(diimine) ligand. 

 

Nitschke et al. developed a tetrahedral chiral metal cage prepared using 6 eqs. of 6,6'-diformyl-3,3'-

bipyridine and 12 eqs. chiral amine in the presence of 4 eqs. Fe(II) cation [69,70]. Each metal center in the 

chiral cage had octahedral geometry with the same stereogenic configuration: (S)-1-phenylethylamine-

generated Δ configuration at all metal centers. Interestingly, addition of the chiral amine  

(S)-1-phenylethylamine to the solution containing the racemic cage with the achiral amine 

subcomponent p-toluidine promoted induction of the ΔΔΔΔ chiral cage (Figure 11). The CD intensities 

of the racemic cage obtained by the addition of 6 eqs. of (S)-1-phenylethylamine were similar to those 

of the ΔΔΔΔ cage, and the CD intensities increased nonlinearly with the %ee of 1-phenylethylamine, 

indicating cooperative communication between metal centers. 

They also found that tetranuclear Fe(II) cage complexes containing chiral 2-butylamine were 

formed with high stereoselectivity (63%~89%de) [65]. The low stereoselectivity (ca. 0.5%ee) of the 

corresponding mononuclear Fe(II) complex indicated stereochemical communication between the Fe(II) 

centers in the tetranuclear cage. The tetranuclear Fe(II) cage prepared from tris(formylpyridyl)benzene and 

(S)-1-cyclohexylethylamine also was obtained as a ΔΔΔΔ chiral isomer. When the chiral amine 

subcomponent was displaced by the achiral amine tris(2-aminoethyl)amine, the cage retained its 

stereochemistry with high enantiomer excess (99%ee) (Figure 12) [71]. 
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Figure 11. Chiral cage formation from racemic cage by subcomponent substitution. 

 

Figure 12. Chiral cage formation and chirality memory. 

 

Raymond et al. reported the diastereoselective formation of a tetrahedral cage assembled using six 

biscatecholates with chiral amide terminals and four Ga(III) cations without involving any cationic 

species [72]. The chiral cage possessed greater stability toward air oxidation and low pH compared to 

the corresponding tetrahedral cage without chiral amide terminals. The chiral cage functioned as an 

efficient catalyst for enantioselective and chemoselective carbonyl-ene cyclization of a neutral 

substrate (Figure 13). 

Figure 13. Enantioselective and chemoselective cyclization of a neutral substrate catalyzed 

by the ΔΔΔΔ tetrahedral cage. 
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Yashima et al. designed a chirality transfer system of an octahedral tris-bipyridyl Fe(II) complex 

having helical oligopeptides at the 5 and 5' positions of 2,2'-bipyridine (Figure 14) [73]. Introduction 

of (S)-valine in the oligopeptide induced a right-handed helical structure in the peptide chain, which 

information further relayed to the octahedral Fe(II) center to induce the Δ structure (de = 85% which 

increased to 98% in the presence of Cl− anion). When a racemic Co(II) complex produced with achiral 

peptide ligands was mixed with a chiral Λ Co(II) analog of the Fe(II) complex, chirality amplification 

around Co(II) center and in achiral peptide helices were observed via chirality transfer from chiral 

peptide chains to metal center and to achiral peptide chains. 

Figure 14. Chirality induction in an octahedral tris-bipyridyl Fe(II) complex induced by  

(S)-valine via a helical tetrapeptides. 

 

Miyake et al. demonstrated that the labile Co(II) complex with a chiral tetradentate ligand 

containing amide linkages acted as a helicity inversion unit in response to achiral NO3
− anion  

(Figure 15) [74,75]. In a solid complex prepared by mixing the chiral ligand and Co(ClO4)2·6H2O, the 

Co(II) complex formed the Λ cis-α structure, in which both coordinating nitrogen atoms adopted the 

(S) configuration. The 1H NMR spectrum showed only one paramagnetic complex, indicating that the 

asymmetric helical structure was retained in solution. This complex exhibited a positive CD signal in 

the range of a d–d transition in CH3CN/CH2Cl2 (1/9) solution. However, the addition of 10 eqs. of 

NO3
− anion dynamically changed its sign to negative, indicating helicity inversion around the Co(II) 

center from the Λ to the Δ form. The Λ/Δ ratio of the Co(II) complex in CD3CN/CD2Cl2 (1/9) at room 

temperature was 15/85 as determined by 1H NMR. Crystal structure analysis of the complex of the 

related ligand and Co(NO3)2·6H2O revealed that one NO3
− anion coordinated with the Co(II) center in 

a bidentate fashion while the other NO3
− anion formed hydrogen bonds with the amide hydrogen. 

Thus, the cooperative action of the two NO3
− anions stabilized the Δ form more effectively than the 

corresponding Λ form. The Λ/Δ ratio of the ligand –Co(NO3)2·6H2O complex also could be adjusted 

by changing the solvent components: Λ/Δ = 88/12 in CH3CN and 31/69 in CH3CN/CH2Cl2 (1/9). In 

methanol or aqueous solution, the CD and 1H NMR spectra of the complex showed the existence of 
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only the Λ complex, indicating NO3
− anion did not interact adequately with the Co(II) center or the 

amide hydrogens for inversion of its helical direction due to the higher donor number of these solvents. 

Figure 15. NO3
− anion-induced helicity inversion of a Co(II) complex. 

 

This helicity switching system was applied successfully to the inversion of peptide helices. The racemic 

peptide, –(Aib–ΔPhe)2–Aib–OCH3 (Aib = α-aminoisobutyric acid, ΔPhe = α,β-didehydrophenylalanine) 

was attached to both ends of a chiral N,N′-ethylene-bis[N-methyl-(S)-alanine] ligand (Figure 16) [76]. 

The peptide ligand obtained, which possessed 310 intramolecular hydrogen bonding, complexed with 

Zn(ClO4)2, Co(ClO4)2, or Ni(ClO4)2 to form a left-handed Λ cis-α structure around the metal center 

and a right-handed P helical structure in the peptide chains containing two 310 intramolecular hydrogen 

bonds in each peptide chain. The addition of NO3
− anion inversed helicity around the metal center 

(Λ→Δ), as well as the directions of both peptide helices (P→M). Thus, achiral NO3
− anion has a 

unique ability to change the helical natures of peptides in cooperation with a chiral metal unit. 

Figure 16. Helicity inversion around a metal center and sequential chirality transfer to 

peptide helices (left) and CD spectral changes upon addition of NO3
− anion (right). 

Reproduced by permission of American Chemical Society [73]. 
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A chiral bisalanine ligand with 2,5-dimethoxyaniline amide terminals also formed a left-handed Λ 

cis-α structure by the complexation with Co(ClO4)2 or Co(OTf)2, which exhibited acid-base-triggered 

elastic molecular motion, as well as helicity inversion of the metal center (Λ⇄Δ) (Figure 17) [77]. 

When a strong organic base, such as N,N,N′,N′-tetramethyl-1,8-naphthalenediamine, deprotonated the 
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secondary amide groups, the linkage isomerism at the amide coordination sites promoted conversion to 

the contracted complex. Successive addition of trifluoromethanesulfonic acid protonated the amide 

groups and restored the shape to its original extended form. This acid-base-triggered 

contraction/extension molecular motion was fully reversible. The contracted complex also could be 

converted to the extended Δ-form with an opposite helical structure by adding an acid in the presence 

of the NO3
‒ anion. Thus, combining two external stimuli promotes two different molecular motions. 

Figure 17. Stretching and inverting motions of a Co(II) complex. 

 

4. Conclusions 

This review highlights the recent progress of supramolecular chiral complexes with dynamic 

coordination chemistry for the development of structurally and functionally defined metal complexes. 

Since the metal complexes have characteristic features including redox reactivity, unique spectroscopic 

and magnetic properties, and coordination geometry and dynamic coordination bonding, they are 

promising candidates for supramolecular chirality switching, which offers advantages compared to 

organic chiral foldamers constructed only from stable covalent bonds. Recent developments have 

advanced the field of supramolecular chirality on coordination chemistry. Using specific interactions 

between side chains within molecules and external stimuli, several labile metal helicates were 

stereospecifically induced to produce enantioselective pharmaceuticals and enantioselective catalysts. 

In addition, helical structures could be dynamically converted as observed in biological DNA and 

proteins. Thus, labile metal helicates are useful for designing sophisticated supramolecular chirality 

materials. The design and implementation of chirality recognition and regulation of dynamic ordering 

advances the emerging field of molecular-based nanoscience for development of substances with 

integrated functions. Metal coordination chemistry provides effective supramolecular chirality devices 

that can be applied to material science and nanotechnology. 
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