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Abstract: Unlike landmark methods for estimating object asymmetry, continuous symmetry 

measures (CSM) can be used to measure the symmetry distance (ds) of inconsistent objects, 

such as plant leaves. Inconsistent objects have no homologous landmarks, no consistent 

topology, no quantitative consistency, and sometimes no matching points. When CSM is 

used in conjugation with LAMINA Leaf Shape Determination software, one can quickly and 

efficiently process a large number of scanned leaves. LAMINA automatically generates 

equally-spaced points around the perimeter of each leaf and the resulting x-y coordinates are 

normalized to average centroid size prior to estimating ds using a fold, average, unfold 

algorithm. We estimated shape asymmetry of leaves of three species of flowering plants: 

Ligustrum sinense (Chinese Privet), Rubus cuneifolius (blackberry), and Perilla frutescens 

(Perilla), as well as individual leaves from a few species of oaks (Quercus) and maples 

(Acer). We found that 100 to 200 equally-spaced points worked well for all three of the main 

species. Measurement error accounted for a small proportion of the asymmetry variation. 

Nevertheless, measurement error was great enough to generate some negative size scaling 

after normalization to average centroid size. 
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1. Introduction 

Most plant leaves are inconsistent objects having no homologous landmarks, no consistent topology, 

no quantitative consistency, and few matching points [1]. Consequently, they pose numerous difficulties 

for biologists studying the fluctuating asymmetry (i.e., random deviations from perfect symmetry) of 

plants. The usual approach is to measure asymmetry of leaf width or vein length on right and left sides [2,3]. 

However, these approaches only reflect linear dimensions and it is tedious to process one leaf at a time. 

Moreover, they do not capture leaf shape. In this paper, we describe a high-throughput approach that can 

automatically measure the shape asymmetry of ten or more leaves in three steps. This approach requires 

only a flatbed scanner, LAMINA (Umeå University, Umeå, Sweden) software, and a MATLAB (The 

MathWorks, Inc., Natick, MA, USA) function that estimates the asymmetry of an object having 

mirror symmetry. 

Continuous symmetry measures can be used to estimate the symmetry distance ds (i.e., asymmetry) 

of inconsistent objects having variable numbers of structural elements, such as different numbers of 

lobes, sinuses, and veins on right and left sides of a leaf. These measures were developed for the 

computer vision and computer graphics community [4,5], and they treat symmetry as a continuous 

feature [6]. Because continuous symmetry measures quantify asymmetry in all dimensions and for all 

types of symmetry, they are a flexible tool for analyzing deviations from perfect symmetry in plant 

leaves. Milner et al. [7,8] and Frid [9], for example, have previously used continuous symmetry measures 

with anchor points (in contrast to landmarks or semi-landmarks) on left and right sides of leaves. In 

addition, Frey et al. [10] used continuous symmetry measures to estimate deviations from perfect 

rotational symmetry of Geranium flowers having five-way rotational symmetry. This was done with 

petal lengths and angles. Our approach differs in that it relies on several semi-landmarks and one or two 

true landmarks rather than anchor points or lengths and angles. 

Continuous symmetry measures are based on the concept of symmetry groups, which are abstract 

groups of symmetry-preserving operations (or transforms) [11]. The set of these symmetry-preserving 

transformations (e.g., reflection, translation, rotation, or a mixture of all three operations) constitute a 

symmetry group. From the perspective of abstract algebra, a symmetric object is a set of points invariant 

under the actions of any element of a particular symmetry group. For example, an isosceles triangle in 

two-dimensions has mirror symmetry (or reflection) and identity (no transformation or rotation through 

360°) [6]. An isosceles triangle has one axis of mirror symmetry, which goes through the vertex and the 

midpoint of the base.  

To estimate the symmetry distance ds of an object we first represent it by a sequence of points  

Pi, i = 1, …, n. We further assume a matching between pairs of these points. The pairing of points is 

determined by following the points around the object boundary. Since it is assumed that point P0 is at 

the apex and that the symmetry axis passes through P0, we have that point P0 is paired with itself and 

point P1 is paired with Pn, P2 with Pn−1 and so on. We then take every pair of matching points (𝑃𝑗, 𝑃𝑘) 

http://en.wikipedia.org/wiki/Natick,_Massachusetts
http://en.wikipedia.org/wiki/United_States
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and reflect one of the pair across the axes of mirror symmetry (fold), obtaining (𝑃̃𝑗, 𝑃̃𝑘). Then we average 

these folded points and obtain a single averaged point (𝑃̂𝑗) for each pair, and reflect these averaged points 

back across the axes of mirror symmetry (unfold), obtaining (𝑃̂𝑗 , 𝑃̂𝑘 ) (Figure 1). The measure of 

symmetry distance for the given mirror axis is then 𝑑𝑠 = 1/𝑛 ∑ ‖𝑃𝑖
′ − 𝑃̂𝑖‖

2𝑛−1
𝑖=0 , where 𝑃𝑖

′ is the original 

location of a point and 𝑃̂𝑖  is the location of the point after folding, averaging, and unfolding, and 

‖𝑃 − 𝑄‖ designates the Euclidean distance between a pair of points P and Q. The set of points 𝑃̂𝑖 is 

proven to be mirror symmetric and “closest” to the set of points 𝑃𝑖  in terms of the Euclidean distance 

between points (see [6]). If the mirror axis is not given, then the final step is to minimize ds over all 

possible axes of mirror symmetry. A closed-form solution for finding this optimal mirror axis can be 

found in [6].  

 

Figure 1. Computing the CSM (continuous symmetry measure) using the folding-unfolding 

method applied to a 2D mirror symmetrical structure. (A) Original—2D structure with 

matching points marked (A1 and B1, A2 and B2, A3 and B3). (B) Folding—Side A is reflected 

across the symmetry axis obtaining the folded points 𝐴̃1 ,  𝐴̃2 , 𝐴̃3 . (C) Average—The  

folded points are averaged with their matching points obtaining the points 𝐵̂1 , 𝐵̂2 , 𝐵̂3 .  

(D) Unfolding—The average points are reflected back across the symmetry axis obtaining 

the unfolded points 𝐴̂1, 𝐴̂2, 𝐴̂3. The CSM value is the average distance squared between the 

original points and the corresponding unfolded points. 

One can interpret the symmetry distance ds as the amount of “effort” required to transform a given 

shape into a symmetric one. This “effort” is the mean of the squared distances each point must move 

from its original position to one of perfect symmetry. This approach assumes no a priori symmetric 

shape to be compared with or transformed into, and it can be generalized to any object in any dimension. 

In practice, we evaluate CSM of a leaf by equally spacing points around the margin of the leaf. We 

further assume a single axis of symmetry, passing through the apex (the first sampled point) and 

following the midrib. This implies that for the CSM evaluation of ds described above, the mirror 

symmetry axis is given and the pairing of points is well defined and determined by the order of sampled 

points around the boundary. With continuous symmetry measures, we can estimate the symmetry 

distance of leaves for any number of sample points. In practice, we evaluate the symmetry of leaves for 

various number of sample points between 3 and 200.  
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2. Methods 

We randomly sampled 9 or 10 leaves (or terminal leaflets) from each of 10 individual plants of three 

species of flowering plants, Ligustrum sinense (Chinese Privet, Oleaceae), Rubus cuneifolius 

(blackberry, Rosaceae), and Perilla frutescens (Perilla, Lamiaceae). The leaves of these three species 

differ in size, margin (entire to finely serrate to coarsely serrate), shape (ovate to rhomboid), and flatness 

of the lamina (flat to wavy or curly). In addition to these leaves, we examined a small number of diverse 

oak (Quercus velutina, Q. rubra, Q. palustris, Q. alba) and maple (Acer rubrum, A. saccharum) leaves. 

Leaves were pressed for at least 48 hours. The petioles of the leaves were removed, leaving just the 

lamina and the veins within the lamina. Up to 10 leaves at a time were scanned (HP Scanjet 3500c Series) 

into a tiff file (300 or 600 dpi, depending on leaf size). Any leaves having herbivore damage to their 

margins were omitted. The leaves were arranged on the scanner such that the apices of all the leaves 

were oriented in the same direction and pointing towards the top of the image (Figure 2). These were 

batch processed using LAMINA software [12].  

 

Figure 2. Batch processing of 5 Rubus cuneifolius leaves in LAMINA. The vertical red line 

(leaf axis), most clearly visible in leaf #1, is drawn by the analyst. It connects the apex to the 

point where the petiole joins the lamina. The vertical and horizontal green lines, as well as 

the horizontal red line, are automatically drawn by LAMINA to be either parallel or 

perpendicular to the red line. These vertical and horizontal lines are equally spaced at 25, 50, 

and 75% of the centro-lateral and proximo-distal axes. 

LAMINA is Leaf Shape Determination software [12]. It can handle batch processing, which makes 

it particularly worthwhile. It automatically measures surface area, shape, perimeter, leaf serration, 

herbivory damage (missing leaf area), and several other useful variables, including leaf symmetry. 

LAMINA’s index of leaf symmetry is the ratio of the linear distance of two lines parallel to the main 

proximo-distal axis of the leaf (Figure 2); the first vertical green line on the left is the proximo-distal 

lamina length at 25% of the centro-lateral axis (L) and the third (parallel) green line is the proximo-distal 

lamina length at 75% of the centro-lateral axis (R). The individual leaf asymmetry is L/R. A ratio of  

1 implies a perfectly symmetrical leaf. Taking the log of L/R is equivalent to log L − log R, the most 

widely used index of signed leaf asymmetry, but instead of leaf widths (perpendicular to the proximo-distal 

axis) these distances are parallel to it. While certainly useful, these are linear distances and they do not 
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reflect shape asymmetry alone [13]. (For those wishing to use this measure of leaf asymmetry, we note 

that right-left and top-bottom asymmetry variables are reversed in LAMINA’s output. The output 

variable labeled Vertical size 25%/Vertical size 75% is the left-right asymmetry, contrary to LAMINA’s 

own definitions of vertical and horizontal size at 25% and 75% of the respective orthogonal axes.) In 

addition to all of these variables, one can automatically place a series of equidistant semi-landmarks 

around the periphery of each leaf (Figure 3). This captures the shape of a leaf. 

 

Figure 3. Perilla frutescens leaf with three points equidistant along the leaf margin. The first 

point P0 is at the leaf apex, and moving clockwise, the other points, semi-landmarks, are P1 

and P2. Together, these points define an object (polygon), in this case a triangle.  

To estimate shape asymmetry, we used LAMINA to automatically place n equidistant points around 

the perimeter of each leaf, generating the x,y-coordinates of an n-sided object. When n = 3, the object 

approximates a triangle. Likewise, n = 4 generates a quadrilateral, n = 5 generates a pentagon, n = 6 

generates a hexagon, n = 7 generates a heptagon, n = 8 generates an octagon, n = 9 generates a nonagon, 

and n = 100 and n = 200 generate higher-order objects. The first point is automatically placed at the leaf 

apex, one of the few consistent landmarks on most leaves. 

Before estimating the continuous symmetry measure that reflects shape alone, we computed the 

centroid (center of mass) of each object and translated the entire object to a centroid of (0,0). We then 

scaled the centered object so that the average distance between the points to the origin is 1. This step 

removes the effect of positive size scaling, so that the coordinates capture the shape only. Early tests of 

the software showed that positive size scaling of leaf asymmetry was the rule for all species of plants we 

examined, unless we scaled the objects to average centroid size. In fact, positive size scaling was a 

characteristic of any object scaled up or down by a constant factor. LAMINA also seems to reverse the 

polarity of the y-axis, and while this does not influence the estimates of asymmetry, we flipped the  

y-axis by multiplying all ys by −1. This makes it easier to interpret the graphical output if we need to 

superimpose objects. 

To estimate a continuous symmetry measure (CSM) for an object having mirror symmetry, we used 

code written in MATLAB [14]. The code computes a symmetry distance ds for a two-dimensional object 

having mirror symmetry. It returns the value of ds, the new x,y-coordinates of the symmetrized object, and θ 

(the angle in radians between the reflection angle and the y-axis). This program takes the x,y-coordinates and 

deforms them into a perfectly symmetrical object having mirror symmetry (Figures 4 and 5). 
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Figure 4. Original leaf of Perilla frutescens, the outline of the leaf (n = 200), and a 

symmetrized version of the outline. 

 

Figure 5. Perfectly symmetrical objects (blue) superimposed on objects (red) derived from 

an actual leaf (Perilla frutescens). d3 through d200 refer to the symmetry distances of n-sided 

objects having n = 3 to n = 200 vertices. 

The continuous symmetry measure on an n-sided object is defined as: 

𝑑𝑠 =  
(‖𝑃0 − 𝑃̂0‖

2
+ ‖𝑃1 − 𝑃̂1‖

2
+ ‖𝑃2 − 𝑃̂2‖

2
+ ⋯ + ‖𝑃𝑛 − 𝑃̂𝑛‖

2
)

𝑛
 (1) 

where the 𝑃𝑛 are the coordinates of the original object and the 𝑃̂𝑛 are the new coordinates of the perfectly 

symmetrical object. The expression ‖𝑃𝑖 − 𝑃̂𝑖‖
2
 is the squared distance between points 𝑃𝑖 and 𝑃̂𝑖. 
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To estimate ds as efficiently as possible, we combined all of the LAMINA output into an Excel data 

file. Then we created a subfile from the last 2n columns of the data file; these contain the x,y-coordinates of 

the n points of the object. In MATLAB, we used xlsread to read the Excel subfile of x- and y-coordinates. 

We then used two scripts (GenericRows and genericApplyToRows) to apply the functions 

NormalizePoints.m and csm_Mirror_closedBoundary.m to every row in the vector of x,y-coordinates. 

NormalizePoints.m translates the object to a centroid of (0,0) and scales it to average centroid size. The 

function csm_Mirror_closedBoundary.m first converts each row (a 1 × 2n vector) into a 2 × n matrix 

and then calculates cval (ds), ncoor (new coordinates), and theta (θ, the angle that the axis of symmetry 

makes with the y-axis). We used xlswrite to convert the MATLAB output back into Excel, and combined 

it all with the original data file for statistical analysis in SPSS. 

With continuous symmetry measures of any object, there is always the possibility of a less than 

optimal solution. Such a non-optimal solution would have an axis of symmetry other than the leaf’s main 

axis of mirror symmetry, which ordinarily runs along its midrib and through P0. For n = 3, for example, 

it is possible that the closest object having mirror symmetry may be through one of the other two vertices 

(P1, P2). But because we constrained the axis of mirror symmetry to pass vertically through the leaf apex, 

P0, it is likely that the axis will parallel the leaf’s midrib. To check for this, we plotted the original 

coordinates against the new symmetrized coordinates (Figures 4 and 5). Any instability should be 

immediately obvious from a visual inspection and should be associated with a large value of θ; if the 

leaves have been arranged properly on the scanner the reflection angle should be nearly parallel to the 

y-axis (θ ≈ 0). A value of θ > 0.2–0.3 radians should be examined closely. 

Because measurement error can inflate measures of dispersion, and ds measures shape variation 

(dispersion) between left and right sides of a leaf, one must estimate measurement error of, at least, a 

subsample of leaves. Consequently, we did five replicate scans of a subset of 10 leaves of each species 

to estimate measurement error. We estimated variance components in SPSS for leaf asymmetry (d200) 

among individuals, among leaves within individuals, and among replicate scans. Variation among 

estimates within a scan were negligible. 

Size scaling of asymmetry is a serious concern in all studies of fluctuating asymmetry [1]. 

Consequently, we used linear regression and correlation to see if ds varied with leaf area.  

3. Results 

An examination of all of the leaves with values of θ > 0.2 revealed no evidence of non-optimal 

solutions. These non-optimal solutions would have had axes of symmetry other than the main leaf axis 

(apex to base of the petiole). When examined closely, all of the leaves that had higher values of θ had 

been accidentally placed somewhat off the vertical axis. Quickly closing the top of the scanner on a leaf 

can sometimes shift its position. 

The nine different kinds of objects (n = 3 through n = 200) give roughly similar leaf asymmetries, 

though the symmetry distances based upon 100 or 200 points usually had the smallest interquartile ranges 

(Figure 6). 

The statistical distributions of ds for all three species were highly skewed, with a mode close to zero 

(see Figure 7 for Rubus cuneifolius). The distributions are best fit by either an exponential distribution 

or a half-normal distribution. 
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Figure 6. Leaf asymmetries ds of Rubus cuneifolius, Ligustrum sinense, and Perilla 

frutescens, by object type (n = 3 to n = 200 vertices). Boxplots show median (horizontal 

line), mean (dashed horizontal line), interquartile range, and upper and lower extremes. 

 

Figure 7. Histograms of the statistical distributions of leaf asymmetries ds of Rubus 

cuneifolius, by object type (d3 through d200 refer to the symmetry distances of n-sided objects 

having n = 3 to n = 200 vertices). 

The various results of the lower-sided objects are unstable in the sense that, for a pair of leaves (A 

and B) and asymmetry of A > B for d3, it does not follow that A > B for d4, d5, d6, or dn (Figure 8). The 

low-sided objects, such as n = 3, seem to be less stable than the higher sided ones. The lines connecting 

ds for n = 100 and n = 200 are roughly parallel, whereas those for triangles (n = 3) and quadrilaterals  

(n = 4) often cross. Moreover, odd- and even-sided objects seem to capture somewhat different aspects 

of leaf shape asymmetry. 

Nearly all of the measurement error of ds was due to variation among scans; variation among replicate 

processing of the same scan was negligible (effectively zero). Measurement error of d200 was fairly 

consistent among species, ranging from 0.118 × 10−5 for Rubus cuneifolius to 1.088 × 10−5 for Ligustrum 

sinense and 1.179 × 10−5 for Perilla frutescens. The percentage of measurement error, however, varied 

greatly among species, mainly because the variation in ds among leaves within an individual was so 

great. The percentage of measurement error ranged from 1.05% for Perilla frutescens to 5.02% for Rubus 
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cuneifolius and 45.23% for Ligustrum sinense. Because ds is analogous to a variance (it is the average 

of squared distances rather than squared deviations), we can also compare measurement error on a  

leaf-by-leaf basis by comparing the mean of ds for a particular leaf with its variance. This measurement 

error as a percentage of the mean of ds ranged from 0.0165% for Perilla frutescens to 0.0228 for Rubus 

cuneifolius and 0.1798% for Ligustrum sinense. 

Ligustrum sinense leaves showed significant negative size scaling for ds (Figure 9 and Table 1). Rubus 

cuneifolius and Perilla frutescens also showed negative size scaling, though it was not statistically 

significant. 

In addition to analyzing leaves of Ligustrum sinense, Rubus cuneifolius, and Perilla frutescens, we 

also looked at leaves of several oaks and maples. Many of the oak leaves, in particular, were fairly 

asymmetrical and have large lobes and sinuses. The CSM program handled these well, though the 

symmetrized versions of the leaves did not always look natural, especially if the original leaf was 

extremely asymmetrical (Figure 10).  

 

Figure 8. Leaf asymmetry ds for ten leaves of Ligustrum sinense as a function of object type 

(n = 3 to n = 200 vertices). Each line is a different individual leaf. 

 

Figure 9. Negative size scaling of leaf asymmetry ds of Ligustrum sinense as a function of 

leaf area. d3 through d200 refer to the symmetry distances of n-sided objects having n = 3 to 

n = 200 vertices. 



Symmetry 2015, 7 264 

 

 

Table 1. Pearson correlations of ds with leaf area (mm2), by species and object type  

(d3 through d200 refer to the symmetry distances of n-sided objects having n = 3 to n = 200 

vertices). Probability that the correlation is different from zero is in parentheses. * P < 0.05,  

** P < 0.01. 

Species 
Object Type 

d3 d4 d5 d6 d7 d8 d9 d100 d200 

Rubus cuneifolius 
−0.027 −0.158 0.007 −0.126 −0.046 −0.115 −0.068 −0.110 0.196 

(0.788) (0.118) (0.947) (0.211) (0.652) (0.253) (0.502) (0.277) (0.051) 

Ligustrum sinense 
−0.313 ** −0.165 −0.233 * −0.227 * −0.277 ** −0.251 * −0.265 ** −0.294 ** −0.285 ** 

(0.002) (0.102) (0.020) (0.023) (0.005) (0.012) (0.008) (0.003) (0.004) 

Perilla frutescens 
−0.040 −0.077 −0.130 −0.088 −0.129 −0.117 −0.106 −0.096 −0.124 

(0.705) (0.470) (0.223) (0.408) (0.226) (0.274) (0.321) (0.370) (0.245) 

 

Figure 10. Original outlines of Quercus velutina (black oak) and Acer rubrum (red maple) 

in red, and their symmetrized versions in blue (n = 200 points). 

4. Discussion 

LAMINA software, in conjunction with continuous symmetry measures, can be used to estimate the 

shape asymmetry of plant leaves. Our method, which is based on the mirror symmetry of irregular 

objects, gives usable estimates of ds, the symmetry distance, for objects having from three to at least 

200 sides (i.e., triangles to many sided n-gons). 
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4.1. Shape Asymmetry 

The shape of an object, or landmark configuration, is “all of the geometric information remaining ... 

after differences in location, scale, and rotational effects are removed” [13]. Most leaves, however, have 

just two stable landmarks, which is insufficient to estimate shape. And because these landmarks are on 

the axis of mirror symmetry, they cannot be used by themselves to estimate shape asymmetry. One of 

these landmarks is the leaf apex, where the mid-vein intersects the leaf margin at the leaf tip. The other 

is the point where the petiole connects with the leaf lamina. LAMINA allows us to establish just one of 

these landmarks, the leaf apex. If both true landmarks are known, they can be used in 

csm_Mirror_closedBoundary.m [14] to force the axis of mirror symmetry through both points. The other 

equidistant points, proceeding clockwise around the leaf margin from the apex, are semi-landmarks, defined 

with respect to the leaf apex [13,15]. Semi-landmarks represent less information than true landmarks, 

and they consequently have fewer degrees of freedom. Nevertheless, they serve well in estimating 

shape asymmetry. 

To get at the “shape” of a leaf, we scale irregular objects to average centroid size, and translate the 

centroid to (0,0). We do not rotate the objects about their centroid, because it is irrelevant to our estimates 

of symmetry distance (ds). 

4.2. Cautions and Limitations 

Instability of the algorithm should be greatest for leaves approaching a circular shape, such as those 

of Tropaeolum majus L. When n = 3, the boundary points of a close-to-circular leaf should approach an 

equilateral rather than an isosceles triangle. An equilateral triangle has three axes of mirror symmetry, 

whereas an isosceles triangle has just one. The same reasoning can be extended to objects having  

n = 4, 5, 6, 7, or more points. A quadrilateral, for example, based on the outline of a perfectly ovate leaf 

could easily have two axes of mirror symmetry (one parallel to the midrib and the other perpendicular 

to it).  

With our algorithm, however, the axis of symmetry is constrained to pass through P0. Consequently, 

axes of symmetry perpendicular to the midrib are impossible. Nevertheless, if we had not constrained 

the axis of symmetry in such a way, we could have detected (and avoided) such results by examining 

the original and the symmetrized objects of the leaves. One can also examine just the leaves having the 

greatest values of θ. We observed no problems, even with the most asymmetric of leaves. We have 

noticed that odd- and even-sided objects seem to capture somewhat different aspects of leaf shape 

asymmetry. According to Savriama and Klingenberg [16], if an object is assimilated as either a 

symmetric shape with an odd or even order of symmetry, the components of asymmetry will differ. 

For even-sided objects, one of the semi-landmarks is invariably close to the base of the petiole. This 

is not true of odd-sided objects. Even-sided objects also tended to have smaller interquartile ranges. 

None of this should be a problem, however, if the number of equidistant points is large enough. 

A final limitation is the practical number of leaves that can be scanned at once. Even with a very large 

scanner, we have noticed that LAMINA cannot handle very large image files. Consequently, we either 

reduced the number of leaves scanned at once, or reduced the resolution (dpi) from 600 or 300 to 

something smaller. 
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4.3. Directional Asymmetry and Antisymmetry 

Within the context of continuous symmetry measures, shape asymmetry cannot be easily classified 

into fluctuating asymmetry, directional asymmetry, or antisymmetry. Directional asymmetry exhibits a 

distribution of L − R whose mean is not zero (i.e., μL − R ≠ 0). The mammalian heart, for example, is 

directionally asymmetric; the left side is normally larger than the right side [17]. Antisymmetry, on the 

other hand, describes a bimodal (or platykurtic) distribution of L − R and a mean of zero (μL − R = 0). The 

value of ds implies no polarity or directionality (ds ≥ 0). Moreover, the concept of shape is more abstract 

than concepts of distance, length, mass, or number, which can all have direction. Finally, different parts 

of an object can have asymmetry in different directions. 

4.4. Size Scaling 

Some negative size scaling remains after rescaling each object to average centroid size. This is likely 

a consequence of the mixing of additive and multiplicative error [1,18]. Growth variation is 

multiplicative, whereas measurement error is additive. These are mixed together whenever one measures 

a leaf. For small leaves, measurement error makes up a greater proportion of the asymmetry variation. 

When one corrects for multiplicative error by taking the logs of L and R or by scaling an object to average 

centroid size, one includes additive error in the correction. Small leaves appear more variable and large 

leaves appear less variable. 

The simplest way of dealing with this issue is to average replicate measurements of ds. Each round of 

averaging replicates reduces measurement error by one half, until it is inconsequential. This requires, 

however, quite a bit of additional work, rescanning and re-measuring leaves. 

Another approach is to use a Box-Cox (power) transformation, 𝑑𝑠
′ = (𝑑𝑠

λ − 1) λ⁄  , that minimizes the 

regression of ds on leaf area (or centroid size). Unfortunately, different species of plants may require 

different transformations, because the proportion of measurement error may vary from species to species. 

Raz et al. [9], for example, used power transforms to compare leaf asymmetries of several species of 

plants on north- and south-facing slopes of Evolution Canyon, Israel. 

Of our three species of plants, only Ligustrum sinense showed significant negative size scaling. 

Unsurprisingly, this species also had the highest proportion of measurement error, and consequently the 

greatest mixing of additive and multiplicative error. The problem of such mixture distributions will have 

to be solved if one expects to compare leaf asymmetries of different species of plants. 

4.5. Future Work 

We have just examined irregular objects having a maximum of 200 vertices. But LAMINA can output 

more semi-landmarks than that. Future work should examine the behavior of leaf-shaped objects having 

many more vertices. For our three species, estimates of ds seemed to converge for n > 100. 

For future work, we plan to examine leaf shape asymmetry in more species than just these three. We 

are presently exploring leaf asymmetry of paired native and invasive exotic species. We are also looking 

at shape asymmetry of leaves in highly polluted environments and we are looking at leaf asymmetry of 

r- and k-selected species (annuals and perennials). 
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5. Conclusions  

We describe a new approach, continuous symmetry measures (CSM), to measuring leaf shape 

asymmetry. Previous approaches have used anchor points [7–9] and distances and angles of rotationally 

symmetric flowers [10]. Landmark methods [19] might be suitable for some leaves that have consistent 

topology, but we are unaware of any such published studies involving true landmarks.  

Although three to nine points do not capture leaf shape well, they do capture some aspects of leaf 

shape asymmetry. The leaf apex P0 is a stable point, one of only two stable landmarks on most leaves. 

However, any irregularity of the leaf margin on right and left sides will shift the positions of P1 through 

Pn, thereby increasing the estimate of leaf asymmetry.  

Because the variation in the estimate of ds decreases with the number of points (sides), we suggest 

using 100 or 200 points rather than smaller numbers.  
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