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Abstract: A direct approach is proposed for constructing conservation laws of discrete
evolution equations, regardless of the existence of a Lagrangian. The approach utilizes
pairs of symmetries and adjoint symmetries, in which adjoint symmetries make up for
the disadvantage of non-Lagrangian structures in presenting a correspondence between
symmetries and conservation laws. Applications are made for the construction of
conservation laws of the Volterra lattice equation.
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1. Introduction

Noether’s theorem tells us that a symmetry of a differential equation leads to a conservation law
of the same equation, if the equation is derived from a Lagrangian, namely, it has a Lagrangian
formulation [1,2]. The Lagrangian formulation of the equation is essential for presenting conservation
laws from symmetries, and many physically important examples can be found in [1–4]. A natural
question arises whether there is any correspondence between symmetries and conservation laws for
differential equations not derivable from any Lagrangian. We would, in this paper, like to show that it is
possible to give a positive answer to the above question if we adopt adjoint symmetries. More precisely,
we want to exhibit that using symmetries and adjoint symmetries together can lead to conservation laws
for both Lagrangian and non-Lagrangian equations.

A good attempt to use adjoint symmetries in computing conservation laws of differential equations
was made in [5], and the approach utilizes adjoint symmetries, in which an adjoint invariance condition
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equivalently requires the existence of an adjoint symmetry. More generally, nonlinear self-adjointness
was introduced on the basis of adjoint systems and successfully applied to construction of conservation
laws of differential equations [6,7]. In that theory, the nonlinear self-adjointness means that the second
set of dependent variables in an adjoint system stands for an adjoint symmetry.

We would like to consider regular differential-difference equations, and so, they can be written as
evolution equations. Equations of this type contain difference equations, since any difference equation
can be considered as a stationary equation of discrete evolution equations. We will utilize pairs of
symmetries and adjoint symmetries to present a direct formula for constructing conservation laws, and
thus conserved densities, for evolution equations. Our approach will be used to compute conservation
laws for the Volterra lattice equation. The general theory justifies that symmetries really reflect
conservation laws. However, the adoption of adjoint symmetries has not attracted much attention within
the mathematical physics community. It is expected that our findings could stimulate to expose more
mathematical properties of adjoint symmetries as well as develop efficient algorithms for computing
adjoint symmetries.

The paper is structured as follows. In Section 2, a general theory will be formulated for constructing
conservation laws and thus conserved densities from symmetries and adjoint symmetries for discrete
evolution equations. In Section 3, an example will be analyzed, along with new conserved densities.
Finally in Section 4, a few of concluding remarks will be given with some discussion.

2. General Theory

We will use a plain language to formulate the framework of our results on the correspondence between
conservation laws and pairs of symmetries and adjoint symmetries.

Let the potential vector u be defined by

u = (u1, · · · , uq)T , ui = ui(n, t), 1 ≤ i ≤ q, n = (n1, · · · , np) ∈ Zp, t ∈ R, (1)

and Ei, 1 ≤ i ≤ p, denote the shift operators for the variables ni, 1 ≤ i ≤ p, i.e.,

(Eiu)(n) = u(n1, · · · , ni−1, ni + 1, ni+1, · · · , np), n = (n1, · · · , np) ∈ Zp, 1 ≤ i ≤ p. (2)

we introduce

Eα = Eα1
1 · · ·Eαp

p , Eαu = (Eαu1, · · · , Eαuq) = (u1α, · · · , uqα), (Eαui)(n) = ui(n+ α), (3)

where α = (α1, · · · , αp), n = (n1, · · · , np) ∈ Zp, and n + α = (n1 + α1, · · · , np + αp). We denote by
A and B the space of all local C∞ functions in n, t, u and Eαu to some finite order α, and the space of
all C∞ functions in n, t, u and Eαu to some finite order α. Moreover, we assume that Ar and Br denote
the r-th order tensor products of A and B, respectively, i.e.,

Ar = A⊗ · · · ⊗ A︸ ︷︷ ︸
r

, Br = B ⊗ · · · ⊗ B︸ ︷︷ ︸
r

. (4)

The locality here means that for a function f(u) in A, any value (f(u))(n) is completely determined
by the values of u at finitely many points n ∈ Zp. The space A contains functions of polynomial
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type, P (u,Eu, · · · , Eαu), where P is a polynomial in its variables, and the space B contains non-local
functions:

(f(u))(n) =
∑
|α|≤m

∑
k≥n

(Eαu)(k), m ≥ 1, |α| = |α1|+ · · ·+ |αp|.

For a local vector function X = X(u) = (X1, · · · , Xr)
T ∈ Ar, we can compute its Gateaux

derivative operator as follows:

X ′ = X ′(u) = (Vj(Xi))r×q =


V1(X1) V2(X1) · · · Vq(X1)

V1(X2) V2(X2) · · · Vq(X2)

...
... . . . ...

V1(Xr) V2(Xr) · · · Vq(Xr)

 , Vi(Xj) =
∑
α∈Zp

∂Xj

∂uiα
Eα, (5)

and its (formal) adjoint operator

X
′† = X

′†(u) = (V †i (Xj))q×r, V
†
i (Xj) =

∑
α∈Zp

E−α
∂Xj

∂uiα
, (6)

where the action of the operator E−αf on g is given by (E−αf)g = E−α(fg), f, g ∈ B. The operator
X
′† can be explained as an adjoint operator of X ′, if the inner products

〈Y, Z〉 =
∑
n∈Zp

s∑
i=1

Yi(n)Zi(n), Y = (Y1, · · · , Ys)T , Z = (Z1 · · · , Zs)T ∈ Bs, s ≥ 1, (7)

are well defined over some selected space of u. For example, for the adjoint operator E†i = E−1i of each
shift operator Ei (1 ≤ i ≤ p), we have

〈E†i Y, Z〉 = 〈E−1i Y, Z〉 = 〈Y,EiZ〉, Y, Z ∈ B.

Let us now consider an discrete evolution equation

ut = K(n, t, u), K ∈ Aq. (8)

its linearized equation and adjoint linearized equation are defined by

(σ(n, t, u))t = K ′(n, t, u)σ(n, t, u), σ ∈ Bq, (9)

(ρ(n, t, u))t = −K ′†(n, t, u)ρ(n, t, u), ρ ∈ Bq, (10)

respectively. HereK ′ andK ′† denotes the Gateaux derivative operator and the adjoint Gateaux derivative
operator of K with respect to u, respectively; and ft denotes the total derivative of f with respect to t.

Definition 2.1. A vector field σ ∈ Bq is called a symmetry of the discrete evolution Equation (8), if
it satisfies the linearized Equation (9) when u solves Equation (8). A vector field ρ ∈ Bq is called an
adjoint symmetry of the discrete evolution equation Equation (8), if it satisfies the adjoint linearized
Equation (10) when u solves (8).
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It is easy to see that two local vector fields σ ∈ Aq and ρ ∈ Aq are a symmetry and an adjoint
symmetry of the discrete evolution Equation (8), if and only if they satisfy

∂σ(n, t, u)

∂t
= K ′(n, t, u)σ(n, t, u)− σ′(n, t, u)K(n, t, u), (11)

∂ρ(n, t, u)

∂t
= −K ′†(n, t, u)ρ(n, t, u)− ρ′(n, t, u)K(n, t, u), (12)

respectively, when u solves Equation (8). Here σ′ and ρ′ are the Gateaux derivative operators of σ and ρ,
and ∂

∂t
denotes the partial derivative with respect to t.

Definition 2.2. If a relation

ht =

p∑
i=1

(Ei − 1)fi, h, fi ∈ B, 1 ≤ i ≤ p, (13)

holds when u solves the discrete evolution Equation (8), then Equation (13) is called a conservation
law of Equation (8), h a conserved density of Equation (8), and f = (f1, · · · , fp)T a conversed flux of
Equation (8) corresponding to h. A conserved density h ∈ B is called trivial, if there exist gi ∈ B, 1 ≤
i ≤ p, such that h =

∑p
i=1(Ei − 1)gi holds on the solution set.

A conserved quantity means a quantity which does not vary with respect to time t on the solution set.
A quantity defined by I =

∑
n∈Zp I(n), I = I(n, t, u) ∈ B, is called a functional. We would first like

to show a relation between conserved quantities and adjoint symmetries.

Proposition 2.1. Let I = I(n, u) be a functional which does not depend explicitly on time t. Then, I is
a conserved quantity of a discrete evolution equation ut = K, K = K(n, t, u) ∈ Bq, if and only if its
variational derivative δI

δu
is an adjoint symmetry of the same equation.

Proof: Let S be the Schwartz space and the Gateaux derivative of an object P = P (u) with respect
to Y be defined by

P ′[Y ] = P ′(u)[Y ] =
∂P (n, t, u+ εY )

∂ε

∣∣∣
ε=0

, Y ∈ Bq.

We denote the variational derivative δI
δu

by G, and so, the definition of variational derivatives tells that

I ′[Y ] = 〈G, Y 〉, Y ∈ Sq,

where the inner product is defined as in Equation (7). Then the differentiability of functions of C∞ class
guarantees that on the solution set, we have

It =
∂I
∂t

+
∂I(n, u+ εut)

∂ε

∣∣∣
ε=0

= 〈G, ut〉 = 〈G,K〉.

It now follows that
(It)′[Y ] = 〈G′[Y ], K〉+ 〈G,K ′[Y ]〉

= 〈G′†K,Y 〉+ 〈K ′†G, Y 〉

= 〈G′K,Y 〉+ 〈K ′†G, Y 〉

= 〈∂G
∂t

+G
′
K +K

′†G, Y 〉, Y ∈ Sq,
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where G′† = G′ and ∂G
∂t

= 0 were used. This last equality implies that I is conseved if and only if G is
an adjoint symmetry.

We use a conventional assumption below: an empty product of shift operatorsEαi , αi ∈ Z, 1 ≤ i ≤ p,
is understood to be the identity operator. For example, the operator Πl

i=kE
2
i implies the identity operator,

when k > l. We would now like to prove the following lemma, in order to give a direct formula for
constructing conservation laws of the discrete evolution Equation (8).

Lemma 2.1. Let f and g be two C∞ functions in variables n1, · · · , np. Then for any
α = (α1, · · ·αp) ∈ Zp, we have

fEαg − (E−αf)g = f(Eα1
1 · · ·Eαp

p g)− (E−α1
1 · · ·E−αp

p f)g

=

p∑
i=1

(Ei − 1)
[ αi∑
βi=1

(E−α1
1 · · ·E−αi−1

i−1 E−βii f)(Eαi−βi
i E

αi+1

i+1 · · ·Eαp
p g)

−
−αi∑
βi=1

(E−α1
1 · · ·E−αi−1

i−1 E−αi−βi
i f)(E−βii E

αi+1

i+1 · · ·Eαp
p g)

]
, (14)

where the value of an empty sum is conventionally zero.

Proof: First note that we have

aEk
i b− (E−ki a)b

= (Ei − 1)
[ k∑
l=1

(E−li a)(Ek−l
i b)−

−k∑
l=1

(E−k−li a)(E−li b)
]

=


(Ei − 1)

k∑
l=1

(E−li a)(Ek−l
i b), k ≥ 0,

(Ei − 1)
−k∑
l=1

(E−k−li a)(E−li b), k < 0,

(15)

for any k ∈ Z and any two C∞ functions a and b in variables n1, · · · , np. Then we decompose that

fEαg − (E−αf)g = f(Eα1
1 · · ·Eαp

p g)− (E−α1
1 · · ·E−αp

p f)g

=

p∑
i=1

[
(E−α1

1 · · ·E−αi−1

i−1 f)(Eαi
i · · ·Eαp

p g)− (E−α1
1 · · ·E−αi

i f)(E
αi+1

i+1 · · ·Eαp
p g)

]
.

It now follows from Equation (15) that each term in the above sum can be computed as follows:

(E−α1
1 · · ·E−αi−1

i−1 f)(Eαi
i · · ·Eαp

p g)− (E−α1
1 · · ·E−αi

i f)(E
αi+1

i+1 · · ·Eαp
p g)

= (E−α1
1 · · ·E−αi−1

i−1 f)[Eαi
i (E

αi+1

i+1 · · ·Eαp
p g)]

−[E−αi
i (E−α1

1 · · ·E−αi−1

i−1 f)](E
αi+1

i+1 · · ·Eαp
p g)

= (Ei − 1)
[ αi∑
βi=1

(E−α1
1 · · ·E−αi−1

i−1 E−βii f)(Eαi−βi
i E

αi+1

i+1 · · ·Eαp
p g)

−
−αi∑
βi=1

(E−α1
1 · · ·E−αi−1

i−1 E−αi−βi
i f)(E−βii E

αi+1

i+1 · · ·Eαp
p g)

]
, 1 ≤ i ≤ p,
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where the value of an empty sum is conventionally zero. This allows us to conclude that the equality
Equation (14) holds for any α = (α1, · · · , αp) ∈ Zp. The proof is finished.

Theorem 2.1. Let σ = (σ1, · · · , σq)T ∈ Bq and ρ = (ρ1, · · · , ρq)T ∈ Bq be a symmetry and an adjoint
symmetry of the discrete evolution Equation (8), respectively. Then we have a conservation law of the
discrete evolution Equation (8):

(σTρ)t = (

q∑
i=1

σiρi)t

=

p∑
k=1

(Ek − 1)

q∑
i,j=1

∑
α∈Zp

[ αk∑
βk=1

(E−α1
1 · · ·E−αk−1

k−1 E−βkk ρi
∂Ki

∂ujα
)(Eαk−βk

k E
αk+1

k+1 · · ·E
αp
p σj)

−
−αk∑
βk=1

(E−α1
1 · · ·E−αk−1

k−1 E−αk−βk
k ρi

∂Ki

∂ujα
)(E−βkk E

αk+1

k+1 · · ·E
αp
p σj)

]
, (16)

where α = (α1, · · · , αp), and the value of an empty sum is conventionally zero. Therefore, σTρ is a
conserved density of the discrete evolution Equation (8).

Proof: Let us compute that

(σTρ)t = σTt ρ+ σTρt = ρTσt + σTρt

= ρTK ′σ − σTK ′†ρ =

q∑
i,j=1

(ρiVj(Ki)σj − σjV †j (Ki)ρi)

=

q∑
i,j=1

∑
α∈Zp

(ρi
∂Ki

∂ujα
Eασj − σjE−αρi

∂Ki

∂ujα
).

By using Lemma 2.1, for all 1 ≤ i, j ≤ q, α ∈ Zp, we have

ρi
∂Ki

∂ujα
Eασj − σjE−αρi

∂Ki

∂ujα

=

p∑
k=1

(Ek − 1)
[ αk∑
βk=1

(E−α1
1 · · ·E−αk−1

k−1 E−βkk ρi
∂Ki

∂ujα
)(Eαk−βk

k E
αk+1

k+1 · · ·E
αp
p σj)

−
−αk∑
βk=1

(E−α1
1 · · ·E−αk−1

k−1 E−αk−βk
k ρi

∂Ki

∂ujα
)(E−βkk E

αk+1

k+1 · · ·E
αp
p σj)

]
,

where the value of an empty sum is conventionally zero. If then follows that the equality Equation (16) is
true, and thus, σTρ is a conserved density of the discrete evolution Equation (8). The proof is finished.

This theorem tells us that a pair of a symmetry and an adjoint symmetry naturally yields a conservation
law. Moreover, the expression of the conserved density is only dependent on the pair of a symmetry and
an adjoint symmetry, but the expression of the conserved flux is dependent on the pair of a symmetry
and an adjoint symmetry as well as the underlying equation.

If for two functions h1, h2 ∈ B, there exist functions gi ∈ B, 1 ≤ i ≤ p, such that

h1 − h2 =

p∑
i=1

(Ei − 1)gi, (17)
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then we say that h1 is equivalent to h2, denoted by h1 ∼ h2. Obviously, this is an equivalence relation,
and can be used in classifying conserved densities. A trivial conserved density is equivalent to zero.

3. Applications to the Volterra Lattice Equation

Now we go on to illustrate by an example rich structures of the conservation laws resulted from
symmetries and adjoint symmetries.

Let us consider the Volterra lattice equation [8]:

ut = K(u) = u(E−1u− Eu), u = u(n, t), n ∈ Z, t ∈ R. (18)

Its linearized equation and adjoint linearized equation read

σt = (E−1u− Eu)σ + uE−1σ − uEσ, (19)

ρt = (Eu− E−1u)ρ− E(uρ) + E−1(uρ), (20)

respectively. There exist infinitely many symmetries [9]:

Ki = Φi(u(E−1u− Eu)), i ≥ 0, (21)

τi = Φi(t[K0, u] + u) = Φi(tK0 + u) = Φi(tu(E−1u− Eu) + u), i ≥ 0, (22)

where the hereditary recursion operator Φ is defined by

Φ = u(1 + E−1)(−(Eu)E2 + u)(E − 1)−1u−1.

Moreover, these symmetries constitute a Lie algebra [9]:

[Ki, Ki] = 0, [Ki, τj] = (i+ 1)Ki+j, [τi, τj] = (i− j)τi+j, i, j ≥ 0, (23)

where [K,S] is defined by [K,S] = K ′S − S ′K, K ′ and S ′ being the corresponding Gateaux
derivative operators.

By an inspection, the function defined by

S0 = u−1 (24)

is an adjoint symmetry of the Volterra lattice Equation (18). This means that S0 satisfies the
adjoint linearized Equation (20) while u solves Equation (18). The proof just needs a simple and
direct computation:

(S0)t = −u−2ut, (Eu− E−1u)S0 − E(uS0) + E−1(uS0) = (Eu− E−1u)u−1,

from which it directly follows that if u solves Equation (18), S0 satisfies Equation (20). Now, using
the principle in Theorem 2.1, we have infinitely many conserved densities, u−1Ki and u−1τi, i ≥ 0. In
particular, since we have

S0τ1 = S0(tK1 + Φu) ∼ u−1Φu,

(Φu)(n) = u(n)[−(n+ 2)u(n+ 1)− u(n) + (n− 1)u(n− 1)],
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we obtain a nontrivial local conserved density of the Volterra lattice Equation (18):

(h1)(n) = −(n+ 2)u(n+ 1)− u(n) + (n− 1)u(n− 1). (25)

This generates a conservation law

h1t = (E − 1)[([n] + 1)u(Eu)− ([n]− 1)(E−2u)(E−1u)], (26)

where [n] is the operator
([n]f)(m) = mf(m), f ∈ B, m ∈ Z.

Except S0τ1 = S0(tK0 + u) ∼ 1, all other products of the same type, u−1τi, i ≥ 2, give us nontrivial
nonlocal conserved densities of the Volterra lattice Equation (18). But all u−1Ki, i ≥ 0, are trivial
conserved densities, which can be seen directly from the recursion structure of symmetries [10].

Based on Proposition 2.1, the Hamiltonian formulation of the Volterra soliton hierarchy [9] guarantees
that the Volterra lattice Equation (18) has a hierarchy of adjoint symmetries:

ρi = Ψi1 =
δHi

δu
, Ψ = Φ† = u−1(E − 1)−1(−(Eu)E2 + u)(1 + E−1)u, i ≥ 0, (27)

which generate, by Theorem 2.1, the conserved densities: ρiKj, ρiτj, i, j ≥ 0. The nontrivial conserved
density generated from ρ0τ1 is, due to K1 ∼ 0, equivalent to

(h2)(n) = (Φu)(n) = u(n)[−(n+ 2)u(n+ 1)− u(n) + (n− 1)u(n− 1)], (28)

whose associated conservation law reads

h2t = (E − 1){([n] + 1)[(E−1u)u2 + (E−1u)u(Eu)]− ([n]− 1)[(E−2u)2u+ (E−2u)(E−1u)u]}. (29)

Moreover, we see that all symmetries, Ki = ρ0Ki and τi = ρ0τi, i ≥ 0, are also conserved densities, and
that the conserved densities ρiτ0 ∼ ρiu, i ≥ 0, present all standard ones associated with the Hamiltonian
functionals {Hi|i ≥ 0} [9], upon noting

u
δH
δu

= u
∑
α∈Z

E−α
∂H

∂(Eαu)
∼
∑
α∈Z

(Eαu)
∂H

∂(Eαu)
= H, H =

∑
n∈Z

H(n), H ∈ A.

The Volterra lattice Equation (18) also has the following Lax pair [11]:

U(u, λ) =

 0 u

−1 λ

 , V (u, λ) =

 λ2 − u −λE−1u

λ −E−1u

 , (30)

which means that the Volterra lattice Equation (18) is equivalent to the discrete zero curvature equation
Ut = (EV )U − UV . Let λs, 1 ≤ s ≤ N , be arbitrary constants, and introduce N replicas of the
spectral problems:

Eφ(s) = U(u, λs)φ
(s), φ

(s)
t = V (u, λs)φ

(s), φ(s) = (φ1s, φ2s)
T , 1 ≤ s ≤ N, (31)

and N replicas of the adjoint spectral problems:

Eψ(s) = (UT )−1(u, λs)ψ
(s), ψ

(s)
t = −V T (u, λs)ψ

(s), ψ(s) = (ψ1s, ψ2s)
T , 1 ≤ s ≤ N. (32)
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Then, we have a class of adjoint symmetries represented in terms of eigenfunctions and adjoint
eigenfunctions [11]:

T0 =
1

u
(P T

2 AQ1 + P T
2 Q2), (33)

where the matrix A, and the two N dimensional vector functions Pi and Qi are defined by

A = diag(λ1, · · · , λN), Pi = (φi1, · · · , φiN)T , Qi = (ψi1, · · · , ψiN)T , 1 ≤ i ≤ 2. (34)

Now, Theorem 2.1 guarantees that we have the conserved densities: T0Ki and T0τi, i ≥ 0. This
particularly gives the following two conserved densities:

T0K0 = (E−1u− Eu)(P T
2 AQ1 + P T

2 Q2), (35)

T0τ0 = t(E−1u− Eu)(P T
2 AQ1 + P T

2 Q2) + (P T
2 AQ1 + P T

2 Q2). (36)

Again by Theorem 2.1, their corresponding fluxes read

−(P T
2 AQ1 + P T

2 Q2)E
−1K0 − (E(P T

2 AQ1 + P T
2 Q2))K0, (37)

−(P T
2 AQ1 + P T

2 Q2)E
−1τ0 − (E(P T

2 AQ1 + P T
2 Q2))τ0, (38)

respectively. The involvement of eigenfunctions and adjoint eigenfunctions exhibits strong nonlocality
of this kind of conservation laws.

4. Concluding Remarks

We have established a direct approach for constructing conservation laws and thus conserved densities
of discrete evolution equations, whether the evolution equations are derivable from a Lagrangian or not.
Our approach utilizes pairs of symmetries and adjoint symmetries, in which adjoint symmetries make up
for the disadvantage of non-Lagrangian structures in establishing a correspondence between symmetries
and conservation laws. The approach has been applied to the generation of conserved densities of the
Volterra lattice equation.

We remark that on one hand, all evolution equations become the first-order ordinary differential
equations (ODEs), when there is no spatial shift appeared in the equations. On the other hand, if we
remove the time derivative, i.e., there is no time involved in evolution equations, then we immediately
obtain conservation laws for difference equations. Moreover, our results pave a way to construct
conservation laws from symmetries for self-adjoint discrete evolution equations or difference equations,
since symmetries are also adjoint symmetries of self-adjoint discrete evolution equations or difference
equations. We also point out that our idea of constructing conservation laws by symmetries and
adjoint symmetries is quite similar to that of carrying out binary nonlinearization under symmetry
constraints [12,13]. In the theory of binary nonlinearization [12,13], adjoint symmetries are used to
establish a balance with non-Lie adjoint symmetries generated from both spectral problems and adjoint
spectral problems.

There are many other approaches or theories on conservation laws of differential equations and
differential-difference equations. In the case of integrable equations, Hamiltonian formulations [14,15]
generate usual conservation laws associated with Hamiltonian functionals, and a bi-Hamiltonian
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formulation presents a recurrence relation of conserved densities in the resulting conservation laws [16].
Moreover, Lax pairs are used to make Riccati type equations that ratios of eigenfunctions need to satisfy,
and series expansions of solutions of the resulting Riccati type equations around the spectral parameter
yield conservation laws (see, e.g., [17,18]). For continuous evolution equations, adjoint symmetries are
also called conserved covariants [19], and it is recognized that the product of a symmetry and an adjoint
symmetry presents a conserved density (see, e.g., [19–21]) and that a functional I is conserved if and
only if its variational derivative δI

δu
is an adjoint symmetry (see, e.g., [13,20,21]).

There exists a geometrical theory to deal with adjoint symmetries of the second-order ODEs [22].
Adjoint symmetries are also used to show separability of finite-dimensional Hamiltonian systems (see,
e.g., [23]) and links to integrating factors of the second-order ODEs (see, e.g., [24]). An important
character for symmetries is the existence of Lie algebraic structures, and such Lie algebraic structures
can be resulted from a kind of Lie algebras of Lax operators corresponding to symmetries (see [25–27]
for the continuous case and [9,28] for the discrete case). Therefore, we are curious about whether there
exist any Lie algebraic structures for adjoint symmetries and what kind of Lie algebraic structures we
can have if they exist. We finally make a remark about this question. A natural binary operation for
adjoint symmetries could be taken as

[[ ρ1, ρ2 ]] = (ρ′1)
†ρ2 − (ρ′2)

†ρ1,

where (ρ′1)
† and (ρ′2)

† denote their adjoint Gateaux derivative operators. However, this doesn’t keep the
space of adjoint symmetries closed. For example, for the Volterra lattice Equation (18), we have two
adjoint symmetries ρ1 = 1 and ρ2 = u−1, which generate

[[ ρ1, ρ2 ]] = [[ 1, u−1 ]] = u−2,

but this function u−2 is not an adjoint symmetry of the Volterra lattice equation.
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