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Abstract: In this paper, we study a generalized Zakharov–Kuznetsov equation in three
variables, which has applications in the nonlinear development of ion-acoustic waves in a
magnetized plasma. Conservation laws for this equation are constructed for the first time
by using the new conservation theorem of Ibragimov. Furthermore, new exact solutions are
obtained by employing the Lie symmetry method along with the simplest equation method.
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1. Introduction

Many important phenomena and dynamic processes in physics, applied mathematics and engineering
can be described by higher-dimensional extensions of the Korteweg–de Vries (KdV) equation. Zakharov
and Kuznetsov successfully proposed one such model [1]. The Zakharov–Kuznetsov (ZK) equation
given by:

ut + αuux + β(uxx + uyy)x = 0 (1)

is one of the known two-dimensional generalizations of the KdV equation studied in the literature. The
ZK equation governs the behavior of weakly nonlinear ion-acoustic waves in a plasma comprising cold
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ions and hot isothermal electrons in the presence of a uniform magnetic field [1–3]. In [4,5], Wazwaz
used the extended tanh method and the sine-cosine ansatz to find solitons and periodic solutions for (1).
Moussa [6] also obtained some similarity solutions by using the symmetry group method. Equation (1)
was also studied, amongst others, by Peng [7], and he obtained abundant periodic wave solutions using
the extended mapping method.

This paper aims to study the generalized Zakharov–Kuznetsov (gZK) equation [4,8]:

ut + αunux + β(uxx + uyy)x = 0 (2)

where α, β and n are nonzero arbitrary constants and u = u(t, x, y). In [4], the extended tanh method
was employed, and solitons and periodic solutions were derived for (2), which may be helpful to describe
wave features in plasma physics. The Cole–Hopf transformation and the first integral technique were
used in [8] to obtain complex solutions for Equation (2).

It is of great importance to search for exact solutions of nonlinear partial differential equations
(NPDEs), such as the gZK equation, because many physical phenomena are described by NPDEs.
Although there is no unique method for finding exact solutions of NLPEs, a great deal of research
work has been devoted to developing different methods to solve NLPEs. Some of the methods found
in the literature include the inverse scattering transform method [9], Darboux transformation [10],
Hirota’s bilinear method [11], Bäcklund transformation [12], the multiple exp-function method [13],
the (G′/G)-expansion method [14], the sine-cosine method [15], the F -expansion method [16], the
exp-function expansion method [17] and the Lie symmetry method [18,19].

There is no doubt that in the study of differential equations, conservation laws play an important role.
In fact, conservation laws describe physical conserved quantities, such as mass, energy, momentum
and angular momentum, as well as charge and other constants of motion [20,21]. They have
been used in investigating the existence, uniqueness and stability of solutions of nonlinear partial
differential equations [22–24]. Furthermore, they have been used in the development and use of
numerical methods [25,26]. Recently, conservation laws were used to obtain exact solutions of some
partial differential equations [27–31]. Thus, it is essential to study the conservation laws of partial
differential equations.

The paper is organized as follows: In Section 2, we derive conservation laws of (2) by employing
the new conservation law theorem by Ibragimov [32]. In Section 3, we obtain exact solutions of (2)
using Lie symmetry analysis and the simplest equation method [33–35]. Finally, concluding remarks are
presented in Section 4.

2. Conservation Laws

In this section, the new conservation theorem by Ibragimov [32] will be used to construct conservation
laws for (2). To use the conservation theorem by Ibragimov [32], we need to know the Lie point
symmetries of (2). Thus, we first compute the symmetries of (2).
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2.1. Lie Point Symmetries of (2)

The vector field:

X = ξ1(x, y, t, u)
∂

∂x
+ ξ2(x, y, t, u)

∂

∂y
+ ξ3(x, y, t, u)

∂

∂t
+ η(x, y, t, u)

∂

∂u

is a Lie point symmetry of (2) if:

X [3][ut + αunux + β(uxx + uyy)x] = 0

on Equation (2). Expanding Equation (3) and then splitting on the derivatives of u, we obtain the
following overdetermined system of linear partial differential equations:

ξ3t = 0, ξ2y = 0, ξ3x = 0, ξ3u = 0, ξ2u = 0, ξ1x = 0,

ξ1y = 0, ξ1u = 0, ξ2xx = 0, ηxu = 0, ηuu = 0, ξ3yy − 2ηyu = 0,

βuηyyu − uξ2t + 2αun+1ξ2x + nαunη = 0,

βuηyyu − uξ2t + 2αun+1ξ3y + nαunη = 0,

βηxxx + βηxyy + αunηx + ηt = 0,

βuηyyu − uξ2t + nαunη + αun+1ξ1t − αun+1ξ2x = 0.

Solving the above system of partial differential equations, one obtains the following four Lie
point symmetries:

X1 =
∂

∂t
, X2 =

∂

∂x
, X3 =

∂

∂y
, X4 = 3nt

∂

∂t
+ nx

∂

∂x
+ ny

∂

∂y
− 2u

∂

∂u

2.2. Application of the New Conservation Theorem

The gZK equation together with its adjoint equation are given by:

F ≡ ut + αunux + βuxxx + βuxyy = 0 (3a)

F ∗ ≡ vt + αvxu
n + βvxxx + βvxyy = 0 (3b)

The third-order Lagrangian for the system of Equations (3a) and (3b) is given by:

L = v(ut + αunux + βuxxx + βuxyy) (4)

which can be reduced to the second-order Lagrangian:

L = v(ut + αunux)− βvxuxx − βvxuyy (5)

We have the following four cases:

(i) We first consider the Lie point symmetry X1 = ∂t of (2). Corresponding to this symmetry, the Lie
characteristic functions are W 1 = −ut and W 2 = −vt. Thus, by using the Ibragimov theorem [32], the
components of the conserved vector associated with the symmetry X1 = ∂t are given by:

Ct
1 = αvunux − βvx(uxx + uyy),
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Cx
1 = βvxutx + βvt(uxx + uyy)− αvunut − βutvxx,

Cy
1 = βvxuty − βutvxy.

(ii) Likewise, the Lie point symmetry X2 = ∂x has the Lie characteristic functions W 1 = −ux and
W 2 = −vx. Invoking Ibragimov’s theorem, we obtain the conserved vector, whose components are:

Ct
2 = −vux,

Cx
2 = βvxuxx − βuxvxx + vut,

Cy
2 = βvxuxy − βuxvxy.

(iii) The Lie point symmetry X3 = ∂y has the Lie characteristic functions W 1 = −uy and W 2 = −vy,
and using Ibragimov’s theorem, the components of the conserved vector are:

Ct
3 = −vuy,

Cx
3 = βvxuxy + βvy(uxx + uyy)− βuyvxx − αvunuy,

Cy
3 = v(ut + αunux)− βvxuxx − βuyvxy.

(iv) Finally, the Lie point symmetry X4 = 3nt∂t + nx∂x + ny∂y − 2u∂u gives W 1 = −(2u + 3ntut +

nxux +nyuy) and W 2 = (2− 2n)v− 3ntvt−nxvx−nyvy, and so, the associated conserved vector has
components:

Ct
4 = v(3αntunux − 2u− nxux − nyuy)− 3βntvx(uxx + uyy),

Cx
4 = v(nxut − 2αun+1 − 3αntunut − αnyunuy) + βnyvy(uxx + uyy)

+3βntvt(uxx + uyy) + βvx(2ux + 3ntutx + nux + nxuxx + nyuxy)

−βvxx(2u+ 3ntut + nxux + nyuy)− 2βv(uxx + uyy) + 2βnv(uxx + uyy),

Cy
4 = βvx(2uy + 3ntuty + nxuxy + nuy − nyuxx)− βvxy(2u+ 3ntut + nxux + nyuy)

+nyv(ut + αunux).

3. Exact Solutions

In this section, we obtain exact solutions of (2) using firstly its Lie point symmetries and, secondly,
by employing the simplest equation method.

3.1. Exact Solutions of (2) Using Its Lie Point Symmetries

First of all, we utilize the linear combination of the three translation symmetries, namely X = X1 +

νX2 + X3, and reduce the gZK Equation (2) to a PDE in two independent variables. The associated
Lagrange system is:

dt

1
=
dx

ν
=
dy

1
=
du

0

which yields the following three invariants:

f = t− y, g = x− νy, θ = u (6)
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By considering θ as the new dependent variable and f and g as new independent variables, the gZK
Equation (2) transforms to:

θf + αθnθg + β(ν2 + 1)θggg + 2βνθfgg + βθffg = 0 (7)

which is a nonlinear PDE in two independent variables. Further symmetry reduction of (7) can be done
by using its symmetries. Equation (7) has the two translational symmetries, viz.,

Γ1 =
∂

∂f
, Γ2 =

∂

∂g

The combination Γ1 + kΓ2, of the two symmetries Γ1 and Γ2, for an arbitrary constant k, yields the
two invariants:

z = g − kf and W = θ

which gives rise to a group invariant solution W = W (z). Consequently, using these invariants, (7) is
transformed into the third-order nonlinear ODE:

β(1 + (ν − k)2)W ′′′ + αW nW ′ − kW ′ = 0 (8)

The integration of (8) yields

β(1 + (ν − k)2)W ′′ +
α

n+ 1
W n+1 − kW = 0 (9)

where the constant of integration has been taken to be zero, because we are looking for soliton solutions.
Equation (9) can be integrated easily by first multiplying it byW ′.We then obtain the first-order variables
separable equation:

β(1 + (ν − k)2)

2
W ′2 +

α

(n+ 1)(n+ 2)
W n+2 − k

2
W 2 = 0 (10)

which can be integrated easily. After integrating and reverting back to the original variables, we obtain
the following group-invariant solution of the gZK Equation (2) for arbitrary values of n in the form:

u(t, x, y) =

(
k(n+ 1)(n+ 2)

2α

) 1
n

sech
2
n (R) (11)

where

R =
n
√
k(C1 + z)

2
√
β(1 + (ν − k)2)

z = x− kt− (ν − k)y

Note that (11) represents a non-topological soliton solution. A sketch of the solution (11) with n = 2,
α = 2, k = 5, ν = 1, β = 1, t = 0 and C1 = 1 is given in Figure 1.
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Figure 1. Profile of the solution of (11).

3.2. Exact Solutions of (2) Using the Simplest Equation Method

In this subsection, we use the simplest equation method [33–35] to solve the nonlinear third-order
ODE (8) for n = 1, 2. The simplest equations that we use here are the Bernoulli equation:

H ′(z) = aH(z) + bH2(z) (12)

and the Riccati equation:
G′(z) = aG2(z) + bG(z) + c (13)

where a, b and c are constants [36]. We look for solutions of the nonlinear ODE (8) that are of the form:

W (z) =
M∑
i=0

Ai(G(z))i

where G(z) satisfies the Bernoulli equation or Riccati equation, M is a positive integer that can be
determined by a balancing procedure and A0, · · · , AM are parameters to be determined.

The solution of Bernoulli Equation (12) we use here is given by:

H(z) = a

{
cosh[a(z + C)] + sinh[a(z + C)]

1− b cosh[a(z + C)]− b sinh[a(z + C)]

}
where C is a constant of integration. For the Riccati Equation (13), the solutions to be used are:

G(z) = − b

2a
− θ

2a
tanh

[
1

2
θ(z + C)

]
(14)

and

G(z) = − b

2a
− θ

2a
tanh

(
1

2
θz

)
+

sech
(
θz
2

)
C cosh

(
θz
2

)
− 2a

θ
sinh

(
θz
2

) (15)

with θ =
√
b2 − 4ac and C is a constant of integration.

3.2.1. Solutions of (2) Using the Bernoulli Equation as the Simplest Equation

n = 1

In this case, the balancing procedure yields M = 2 and solutions of (8) are of the form:

W (z) = A0 + A1G+ A2G
2
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We insert this value of W (z) in (8). Then, using the Bernoulli Equation (12) and, thereafter, equating
the coefficients of powers of Gi to zero, we obtain an algebraic system of five equations in terms of
A0, A1, A2, namely:

24 b3β k2A2 − 48 b3β kν A2 + 24 b3β ν2A2 + 24 b3β A2 + 2α bA2
2 = 0,

a3β k2A1 − 2 a3β kν A1 + a3β ν2A1 + a3β A1 + aαA0A1 − akA1 = 0,

54 ab2β k2A2 − 108 ab2β kν A2 + 54 ab2β ν2A2 + 6 b3β k2A1 − 12 b3β kν A1

+6 b3β ν2A1 + 54 ab2β A2 + 6 b3β A1 + 2 aαA2
2 + 3α bA1A2 = 0,

38 a2bβ k2A2 − 76 a2bβ kν A2 + 38 a2bβ ν2A2 + 12 ab2β k2A1 − 24 ab2β kν A1

+12 ab2β ν2A1 + 38 a2bβ A2 + 12 ab2β A1 + 3 aαA1A2 + 2α bA0A2

+α bA1
2 − 2 bkA2 = 0,

8 a3β k2A2 − 16 a3β kν A2 + 8 a3β ν2A2 + 7 a2bβ k2A1 − 14 a2bβ kν A1

+7 a2bβ ν2A1 + 8 a3β A2 + 7 a2bβ A1 + 2 aαA0A2 + aαA1
2

+α bA0A1 − 2 akA2 − bkA1 = 0.

With the aid of Maple, we solve the above system and obtain:

A0 =
1

α
{2a2βkν − a2βν2 − a2β − a2βk2 + k}, A1 =

1

α
{12abβ

(
2kν − ν2 − k2 − 1

)
},

A2 =
1

α
{12b2β

(
2kν − ν2 − k2 − 1

)
}.

Therefore, the solution of (2), for n = 1 is given by:

u(t, x, y) =A0 + aA1

{
cosh[a(z + C)] + sinh[a(z + C)]

1− b cosh[a(z + C)]− b sinh[a(z + C)]

}
+ A2a

2

{
cosh[a(z + C)] + sinh[a(z + C)]

1− b cosh[a(z + C)]− b sinh[a(z + C)]

}2

(16)

where z = x− kt− (ν − k)y and C is an arbitrary constant of integration.

n = 2

The balancing procedure yields M = 1, so the solutions of (8) take the form:

W (z) = A0 + A1G (17)

As before, substituting (17) into (8), we obtain the algebraic system of equations:

6 b3β k2A1 − 12 b3β kν A1 + 6 b3β ν2A1 + α bA1
3 + 6 b3β A1 = 0,

a3β k2A1 − 2 a3β kν A1 + a3β ν2A1 + a3β A1 + aαA0
2A1 − akA1 = 0,

12 ab2β k2A1 − 24 ab2β kν A1 + 12 ab2β ν2A1 + aαA1
3 + 12 ab2β A1

+2α bA0A1
2 = 0,

7 a2bβ k2A1 − 14 a2bβ kν A1 + 7 a2bβ ν2A1 + 7 a2bβ A1 + 2 aαA0A1
2

+α bA0
2A1 − bkA1 = 0,
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whose solution is:

A0 = ±
√

3k

α
, A1 = ±2b

a

√
3k

α
β =

2k

a2 (2kν − ν2 − k2 − 1)
.

Therefore, the solutions of (2) for n = 2 are given by:

u(t, x, y) =A0 + aA1

{
cosh[a(z + C)] + sinh[a(z + C)]

1− b cosh[a(z + C)]− b sinh[a(z + C)]

}
(18)

where z = x− kt− (ν − k)y and C is an arbitrary constant of integration. A sketch of the solution (18)
is given in Figure 2.

Figure 2. Profile of the solution of (18).

3.2.2. Solutions of (2) Using the Riccati Equation as the Simplest Equation

n = 1

For this case, the balancing procedure gives M = 2, and so, (14) becomes:

W (z) = A0 + A1G+ A2G
2 (19)

The insertion of this value of W (z) into (8) and making use of the Riccati Equation (13) yields the
following algebraic system of equations in terms of A0, A1, A2:

24 a3β k2A2 − 48 a3β kν A2 + 24 a3β ν2A2 + 24 a3β A2 + 2 aαA2
2 = 0,

6 a3β k2A1 − 12 a3β kν A1 + 6 a3β ν2A1 + 54 a2bβ k2A2 − 108 a2bβ kν A2

+54 a2bβ ν2A2 + 6 a3β A1 + 54 a2bβ A2 + 3 aαA1A2 + 2α bA2
2 = 0,

2 aβ c2k2A1 − 4 aβ c2kν A1 + 2 aβ c2ν2A1 + b2β ck2A1 − 2 b2β ckν A1

+b2β cν2A1 + 6 bβ c2k2A2 − 12 bβ c2kν A2 + 6 bβ c2ν2A2 + 2 aβ c2A1

+b2β cA1 + 6 bβ c2A2 + α cA0A1 − ckA1 = 0,

12 a2bβ k2A1 − 24 a2bβ kν A1 + 12 a2bβ ν2A1 + 40 a2β ck2A2 − 80 a2β ckν A2
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+40 a2β cν2A2 + 38 ab2β k2A2 − 76 ab2β kν A2 + 38 ab2β ν2A2 + 12 a2bβ A1

+40 a2β cA2 + 38 ab2β A2 + 2 aαA0A2 + aαA1
2 + 3α bA1A2

+2α cA2
2 − 2 akA2 = 0,

8 abβ ck2A1 − 16 abβ ckν A1 + 8 abβ cν2A1 + 16 aβ c2k2A2 − 32 aβ c2kν A2

+16 aβ c2ν2A2 + b3β k2A1 − 2 b3β kν A1 + b3β ν2A1 + 14 b2β ck2A2

−28 b2β ckν A2 + 14 b2β cν2A2 + 8 abβ cA1 + 16 aβ c2A2 + b3β A1

+14 b2β cA2 + α bA0A1 + 2α cA0A2 + α cA1
2 − bkA1 − 2 ckA2 = 0,

8 a2β ck2A1 − 16 a2β ckν A1 + 8 a2β cν2A1 + 7 ab2β k2A1 − 14 ab2β kν A1

+7 ab2β ν2A1 + 52 abβ ck2A2 − 104 abβ ckν A2 + 52 abβ cν2A2 + 8 b3β k2A2

−16 b3β kν A2 + 8 b3β ν2A2 + 8 a2β cA1 + 7 ab2β A1 + 52 abβ cA2 + 8 b3β A2

+aαA0A1 + 2α bA0A2 + α bA1
2 + 3α cA1A2 − akA1 − 2 bkA2 = 0.

The solution of the above system using Maple gives:

A0 =
1

α
{16aβckν − 8aβcν2 − 8aβc− 8aβck2 − βb2ν2 − βb2 − βb2k2 + 2βb2kν + k},

A1 =
1

α
{12abβ

(
2kν − ν2 − k2 − 1

)
}, A2 =

1

α
{12a2β

(
2kν − ν2 − k2 − 1

)
}.

Consequently, the solutions of (2) are:

u(t, x, y) =A0 + A1

{
− b

2a
− θ

2a
tanh

(
1

2
θ(z + C)

)}
+ A2

{
− b

2a
− θ

2a
tanh

(
1

2
θ(z + C)

)}2

(20)

and

u(t, x, y) =A0 + A1

{
− b

2a
− θ

2a
tanh

(
1

2
θz

)
+

sech
(
θz
2

)
C cosh

(
θz
2

)
− 2a

θ
sinh

(
θz
2

)}
+ A2

{
− b

2a
− θ

2a
tanh

(
1

2
θz

)
+

sech
(
θz
2

)
C cosh

(
θz
2

)
− 2a

θ
sinh

(
θz
2

)}2

(21)

where z = x− kt− (ν − k)y and C is an arbitrary constant of integration.

n = 2

The balancing procedure yields M = 1, so the solutions of (8) are of the form:

W (z) = A0 + A1G

Substituting (22) into (8) and using the Riccati equation [36], we obtain the following algebraic system
of equations:

−6bA1c
3ν + 3aA3

1c = 0,

6aA2
1A0c+ 3aA3

1d− 12bA1c
2dν = 0,
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3aA1A
2
0e− 2bA1ce

2ν − A1eν − bA1d
2eν = 0,

−8bA1cdeν − A1dν + 6aA2
1A0e− bA1d

3ν + 3aA1A
2
0d = 0,

−A1cν + 3aA3
1e− 7bA1cd

2ν + 3aA1A
2
0c+ 6aA2

1A0d− 8bA1c
2eν = 0.

Solving the above algebraic equations, one obtains:

A0 = ± b

2
√
α

√
6β(2kν − ν2 − k2 − 1), A1 = ± a√

α

√
6β(2kν − ν2 − k2 − 1),

a =
b2β k2 − 2 b2β kν + b2β ν2 + b2β + 2 k

4 β c (k2 − 2 ν k + ν2 + 1)

Hence, we have the following solutions of (2) for n = 2:

u(x, y, t) = A0 + A1

{
− b

2a
− θ

2a
tanh

(
1

2
θ(z + C)

)}
(22)

and

u(t, x, y) =A0 + A1

{
− b

2a
− θ

2a
tanh

(
1

2
θz

)
+

sech
(
θz
2

)
C cosh

(
θz
2

)
− 2a

θ
sinh

(
θz
2

)} (23)

where z = x− kt− (ν − k)y and C is an arbitrary constant of integration. A sketch of the solution (23)
is given in Figure 3.

Figure 3. Profile of the solution of (23).

4. Concluding Remarks

In this paper, we studied the generalized Zakharov–Kuznetsov Equation (2). We derived the
conservation laws of this equation by using the new conservation theorem by Ibragimov. Moreover,
the Lie point symmetries of (2) were obtained and were used in conjunction with the simplest equation
method to obtain exact solutions of the generalized Zakharov–Kuznetsov equation. The solutions
obtained here are new and more general than the ones obtained before in [4] and [8]. Furthermore,
the importance of the conservation laws has been emphasized in the Introduction.
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