
Symmetry 2015, 7, 1151-1163; doi:10.3390/sym7031151

symmetry
ISSN 2073-8994

www.mdpi.com/journal/symmetry

Article

Multiple Minimum Support-Based Rare Graph Pattern Mining

Considering Symmetry Feature-Based Growth Technique and

the Differing Importance of Graph Elements

Gangin Lee, Unil Yun *, Heungmo Ryang and Donggyu Kim

Department of Computer Engineering, Sejong University, 209 Neungdong-ro, Gwangjin-gu,

Seoul 143-747, Korea; E-Mails: ganginlee@sju.ac.kr (G.L.); ryang@sju.ac.kr (H.R.);

donggyukim@sju.ac.kr (D.K.)

* Author to whom correspondence should be addressed; E-Mail: yunei@sejong.ac.kr;

Tel.: +82-2-3408-2902; Fax: +82-2-3408-4321.

Academic Editor: Neil Y. Yen

Received: 12 January 2015 / Accepted: 23 June 2015 / Published: 26 June 2015

Abstract: Frequent graph pattern mining is one of the most interesting areas in data mining,

and many researchers have developed a variety of approaches by suggesting efficient, useful

mining techniques by integration of fundamental graph mining with other advanced mining

works. However, previous graph mining approaches have faced fatal problems that cannot

consider important characteristics in the real world because they cannot process both (1) different

element importance and (2) multiple minimum support thresholds suitable for each graph

element. In other words, graph elements in the real world have not only frequency factors

but also their own importance; in addition, various elements composing graphs may require

different thresholds according to their characteristics. However, traditional ones do not consider

such features. To overcome these issues, we propose a new frequent graph pattern mining

method, which can deal with both different element importance and multiple minimum support

thresholds. Through the devised algorithm, we can obtain more meaningful graph pattern

results with higher importance. We also demonstrate that the proposed algorithm has more

outstanding performance compared to previous state-of-the-art approaches in terms of graph

pattern generation, runtime, and memory usage.

Keywords: frequent pattern mining; graph mining; graph enumeration; multiple minimum

supports; weight constraint

OPEN ACCESS

Symmetry 2015, 7 1152

1. Introduction

Data mining has been actively researched because of its useful applications such as classifying malicious

information on web pages [1], mining consumer attitude and behavior [2], detecting or diagnosing

important information [3,4], and other various mining applications [5–9]. As one of the interesting areas in

data mining, frequent pattern mining [10–12] has been proposed, and numerous approaches related to

this have been suggested [13,14]. However, traditional frequent pattern mining methods only focusing

on databases composed of simple items have limitations that do not deal with complex types of data with

graph forms such as network data [15–17]. It is essential to mine such complex data because recent data

obtained from real world applications has become increasingly massive and complicated. To overcome

these limitations, frequent graph pattern mining has been proposed and a variety of related methods have

been studied [18–21] by developing novel techniques for performance improvement or effectively

integrating graph mining with other mining fields.

Meanwhile, previous approaches of frequent graph pattern mining still have limitations because they

cannot consider the following important issues in the real world: (1) the rare item problem [22] showing

that items or patterns with low support values as well as ones with high supports may have meaningful

information; and (2) the different importance problem [9] signifying that graph elements derived from

real world applications have different importance or weight values depending on their characteristics.

For this reason, to solve the limitations of the previous approaches and process these important issues in

the graph pattern mining, we propose a new method that can mine Weighted Rare Graph patterns (WRGs)

considering both different importance and multiple minimum support thresholds according to the features of

elements, called WRG-Miner. Moreover, by conducting various performance evaluation tests, we also

demonstrate that the proposed algorithm has better mining performance than previous state-of-the-art

algorithms in terms of graph pattern generation, execution time, and memory usage.

The remainder of this paper is organized as follows. In Section 2, we introduce related work with

several important previous studies. In Section 3, details of the proposed algorithm and its techniques are

described. In Section 4, performance evaluation results among our method and previous state-of-the-art

approaches are provided. Finally in Section 5, we conclude this paper.

2. Related Work

Since the concept of frequent pattern mining was proposed [10], a variety of methods have been actively

researched. Apriori [10] is the first algorithm for mining frequent patterns from databases with simple

items, where its mining process is based on a level-wise manner. Thereafter, to solve the inefficiency of

the Apriori algorithm, a tree-based pattern growth algorithm, FP-growth [11], was devised. Using its

own special tree structure, called FP-tree, the algorithm achieved better performance than that of Apriori.

Satisfying the anti-monotone property during the mining process is one of the most important conditions

in frequent pattern mining because this property can contribute to enhancing algorithm performance by

suppressing any useless pattern generation in advance. The anti-monotone property signifies that if a certain

pattern is infrequent, all of its possible super patterns are also infrequent. Therefore, we can prune such

invalid patterns in advance by employing this property.

Symmetry 2015, 7 1153

In frequent pattern mining, multiple minimum support threshold-based various research [18,19,22,23]

has been conducted to solve the rare item problem. MSApriori [22] is an initial solution based on a

level-wise manner. After that, a tree search-based algorithm, CFP-growth [18], and its advanced version,

CFP-growth++ [23], were proposed. Although they make it possible to mine rare patterns applying

multiple minimum support thresholds, they cannot consider different importance characteristics and their

coverages are limited to simple itemset-based databases. Algorithms in the literature [24–27] are

tree-based frequent pattern mining approaches considering importance of items’ own, but they cannot

solve the rare item problem and process complex data such as graph databases.

As one of the fundamental graph mining algorithms, Gaston [20] is known as the most efficient method

in terms of runtime speed. The algorithm, which is an effective integration of multiple enumeration methods

for path, free-tree, and cyclic graph forms, improves its mining performance by utilizing its own special

techniques and list-based data structure. FGM-MMS [19] mines frequent and rare graph patterns by

applying multiple minimum support constraints in a graph mining environment, but it still has a problem

that cannot consider different importance or weights for each element within graphs.

3. Mining Weighted Rare Graph Patterns from Graph Databases with Multiple Minimum

Support Thresholds

In this section, we describe techniques for applying multiple minimum support thresholds and importance

characteristics of graph elements into a frequent graph mining environment and explain strategies for

preventing fatal problems such as pattern losses that can be caused in the mining process. In addition,

we also show how the proposed algorithm is performed through its overall operational procedure.

3.1. Preliminaries

The following definitions and contents are fundamental preliminaries for more easily understanding

frequent graph pattern mining.

Definition 1. (Graph pattern) Let G be a graph pattern composed of multiple elements, where there

are two element types, vertex and edge. That is, G has a set of vertices, VG = {v1, v2, …, vm}, and a set

of edges, EG = {e1, e2, …, en}. Note that we consider a simple, labeled, undirected graph form in this

paper to help understand the contents of our approach more easily, but it is trivial to apply other graph

forms in this approach through several additional considerations.

Definition 2. (Support of a graph pattern) Let GDB = {Gtr1, Gtr2, …, Gtrk} be a given graph database

composed of multiple graph transactions, Gtrs, and G be a graph pattern. Then, a support of G, Sup(G)

is calculated as follows:

𝐼𝑛𝑐𝐺(𝐺, 𝐺𝑡𝑟𝑘) = {
 1, 𝑖𝑓 𝐺 ∈ 𝐺𝑡𝑟𝑘

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (1)

𝑆𝑢𝑝(𝐺) = ∑ 𝐼𝑛𝑐𝐺(𝐺, 𝐺𝑡𝑟𝑘)

𝐺𝑡𝑟𝑘 ∈𝐺𝐷𝐵

(2)

Equation (1) is a function for determining whether G is included into each graph transaction, Gtrk, as

a sub graph pattern. That is, Sup(G) obtained from Equation (2) presents how many times G appears in

Symmetry 2015, 7 1154

GDB. Hence, in traditional frequent graph pattern mining, if Sup(G) is higher than or equal to a given

minimum support threshold, G is considered as a frequent graph pattern. Consequently, the main goal

of frequent graph pattern mining is to find all of the possible graph patterns such that each of their

supports is not lower than the threshold.

Definition 3. (Degree of a graph pattern) Every graph has one of the three graph forms, path, free-tree,

and cyclic graph, where their coverage is path ⊆ free-tree ⊆ cyclic graph. That is, a cyclic graph includes

path and free-tree forms; a free-tree contains a path form. In the case of a path, all of its vertices except

for both of its ends have degree 2, while both ends have degree 1. In other words, assuming that a given

graph pattern, G is a path with n vertices, the following conditions are satisfied:

𝐷𝑒𝑔(𝑣𝑘) = 2 (2 ≤ 𝑘 ≤ 𝑛 − 1); 𝐷𝑒𝑔(𝑣1) = 𝐷𝑒𝑔(𝑣𝑛) = 1; |𝑉𝐺| = |𝐸𝐺| + 1 (3)

Deg means a degree of a corresponding vertex, and v1 and vn are the first and last vertices, respectively.

|VG| and |EG| signify the number of vertices and edges in G, respectively, where |VG| is also equal to n. In

the case of free-tree, one or more vertices must have degree 3 or more and all of its edges have no cyclic

relation. That is, if G is a free-tree, it satisfies the following conditions:

𝐷𝑒𝑔(𝑣𝑘) ≥ 3 (∃𝑣𝑘 ∈ 𝑉𝐺); |𝑉𝐺| = |𝐸𝐺| + 1 (4)

Once a cyclic relation occurs in a path or free-tree, the corresponding graph pattern becomes a cyclic

graph. In other words, if G has one or more cyclic relations, i.e., cyclic edges, the following condition holds:

|𝑉𝐺| ≤ |𝐸𝐺| (5)

3.2. Applying Symmetry Feature-Based Performance Improving Technique into the Graph Pattern

Growth Process

Recall that all of the possible graph forms generated from graph miners must be one of the three graph

types: path, free-tree, and cyclic graph. The mining procedure of the proposed algorithm employs a pattern

growth framework based on a depth-first search (DFS) manner. In other words, an initial step of the

graph pattern growth starts from a certain vertex and it is continually expanded by adding both an edge

and a vertex or a cyclic edge. Therefore, the initial state of every graph pattern is always a path form.

According to the shape and characteristics of graphs with a path form, we can consider their symmetry

features in order to improve our mining performance in the graph pattern growth for paths. If a path is

expanded as a longer path again, we can consider its expansion operation as two orientations: expansion

at the first or last node in the path. Hence, if there is no limitation in the path expansion, a large number

of duplicated graph patterns can be generated. To prevent such a problem, we employ a technique based

on the symmetry features of graph patters with a path form. We consider the symmetry model of a path

as three types: the whole symmetry, the start symmetry, and the end symmetry. Using these symmetry models,

we can effectively control the growth process for the path form without any duplication of path expansion.

Given a path, P = {v1-e1-v2-e2-…-en-1-vn}, each symmetry type can be denoted as follows:

𝑡ℎ𝑒 𝑤ℎ𝑜𝑙𝑒 𝑠𝑦𝑚𝑚𝑒𝑡𝑟𝑦 = 𝑣1– 𝑒1– 𝑣2– 𝑒2– … – 𝑣𝑛−1– 𝑒𝑛−1– 𝑣𝑛

𝑡ℎ𝑒 𝑠𝑡𝑎𝑟𝑡 𝑠𝑦𝑚𝑚𝑒𝑡𝑟𝑦 = 𝑣1– 𝑒1– 𝑣2– 𝑒2– … – 𝑣𝑛−1

𝑡ℎ𝑒 𝑒𝑛𝑑 𝑠𝑦𝑚𝑚𝑒𝑡𝑟𝑦 = 𝑣2– 𝑒2– … – 𝑒𝑛−1– 𝑣𝑛

(6)

Symmetry 2015, 7 1155

Each of the symmetry types can have one of the three states: Neutrality, True, and False. Neutrality

is set when the string corresponding to each type is symmetric; otherwise, it is set to True or False. True

is set when the corresponding string is the lowest and False is assigned when the reverse string is the

lowest, where the comparison is based on a lexicographical order. Through the above settings, we can

easily decide what orientation leads to correct results of the graph pattern growth. If the whole symmetry

is Neutrality, we do not need to select which one is correct because the corresponding path is symmetric

and we just choose either the start or end node to expand the path. Otherwise, the expansion occurs at

the last node corresponding to the True condition or the first one corresponding to the False condition.

In addition, the start and end symmetry information can be effectively used as follows. After a path expanding

operation is performed, the whole symmetry of the previous path becomes the start or end symmetry of

the current one; the whole symmetry of the current path can be easily obtained from the start or end

symmetry of the previous one. Figure 1 is the relations of these symmetry models for helping clearer

understanding of the above contents. In the figure, whole_sym, start_sym, and end_sym mean the whole,

start, and end symmetry models, respectively. Let P1 be a given path and P2′ and P2″ be paths expanded

from P1. The symmetry models of P1 are shown in the top of the figure. In the case of P2′, a new edge

and vertex, e′ and v′, have been inserted at the end of P1. In this case, start_sym(P2′) is equal to

whole_sym(P1). whole_sym(P2′) can be easily computed by end_sym(P1) because we have only to

compare the edges and vertices next to both end of end_sym(P1), v1 and e2, and e′ and v′. In contrast,

end_sym(P2″) is equal to whole_sym(P1), and whole_sym(P2″) is obtained from start_sym(P1). It is

important to consider these three symmetry models in the growth step because we can easily determine

whether or not a path is symmetric without computational overheads.

Through this symmetry method, the proposed algorithm can conduct its mining operations

more efficiently.

Figure 1. Graph pattern growth of the path form and corresponding relations of the

symmetry models.

3.3. Employing Element Importance and Multiple Minimum Support Thresholds in Frequent Graph

Pattern Mining

Figure 2 shows an example of a graph database including the information of multiple minimum

support thresholds and edge weights. To apply different importance for each element composing graphs,

Symmetry 2015, 7 1156

we consider mining graph patterns from graph databases that assign a different weight value to each edge of

the graphs. Since edges are important factors allowing us to determine correlations among vertices, edge

weights are also valuable because they can be used to distinguish different importance of edges. As a

result of the proposed algorithm, we can obtain a set of graph patterns considering both supports and weights

of edges connected among nodes. The weighted support of a graph pattern is calculated as follows.

Figure 2. Example of a graph database with weight and multiple minimum support information.

Definition 4. (Weighted support of a graph pattern) Let VG = {v1, v2, …, vm}, EG = {e1, e2, …, en},

and WG = {w1, w2, …, wn} be a set of vertices in a graph pattern, G, a set of edges in G, and a set of edge

weights in G. Then, the weighted support of G, Wsup(G) is calculated as follows:

𝐴𝑣𝑔(𝑊𝐺) =
∑ 𝑤𝑘𝑤𝑘 ∈ 𝑊𝐺

|𝑊𝐺|
⁄ (7)

𝑊𝑠𝑢𝑝(𝐺) = 𝑆𝑢𝑝(𝐺) ∗ 𝐴𝑣𝑔(𝑊𝐺) (8)

If Wsup(G) is not lower than a given minimum support threshold, G is regarded as a weighted frequent

graph pattern.

In order to consider the rare item problem in the graph pattern mining area, we need multiple minimum

support thresholds for each element (vertex and edge) composing a given graph database.

Definition 5. (Minimum element support threshold)) Let GDB = {Gtr1, Gtr2, …, Gtrk} be a given

graph database composed of multiple graph transactions, Gtrs, VGDB = {v1, v2, …, vx} be a set of separate

vertices included in GDB, and EGDB = {e1, e2, …, ey} be a set of separate edges in GDB. Then, a minimum

element support threshold for each element (v or e), δi (1 ≤ i ≤ x + y) is set as a value specified by a user.

If a weighted support of any element is lower than the corresponding δ value, it becomes a useless

one. Consequently, the threshold of a graph pattern is determined as follows.

Definition 6. (Minimum graph support threshold) Given a graph pattern, G, a set of vertices in G,

VG = {v1, v2, …, vn}, and a set of edges in G, EG = {e1, e2, …, em}, a set of δ values in G including VG

and EG, TG, can be denoted as TG = {δ1, δ2, …, δn+m}. Then, a minimum graph support threshold for G,

MGST(G), is computed as follows:

Symmetry 2015, 7 1157

𝑀𝐺𝑆𝑇(𝐺) = 𝑀𝑖𝑛(𝑇𝐺 = {δ1, δ2, … , δ𝑛+𝑚}) (9)

Therefore, if Wsup(G) is lower than MGST(G), it becomes an invalid graph pattern.

By calculating the threshold for a graph pattern in the above manner, we can consider the rarity of the

graph’s each element. In other words, only weighted frequent graph patterns satisfying their own MGST

conditions are finally regarded as valid results.

3.4. Maintaining the Correctness of the Proposed Algorithm

Through the aforementioned conditions, we can obtain a set of graph patterns that completely consider

both the weight and rarity of elements. However, if we simply apply such conditions into the mining process

without any additional considerations, fatal pattern losses can be caused since these conditions violate

the anti-monotone property (or the downward closure property). Therefore, to guarantee not only the

efficiency of the proposed algorithm but also its correctness, we employ (1) an overestimated weight

method and (2) an underestimated minimum support method. In the first method, the maximum edge

weight within a given graph database, called MaxW, is used instead of the real average weight factor

used in Definition 4. That is, given a graph pattern, G, multiplying Sup(G) by MaxW, called Wsupover(G),

is first applied in the mining process. Through such an overestimation method, we can maintain the

anti-monotone property and prevent unintended pattern losses by the weight constraints. In the second

method, among all the thresholds in Definition 5, we set the least value that does not violate the property

and apply it into the mining process. Let L = {δ1, δ2, …, δx} be a list of all the elements’ δ values in GDB

that are sorted in the descending order of their values. Then, starting from the last element in the list, we

check whether or not the overestimated weighted support of the element is higher than its own δ value.

If there is the first element satisfying this condition, its δ value becomes an underestimated minimum

support threshold, called Least Minimum Support (LMS).

If any graph pattern does not satisfy the LMS condition, the pattern and all of its possible supersets

become useless ones; hence, it can permanently be pruned in advance. Note that graph patterns obtained

through the above conditions are candidate patterns, not final results. Among them, only partial ones

satisfying the corresponding MGST conditions in Definition 6 finally become valid results.

3.5. WRG-Miner Algorithm

Figure 3 shows the overall procedure of the proposed algorithm. After finding sets of valid vertices

and edges, V and E, from a given graph database, GDB (lines 1–2), the algorithm performs graph pattern

growth processes for mining a set of WRGs, S, with respect to each vertex of V, vi (lines 3–5). In this

phase, WRG-Miner continues to expand graphs for each edge, ei, considering their current states (lines 6–9).

For each expanded graph, G’, if the overestimated weighted support of the graph is smaller than LMS,

it is permanently pruned (line 10). If the graph pattern’s real weighted support is not lower than its

corresponding MGST value, it is regarded as a valid result and the algorithm outputs it (line 11). Once

the graph pattern has an overestimated weighted support higher than or equal to LMS, growth operations

for the pattern are recursively conducted regardless of whether it is really outputted or not (lines 12–13).

After finishing all the recursive processes, we can obtain a complete set of WRGs, S.

Symmetry 2015, 7 1158

Figure 3. Procedure of Weighted Rare Graph (WRG)-miner.

4. Performance Evaluation

4.1. Experimental Settings

In this section, the proposed algorithm is compared to: FGM-MMS, which is a state-of-the-art graph

mining algorithm based on multiple minimum support constraints; Gaston, which is a well-known

fundamental graph mining algorithm; and Gaston*, which is an obtimized version of Gaston implemented

by us to mine weighted frequent graph patterns with respect to real datasets, DTP and PTE [20], and

synthetic datasets—we call them Syn-1 and Syn-2, respectively—generated by a graph dataset generator

based on the IBM generator (IBM, New York, NY, USA). Edge weight ranges of the real and synthetic

datasets were randomly set between 0.6–0.9 and 0.5–0.8, respectively. All the algorithms were written

in C++ and executed in an environment with 3.33 GHz CPU, 3 GB RAM, and Windows 7 OS. In the

next sub-section, we provide analysis results of the performance comparison among our WRG-miner and

the state-of-the-art algorithms, FGM-MMS, Gaston and Gaston*.

4.2. Experimental Results of the Proposed Algorithm

To set the δ value for each element of graph datasets, the methodology employed in the

literature [18,19,22] was applied. That is, for each element, ei, δi = MAX(β × Sup(ei), LS), where LS is

the lowest one among all the δ values and is set to the same as the threshold of Gaston for reasonable

comparisons. β = 1/α (0 < β ≤ 1, 1 ≤ α) is a variable that represents how closely the real support of each

element is related to its own threshold value. That is, as β becomes closer to 1, δ is more likely to be

assigned as a value more similar to Sup(ei) rather than LS.

Figures 4 and 5 show results of pattern generations for the synthetic and real datasets. In the results

of the synthetic datasets, the proposed algorithm extracts the smallest number of graph patterns; meanwhile,

in the results of the real datasets, Gaston* generates the smallest patterns. From the results, we can determine

that the multiple minimum support factor is more effective in the synthetic datasets. As shown in

Figure 5, the number of patterns is changeable according to the α settings. On the other hand, such

tendency is not significant in Figure 4. Figures 6 and 7 are runtime performance results of the algorithms.

Symmetry 2015, 7 1159

Similarly to the results of Figures 4 and 5, our WRG-Miner has better mining efficiency at lower α values.

Multiple minimum support framework-based FGM-MMS and WRG-Miner guarantee better performance

than those of the others. Especially in Figure 6, our algorithm shows the fastest runtime speed in every

case. Meanwhile, Gaston always shows the worst result, which is the same regardless of α since it cannot

consider the rarity of graph patterns. Although FGM-MMS has good performance at lower α values, it

falls behind the proposed algorithm in every case since it does not consider element importance different

from one another and has to mine all of the possible rare graph patterns regardless of their importance

degrees. The last test is memory performance evaluation. As shown in Figures 8 and 9, the proposed

algorithm also shows the best results in almost all cases. At lower α settings, WRG-miner consumes smaller

memory compared to the others. On the other hand, Gaston and Gaston* spend constant memory in mining

graph patterns because they do not consider any condition for the multiple minimum support framework.

Figure 4. (a) Pattern generation results of Syn-1; (b) Pattern generation results of Syn-2.

Figure 5. (a) Pattern generation results of DTP; (b) Pattern generation results of PTE.

Symmetry 2015, 7 1160

Figure 6. (a) Runtime results of Syn-1; (b) Runtime results of Syn-2.

Figure 7. (a) Runtime results of DTP; (b) Runtime results of PTE.

Figure 8. (a) Memory usage results of Syn-1; (b) Memory usage results of Syn-2.

Symmetry 2015, 7 1161

Figure 9. (a) Memory usage results of DTP; (b) Memory usage results of PTE.

5. Conclusions

In this paper, we proposed a new approach that mined useful graph patterns with high importance and

rarity by considering multiple thresholds and weights different from each element of the graphs. In addition,

by devising the techniques for preventing unintended graph pattern losses occurring in the process of

applying such conditions, we also guaranteed the correctness of our algorithm. The result of performance

evaluation in this paper reported that our method outperformed the previous state-of-the-art methods in

terms of pattern generation efficiency, runtime, and memory usage. The proposed algorithm and techniques

can also be applied into other advanced mining areas such as stream pattern mining, uncertain pattern

mining, and representative pattern mining, because of their advantages and contributions in the graph mining

area. These extended works are scheduled to be studied in our future work.

Acknowledgments

This research was supported by the National Research Foundation of Korea (NRF) funded by the

Ministry of Education, Science and Technology (NRF No. 2013005682), and the Business for

Cooperative R&D between Industry, Academy, and Research Institute funded Korea Small and Medium

Business Administration in 2015 (Grants No. C0232102).

Author Contributions

Gangin Lee is responsible for the algorithm implementation and the writing of this paper. Unil Yun

contributed to the idea proposals and the writing of this paper. Heungmo Ryang and Donggyu Kim also

contributed to the writing of this paper.

Conflicts of Interest

The authors declare no conflict of interest.

Symmetry 2015, 7 1162

References

1. Hwang, Y.; Kwon, J.; Moon, J.; Cho, S. Classifying Malicious Web Pages by Using an Adaptive

Support Vector Machine. J. Inf. Process. Syst. 2013, 9, 395–404.

2. Ihm, H. Mining Consumer Attitude and Behavior. J. Converg. 2013, 4, 29–35.

3. Malkawi, M.; Murad, O. Artificial neuro fuzzy logic system for detecting human emotions.

Hum. Cent. Comput. Inf. Sci. 2013, 3, 1–13.

4. Uddin, J.; Islam, R.; Kim, J. Texture Feature Extraction Techniques for Fault Diagnosis of Induction

Motors. J. Converg. 2014, 5, 15–20.

5. Brahami, M.; Atmani, B.; Matta, N. Dynamic knowledge mapping guided by data mining:

Application on Healthcare. J. Inf. Process. Syst. 2013, 9, 1–30.

6. Cho, Y.; Moon, S. Weighted Mining Frequent Pattern based Customer’s RFM Score for Personalized

u-Commerce Recommendation System. J. Converg. 2013, 4, 36–40.

7. Holzinger, A.; Ofner, B.; Dehmer, M. Multi-touch graph-based interaction for knowledge discovery

on mobile devices: State-of-the-art and future challenges. In Interactive Knowledge Discovery

and Data Mining in Biomedical Informatics; Lecture Notes in Computer Science, Lncs 8401;

Holzinger, A., Jurisica, I., Eds.; Springer: Berlin, Germany; Heidelberg, Germany, 2014; pp. 241–254.

8. Preuss, M.; Dehmer, M.; Pickl, S.; Holzinger, A. On terrain coverage optimization by using a

network approach for universal graph-based data mining and knowledge discovery. In Brain

Informatics and Health; Springer: Berlin, Germany, 2014; pp. 564–573.

9. Yun, U.; Lee, G.; Ryu, K. Mining Maximal Frequent Patterns by Considering Weight Conditions

over Data Streams. Knowl. Based Syst. 2014, 55, 49–65.

10. Agrawal, R.; Srikant, R. Fast Algorithms for Mining Association Rules. In Proceedings of the 20th

International Conference on Very Large Data Bases, Santiago de Chile, Chile, 12–15 September 1994.

11. Han, J.; Pei, J.; Yin, Y.; Mao, R. Mining frequent patterns without candidate generation:

A frequent-pattern tree approach. Data Min. Knowl. Discov. 2004, 8, 53–87.

12. Pyun, G.; Yun, U.; Ryu, K. Efficient frequent pattern mining based on Linear Prefix Tree.

Knowl. Based Syst. 2014, 55, 125–139.

13. Pyun, G.; Yun, U. Mining top-k frequent patterns with combination reducing techniques.

Appl. Intell. 2014, 41, 76–98.

14. Ryang, H.; Yun, U.; Ryu, K. Discovering High Utility Itemsets with Multiple Minimum Supports.

Intell. Data Anal. 2014, 18, 1027–1047.

15. Binh, H.; Ngo, S. All capacities modular cost survivable network design problem using genetic

algorithm with completely connection encoding. Hum. Cent. Comput. Inf. Sci. 2014, 4, 1–13.

16. Khan, R.; Islam, Md.; Amin, M. Traffic Analysis of a Cognitive Radio Network Based on the Concept

of Medium Access Probability. J. Inf. Process. Syst. 2014, 10, 602–617.

17. Kumar, K.; Geethakumari, G. Detecting misinformation in online social networks using cognitive

psychology. Hum. Cent. Comput. Inf. Sci. 2014, 4, 1–22.

18. Hu, Y.H.; Chen, Y.L. Mining association rules with multiple minimum supports: A new mining

algorithm and a support tuning mechanism. Decis. Support Syst. 2006, 42, 1–24.

Symmetry 2015, 7 1163

19. Lee, G.; Yun, U. Frequent Graph Mining Based on Multiple Minimum Support Constraints. In

Proceedings of the 4th International Conference on Mobile, Ubiquitous, and Intelligent Computing,

Gwangju, Korea, 4–6 September 2013.

20. Nijssen, S.; Kok, J.N. A quickstart in frequent structure mining can make a difference. In

Proceedings of the 10th ACM SIGKDD International Conference on Knowledge Discovery and

Data Mining, Seattle, WA, USA, 22–25 August 2004.

21. Samiullah, M.; Ahmed, C.F.; Fariha, A.; Islam, M.R.; Lachiche, N. Mining frequent correlated

graphs with a new measure. Expert Syst. Appl. 2014, 41, 1847–1863.

22. Liu, B.; Hsu, W.; Ma, Y. Mining association rules with multiple minimum supports. In Proceedings

of the 5th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining,

San Diego, CA, USA, 15–18 August 1999.

23. Kiran, R.U.; Reddy, P.K. Novel techniques to reduce search space in multiple minimum supports-based

frequent pattern mining algorithms. In Proceedings of the 14th International Conference on

Extending Database Technology, Uppsala, Sweden, 21–25 March 2011.

24. Lee, G.; Yun, U.; Ryu, K. Sliding Window based Weighted Maximal Frequent Pattern Mining over

Data Streams. Expert Syst. Appl. 2014, 41, 694–708.

25. Vo, B.; Coenen, F.; Le, B. A new method for mining Frequent Weighted Itemsets based on

WIT-trees. Expert Syst. Appl. 2013, 40, 1256–1264.

26. Yun, U.; Pyun, G.; Yoon, E. Efficient mining of robust closed weighted sequential patterns without

information loss. Int. J. Artif. Intell. Tools 2015, doi:10.1142/S0218213015500074.

27. Yun, U.; Kim, J. A Fast Perturbation Algorithm using Tree Structure for Privacy Preserving Utility

Mining. Expert Syst. Appl. 2014, 42, 1149–1165.

© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article

distributed under the terms and conditions of the Creative Commons Attribution license

(http://creativecommons.org/licenses/by/4.0/).

