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Abstract:

 We investigate when the Hutchinson operator associated with an iterated function system is continuous. The continuity with respect to both the Hausdorff metric and Vietoris topology is carefully considered. An example showing that the Hutchinson operator on the hyperspace of nonempty closed bounded sets need not be Hausdorff continuous is given. Infinite systems are also discussed. The work clarifies and generalizes several partial results scattered across the literature.
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1. Introduction

The question of when the Hutchinson operator is continuous has not received sufficient attention. Only recently has this question been shown to be of practical interest, e.g., [1,2,3]. It is well known that the Hutchinson operator inherits essentially all of the continuity properties of the functions of the underlying iterated function system (IFS), cf. [4,5,6]. However, some issues remain obscure and unexplored.

For the non-specialist, we mention here some reasons why we are interested in the continuity of the Hutchinson operator. Recently, in increasingly abstract settings, conditions have been established under which the Hutchinson operator has attractive fixed points, see for example [7]; these fixed points are points in hyperspaces and are called attractors of the IFS. In applications, in diverse areas of science and engineering, these attractors may be models for complicated physical objects. While these objects may be geometrically intricate and difficult to describe directly, the IFS or equivalently the Hutchinson operator, may be relatively simple to describe. (For example, it is well known that a two-dimensional fractal fern is described efficiently with four two-dimensional affine maps.) Moreover, the continuity of the Hutchinson operator underlies the feasibility of using random iteration algorithms for computing attractors, in general settings, see [1,3,8]. Thus there is a practical payoff from increased abstraction, as we illustrate in the next paragraph. The key requirement is that, whatever sophisticated extension of the basic contractive theory is made, the resulting Hutchinson operator must act continuously on the hyperspace in question.

By way of illustration of the benefits of such abstraction we mention the notion of a “super” Hutchinson operator. The latter may be constructed by defining IFS of Hutchinson operators acting continuously on a hyperspace, see [9]. In this case, attractors are collections of fractals with partial self-similarity, and comprise points in a “hyper-hyperspace”. Such collections may be sampled by means of a chaos game algorithm whereby each iteration yields a member of the collection, say of related objects that all look like ferns. For such constructions to work, continuity of the Hutchinson operator needs to be assured at several levels.

In the present work, we show how to deduce the Hausdorff continuity of the Hutchinson operator F from its uniform continuity, when F is regarded as acting on the hyperspace of compact sets in a metric space. This is no longer true when F is regarded as acting on the hyperspace of closed bounded sets, as we demonstrate by means of an example. We also provide a criterion for when it is true. Additionally, we discuss how the invariance of a strict attractor is related to the continuity of the iterated function system.

The situation is markedly different when one asks for Vietoris continuity of the Hutchinson operator F on the hyperspace of closed subsets of a topological space; in this case, F is continuous.

We close the paper with a discussion of the Hutchinson operator for infinite iterated function systems.



2. Hyperspaces, Multifunctions, Iterated Function Systems

Let [image: there is no content] be a metric space with metric d. This is the environment where we work for the first half of the paper. Thereafter we switch to topological spaces.

The closure of [image: there is no content] will be denoted by [image: there is no content]. The ε-neighbourhood of B is



NεB:={x∈X:d(x,b)<εfor someb∈B}








The Hausdorff distance between [image: there is no content] and [image: there is no content] is given by



[image: there is no content](B,C):=inf{ε>0:B⊂NεCandC⊂NεB}








We distinguish three collections of subsets of X: [image: there is no content]—all nonempty sets, [image: there is no content]—nonempty bounded closed sets, and [image: there is no content]—nonempty compact sets. The Hausdorff distance is a metric on both [image: there is no content] and [image: there is no content], while it is only an extended-valued semimetric on [image: there is no content].

We call any map [image: there is no content] a multifunction. As usual, a single-valued map [image: there is no content] is identified with the multifunction [image: there is no content], [image: there is no content] for [image: there is no content]. The image of a nonempty [image: there is no content] under φ is [image: there is no content]

Once [image: there is no content] is endowed with [image: there is no content] we can speak of continuity and uniform continuity. We need for multifunctions yet another type of continuity—upper semicontinuity—ubiquitous in topological dynamics, cf. [10]. A multifunction [image: there is no content] is upper semicontinuous at [image: there is no content], if



∀[image: there is no content],∃[image: there is no content]:φ(Nδ{x0})⊂Nεφ(x0)








More information on hyperspaces and multifunctions can be found in [11].

The system [image: there is no content] consisting of a family of maps [image: there is no content] is called an iterated function system (IFS). When I is finite we speak about a finite IFS. A multivalued IFS is given by a multifunction [image: there is no content]. An ordinary IFS becomes multivalued if we define φ by [image: there is no content], [image: there is no content]. IFSs with condensation (inhomogeneous fractals) and Markov–Feller theory of IFSs fall gently within multivalued framework, cf. [12]. On the other hand, we loose an important tool in fractal geometry—the coding map, cf. [5].

The Hutchinson operator [image: there is no content] associated with a system given by the multifunction [image: there is no content] is defined as



[image: there is no content]








for [image: there is no content]. In the case of IFS [image: there is no content] this means that [image: there is no content] Throughout the paper the letter F will be reserved for the Hutchinson operator. Note that for our purposes we can assume that φ assumes closed values. Indeed, let [image: there is no content], [image: there is no content] for [image: there is no content]. Then [image: there is no content] for [image: there is no content].
The most important instance of the Hutchinson operator is its restriction to the hyperspace of compacta [image: there is no content], since the hyperspace [image: there is no content] is often perceived as a habitat for fractals. To be more precise one has to assume that F sends compacta onto compacta. Indeed, this is fulfilled when the system [image: there is no content] consists of continuous maps and I is finite. Still more general condition can be provided for multivalued IFSs.

Proposition 1. Let [image: there is no content]be an upper semicontinuous multifunction with compact values. Then the induced Hutchinson operator [image: there is no content]transforms compacta into compacta. In particular the restriction [image: there is no content]is well-defined and



[image: there is no content]








for [image: there is no content].
Proof. It is well known that under our assumptions the image of a compact set is again compact ([11], (Proposition 6.2.11, p. 196)).     ☐



3. Continuity on [image: there is no content]

In this section we establish a positive result concerning the continuity of the Hutchinson operator F induced by a multifunction φ.

Proposition 2. Let [image: there is no content]. If [image: there is no content]is uniformly continuous, then [image: there is no content]is uniformly continuous too.

Proof. Fix [image: there is no content]. Find [image: there is no content] such that for every pair [image: there is no content], [image: there is no content] implies [image: there is no content](φ(x1),φ(x2))<ε.

Now let [image: there is no content] be such that [image: there is no content](S1,S2)<δ. Then [image: there is no content]. Therefore



[image: there is no content]








By symmetry we get [image: there is no content](φ(S1),φ(S2))<ε as desired.   ☐

Theorem 1. Let [image: there is no content]be a continuous multifunction with compact values. Then the Hutchinson operator [image: there is no content]induced by φ is continuous.

Proof. Let [image: there is no content], [image: there is no content] with respect to [image: there is no content]. Put [image: there is no content]. Of course [image: there is no content]. Since φ is continuous, it is uniformly continuous on K. Hence [image: there is no content] is uniformly continuous by Proposition 2. This yields [image: there is no content].    ☐

In particular the Hutchinson operator associated with the finite IFS of continuous maps is continuous. However, simple examples show that an upper semicontinuous multifunction on a compact space need not induce a continuous Hutchinson operator, e.g., [4], (Counter-Example 1) and [5], (Proposition 1.5.3).



4. Lack of Continuity on [image: there is no content]

This section is devoted to two major issues with the Hutchinson operator: why it is not continuous in general and what is the key ingredient in its continuity. Our presentation is heavily influenced by a work of A. Izzo [13].

Let an IFS comprising one single-valued map [image: there is no content] be given. Let [image: there is no content] be the Hutchinson operator induced by f. Assume that f maps bounded sets, [image: there is no content], onto bounded sets. Then the restriction of F from [image: there is no content] to [image: there is no content], [image: there is no content], makes sense.

We say that [image: there is no content] is boundedly uniformly continuous provided the restrictions [image: there is no content] of f to [image: there is no content] are uniformly continuous for all bounded sets B. Recall that [image: there is no content] is uniformly continuous when for each pair of sequences [image: there is no content], [image: there is no content] implies [image: there is no content].

Theorem 2. (Criterion of continuity of F). Let [image: there is no content]map bounded sets onto bounded sets. Let [image: there is no content]be the associated Hutchinson operator. The following are equivalent:


	(i) 

	F is continuous,



	(ii) 

	f is boundedly uniformly continuous.





Proof. The implication (ii) ⇒ (i) follows at once from Theorem 1. We shall prove (i) ⇒ (ii).

A contrario, suppose that f is not boundedly uniformly continuous, though F is continuous. Then there exist bounded sequences [image: there is no content] and [image: there is no content] such that [image: there is no content] and [image: there is no content]. Passing if necessary to a subsequence we can assume that [image: there is no content] monotonically. Making use of the Efremovic lemma ([11], (3.3.1, p. 92)) we can also assume that [image: there is no content] for all indices [image: there is no content].

Now observe that [image: there is no content] and consequently [image: there is no content] do not have accumulation points. Otherwise, [image: there is no content] for some subsequence [image: there is no content] and y[image: there is no content]→x*. That would imply f(x[image: there is no content])→f(x*), f(y[image: there is no content])→f(x*) against η-separation. Thus [image: there is no content] and [image: there is no content] form discrete sets.

Put



[image: there is no content]








[image: there is no content]. We have [image: there is no content] and


[image: there is no content](Sn,S)≤supm≥nd(xm,ym)=d([image: there is no content],[image: there is no content])→0








Nevertheless [image: there is no content], because [image: there is no content](f(Sn),f(S))≥η/8. This violates the continuity of F.   ☐

Having established a criterion for the continuity of F we are ready to give an example of a continuous map inducing a discontinuous Hutchinson operator.

Example 1. Let X be an infinite dimensional normed space. Let [image: there is no content]. Let [image: there is no content]be an r-separated sequence, i.e., d([image: there is no content],xm)≥rfor [image: there is no content], which is bounded. Moreover, let [image: there is no content]be a sequence disjoint from [image: there is no content]with the property that d([image: there is no content],[image: there is no content])<r/3nfor all n. Such sequences [image: there is no content], [image: there is no content]always exist. The sets S:={[image: there is no content]}n=1∞, Y:={[image: there is no content]}n=1∞are discrete closed subsets of X. Put [image: there is no content]for [image: there is no content], [image: there is no content]for [image: there is no content]. Since [image: there is no content]is discrete, the function [image: there is no content]is continuous. Since [image: there is no content]is closed, the Dugundji-Tietze theorem ([14], (1.3, p. 2)) yields an extension of f on the whole X. Recapitulating: [image: there is no content], d(f([image: there is no content]),f([image: there is no content]))=d(x1,y1)>0. We see that f is not boundedly uniformly continuous. Consequently, the associated operator F cannot be continuous on [image: there is no content].



5. Attractors and Continuity

Let [image: there is no content] be the Hutchinson operator induced by an IFS. By [image: there is no content] we denote the n-fold composition of F.

A compact nonempty set [image: there is no content] is a strict attractor, when there exists an open neighbourhood [image: there is no content] such that [image: there is no content](S)→A for all [image: there is no content] (the limit being taken with respect to [image: there is no content]), cf. [1,2].

One easily sees that if [image: there is no content] is well-defined and continuous (for instance F associated with the IFS of continuous maps), and A is a strict attractor of F, then [image: there is no content]. Indeed,



A←Fn+1(A)=F([image: there is no content](A))→F(A)








We extend this observation to a class of discontinuous systems.

Proposition 3. A strict attractor A of the IFS given by an upper semicontinuous multifunction [image: there is no content]is invariant, i.e., [image: there is no content], where [image: there is no content]is the Hutchinson operator generated by φ.

Proof. Fix [image: there is no content]. By Proposition 2 in [15] we know that for some [image: there is no content]



[image: there is no content]








so


[image: there is no content]



(1)




From the definition of a strict attractor there exists [image: there is no content] such that h([image: there is no content](A),A)<δ for n≥[image: there is no content], so



[image: there is no content](A)⊂NδA



(2)




Combining Equations (1) and (2) gives for n≥[image: there is no content]



[image: there is no content]








Thus



[image: there is no content]








and since ε was arbitrary [image: there is no content]. Due to ⊂-monotonicity of F we now have


A⊂F(A)⊂…⊂[image: there is no content](A)→A=⋃n=1∞[image: there is no content](A)¯








which means [image: there is no content].   ☐


6. Vietoris Continuity

We have seen that the Hutchinson operator behaves badly on hyperspaces other than [image: there is no content]. We claim that the problem comes from the peculiarity of the Hausdorff metric topology. This peculiarity disappears for the Vietoris topology. Note, however, that some researchers feel that the Vietoris topology is too stringent for fractal geometry and other applications, e.g., [11] (Chapter 2.2, p. 49) and [12].

Let X be a Hausdorff topological space. We distinguish yet another hyperspace [image: there is no content]—the collection of all nonempty closed subsets of X. We endow [image: there is no content] with the Vietoris topology.

Denote for [image: there is no content]



[image: there is no content]








The Vietoris topology in [image: there is no content] is generated by subbasic sets of the form [image: there is no content] and [image: there is no content], where V runs through open subsets of X, cf. [11], (Definition 2.2.4, p. 47).

Theorem 3. Let X be a normal topological space. Let [image: there is no content]be a Vietoris continuous multifunction. Then the associated Hutchinson operator [image: there is no content]is Vietoris continuous.

Proof. Let [image: there is no content] be open and [image: there is no content] such that F(S)∈[image: there is no content]. Let us shrink V to an open set W such that [image: there is no content], [image: there is no content]. By Vietoris continuity of φ for each [image: there is no content] there exists an open [image: there is no content] such that [image: there is no content]. Put U:=⋃[image: there is no content]Us. Then [image: there is no content] and U is open. We have to check that F(C)∈[image: there is no content] for all [image: there is no content]. Indeed, if [image: there is no content], then



[image: there is no content]








Let [image: there is no content] be open, [image: there is no content] and F(S)∈[image: there is no content]. Thus



[image: there is no content]








so [image: there is no content] for some [image: there is no content]. By Vietoris continuity of φ there exists an open [image: there is no content] such that [image: there is no content] for all [image: there is no content]. We have to verify that F(C)∈[image: there is no content] for all [image: there is no content]. If [image: there is no content], then [image: there is no content] for some [image: there is no content]. Therefore


[image: there is no content]








  ☐
Although we were unaware of a direct statement of Theorem 3 in the literature, it can be deduced from a combination of Theorems 5.10.1, 5.7.2 and 5.3.1 in [16]. For [image: there is no content] the normality of X can be weakened to mere Hausdorff separation, cf. [5] (Proposition 3.1.3, p. 64).

Theorem 4 (Kieninger). Let X be a Hausdorff topological space. Let [image: there is no content]be a Vietoris continuous multifunction with compact values. Then the Hutchinson operator [image: there is no content]induced by φ is Vietoris continuous.

Let us remark that our Theorem 1 is a particular case of Theorem 4. This is because for a metric space X the Hausdorff metric topology and Vietoris topology coincide on [image: there is no content] ([11] (Exercises 3.2.9 and 3.2.10, p. 90)).



7. Infinite Systems

Here we develop ideas contained in [5,17,18].

Let X be a normal topological space and I be a compact Hausdorff space. An infinite IFS [image: there is no content] can be turned into a parametric form [image: there is no content], where [image: there is no content] for [image: there is no content]. We extend this to infinite multivalued IFSs and consider multivalued system [image: there is no content] over the alphabet I. The Vietoris topology is taken in [image: there is no content], while [image: there is no content] has the product topology. We assume that Φ is Vietoris continuous. Naturally, we set [image: there is no content],



[image: there is no content]








to be the Hutchinson operator induced by Φ.
Theorem 5. Let X be a normal topological space and I be compact. Let [image: there is no content]be Vietoris continuous. Then the induced Hutchinson operator [image: there is no content]is Vietoris continuous.

Proof. Denote [image: there is no content], [image: there is no content] for [image: there is no content], [image: there is no content]. We will show that [image: there is no content], φ(x):=⋃[image: there is no content][image: there is no content](x)=Φ(I×{x}) for [image: there is no content], is Vietoris continuous. Then one calls Theorem 3 to finish the proof. From the continuity of [image: there is no content] we know that there exists an open [image: there is no content] such that V∩[image: there is no content](u)≠∅ for all [image: there is no content]. In particular, [image: there is no content] for [image: there is no content].

Let V be an open set with [image: there is no content]. Fix [image: there is no content], [image: there is no content]. Let [image: there is no content] be an open rectangle in [image: there is no content] such that [image: there is no content] for all [image: there is no content]. Continuity of Φ makes this possible. Take a finite subcover [image: there is no content]; [image: there is no content] finite. Define [image: there is no content], an open neighbourhood of x. All of this leads to the inclusion [image: there is no content] for every [image: there is no content].    ☐

Now, let X be a k-space, i.e., a Hausdorff space where the set [image: there is no content] is closed if and only if [image: there is no content] is closed for every [image: there is no content] ([19], (p. 152)). Such spaces are prevalent in analysis and include first countable, locally compact and Fréchet spaces among others. We additionally assume that X is a normal space ([19] (3.3.16, p. 151, 3.3.24, p. 153)).

We introduce the space of multifunctions as a function space [image: there is no content] endowed with the compact-open topology. The compact-open topology has subbasic sets of the form



[image: there is no content]








where [image: there is no content] is compact and [image: there is no content] is open [19].
Theorem 6. Let X be a normal k-space. Let {[image: there is no content]}[image: there is no content]⊂M(X,X)be a collection of multifunctions such that


	(a) 

	each [image: there is no content]is Vietoris continuous and has compact values,



	(b) 

	the entire {[image: there is no content]}[image: there is no content]is compact with respect to the compact-open topology.





Let [image: there is no content], φ(x)=⋃[image: there is no content][image: there is no content](x)for [image: there is no content]. Then


	(i) 

	φ constitutes a Vietoris continuous multifunction with compact values,



	(ii) 

	the Hutchinson operator [image: there is no content]corresponding to φ is Vietoris continuous.





Proof. Let us identify I with {[image: there is no content]}[image: there is no content]. We topologize I by pulling the compact-open topology from {[image: there is no content]}[image: there is no content]. Define the evaluation mapping [image: there is no content] by Φ(i,x):=[image: there is no content](x) where [image: there is no content] corresponds to i via identification. Since I is compact, the evaluation is continuous; cf. [19] (2.6.11, p. 110; 3.4.3, p. 158; 3.4.20, p. 163). Thus, we are in position to apply Theorem 5 and complete the proof.   ☐

Theorem 6 (i) can be viewed as an improvement upon a known property concerning the continuity of unions of multifunctions, cf. [11], (Exercise 6.2.5, p. 197).
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