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Abstract: We construct, for any given ` = 1
2

+ N0, second-order nonlinear partial
differential equations (PDEs) which are invariant under the transformations generated by
the centrally extended conformal Galilei algebras. This is done for a particular realization of
the algebras obtained by coset construction and we employ the standard Lie point symmetry
technique for the construction of PDEs. It is observed that the invariant PDEs have significant
difference for ` > 3

2
.

Keywords: nonlinear PDEs; lie symmetry; conformal Galilei algebras

1. Introduction

The purpose of the present work is to construct partial differential equations (PDEs) which are
invariant under the transformations generated by the conformal Galilei algebra (CGA). We consider
a particular realization, which is given in [1], of CGAs with the central extension for the parameters
(d, `) = (1, 1

2
+ N0), where N0 denotes the set of non-negative integers. We also restrict ourselves to the

second-order PDEs for computational simplicity. Our main focus is on nonlinear PDEs since linear ones
have already been discussed in the literatures [1–4]. CGA is a Lie algebra which generates conformal
transformations in d + 1 dimensional nonrelativistic spacetime [5–8]. Even in the fixed dimension of
spacetime one has infinite number of inequivalent conformal algebras. For a fixed value of d each
inequivalent CGA is labelled by a parameter ` taking the spin value, i.e., ` = 1

2
, 1, 3

2
, 2, . . . . Each CGA
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has an Abelian ideal (namely, CGA is a non-semisimple Lie algebra) so that it would be deformed.
Indeed, it has a central extension depending the value of the parameters. More precisely, there exist two
different types of central extensions. One of them exists for any values of d and half-integer `, another
type of extension exists for d = 2 and integer `. Simple explanation of this fact is found in [9].

It has been observed that CGAs for ` = 1
2

and ` = 1 play important roles in various kind of problems
in physics and mathematics. The simplest ` = 1

2
member of CGAs is called the Schrödinger algebra

which was originally discussed by Sophus Lie and Jacobi in 19th century [10,11] and reintroduced
later by many physicists [12–17]. Recent renewed interest in CGAs is mainly due to the AdS/CFT
correspondence. The Schrödinger algebra and ` = 1 member of CGA were used to formulate
nonrelativistic analogues of AdS/CFT correspondence [9,18,19]. One may find a nice review of various
applications of the Schrödinger algebras in [20] and see [21] for more references on the Schrödinger
algebras and ` = 1 CGAs. Physical applications of ` = 2 CGA is found in [22].

Now one may ask a question whether the CGAs with ` > 1 are relevant structures to physical
or mathematical problems. To answer this question one should find classical or quantum dynamical
systems relating to CGAs and develop representation theory of CGAs (see [21,23,24] for classification
of irreducible modules over d = 1, 2 CGAs ). This is the motivation of the present work. We choose
a particular differential realization of CGAs then look for PDEs invariant under the transformation
generated by the realization. Investigation along this line for the Schrödinger algebras is found
in [2,3,25–27] and for ` = 1 CGAs in [28] and for related algebraic structure in [29,30]. For higher
values of ` use of the representation theory such as Verma modules, singular vectors allows us to derive
linear PDEs invariant under CGAs [1,4]. More physical applications of CGAs with higher value ` are
found in the literatures [31–45].

The paper is organized as follows. In the next section the definition of CGA for (d, `) = (1, 1
2

+ N0)

and its differential realization are given. Then symmetry of PDEs under a subset of the generators is
considered. It is shown that there is a significant distinction of the form of invariant PDEs for ` > 3

2
.

Invariant PDEs for ` = 3
2

CGA are obtained in Section 3 For ` ≥ 5
2

we first derive PDEs invariant
under a subalgebra of the CGA in Section 4, then derive invariant PDEs under full CGA in Section 5.
Section 6 is devoted to concluding remarks.

2. CGAs and Preliminary Consideration

The CGA for d = 1 and any half-integer ` consists of sl(2,R) ' so(2, 1) = 〈H,D,C 〉 and ` + 1/2

copies of the Heisenberg algebra 〈P (n),M 〉n=1,2,...,2`+1. Their nonvanishing commutators are given by

[D,H] = −2H, [D,C] = 2C, [H,C] = D,

[H,P (n)] = (n− 1)P (n−1), [D,P (n)] = 2(n− 1− `)P (n), (1)

[C,P (n)] = (n− 1− 2`)P (n+1), [P (m), P (n)] = −δm+n,2`+2Im−1M

where the structure constant Im is taken to be Im = (−1)m+`+ 1
2 (2`−m)!m! and M is the centre of the

algebra. We denote this algebra by g`. The subset 〈P (n),M,H 〉n=1,2,...,2`+1 forms a subalgebra of g`
and we denote it by h`.
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We employ the following realization of g` on the space of functions of the variables
t = x0, x1, . . . , x`+ 1

2
and U [1]:

M = U∂U , D = 2t∂t +

`+ 1
2∑

k=1

2(`+ 1− k)xk∂xk , H = ∂t,

C = t2∂t +

`+ 1
2∑

k=1

2(`+ 1− k)txk∂xk +

`− 1
2∑

k=1

(2`+ 1− k)xk∂xk+1
− 1

2

((
`+

1

2

)
!
)2
x2
`+ 1

2
U∂U ,

P (n) =
n∑
k=1

(
n− 1

k − 1

)
tn−k∂xk , 1 ≤ n ≤ `+

1

2
, (2)

P (n) =

`+ 1
2∑

k=1

(
n− 1

k − 1

)
tn−k∂xk −

n∑
k=`+ 3

2

(
n− 1

k − 1

)
Ik−1t

n−kx2`+2−kU∂U , `+
3

2
≤ n ≤ 2`+ 1

where
(
n
k

)
is the binomial coefficient and Ik−1 is the structure constant appearing in Equation (1).

This is in fact a realization of g` on the Borel subgroup of the conformal Galilei group generated by
g` (we made some slight changes from [1]). Let us introduce the sets of indices for later convenience:

Iµ =
{
µ, µ+ 1, . . . , `+

1

2

}
, µ = 0, 1, 2, . . . (3)

Now we take xµ, µ ∈ I0 as independent variables and U as dependent variable: U = U(xµ).

Our aim is to find second order PDEs which are invariant under the point transformations generated
by Equation (2) for ` > 1/2 (` = 1/2 corresponds to Schrödinger algebra). Such a PDE is denoted by

F (xµ, U, Uµ, Uµν) = 0, Uµ =
∂U

∂xµ
, Uµν =

∂2U

∂xµxν
(4)

We use the shorthand notation throughout this article. The left hand side of Equation (4) means that F
is a function of all independent variables xµ, µ ∈ I0, dependent variable U and all first and second order
derivatives of U. As found in the standard textbooks (e.g., [46–48]) the symmetry condition is expressed
in terms of the prolonged generators:

X̂F = 0 (modF = 0) (5)

where X̂ is the prolongation of the symmetry generator X up to second order:

X̂ = X +

`+ 1
2∑

µ=0

ρµ
∂

∂Uµ
+
∑
µ≤ν

σµν
∂

∂Uµν
, X =

`+ 1
2∑

µ=0

ξµ
∂

∂xµ
+ η

∂

∂U
(6)

The quantities ρµ, σµν are defined by

ρµ = ηµ + ηUUµ −
`+ 1

2∑
ν=0

Uν(ξ
ν
µ + ξνUUµ), (7)

σµν = ηµν + ηµUUν + ηνUUµ + ηUUµν + ηUUUµUν

−
`+ 1

2∑
τ=0

ξτµνUτ −
`+ 1

2∑
τ=0

(ξτµUντ + ξτνUµτ )−
`+ 1

2∑
τ=0

ξτU(UτUµν + UµUντ + UνUµτ )

−
`+ 1

2∑
τ=0

(ξτµUUν + ξτνUUµ + ξτUUUµUν)Uτ (8)
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In this section we consider the symmetry condition Equation (5) for M,H and P (n) with
n = 1, 2, . . . , 2`+ 1.

Lemma 1. (i) Equation (4) is invariant under H,P (1) and M if it has the form

F

(
xa,

Uµ
U
,
Uµν
U

)
= 0, a ∈ I2, µ, ν ∈ I0 (9)

(ii) For ` > 3
2
, a necessary condition for the symmetry of the Equation (9) under P (n) with n ∈ I2 is

that the function F is independent of U0m, m ∈ I3.

Proof of Lemma 1. (i) It is obvious from that the generators H and P (1) have no prolongation, while
the prolongation of M is given by

M̂ = U∂U +

`+ 1
2∑

µ=0

Uµ∂Uµ +
∑
µ≤ν

Uµν∂Uµν (10)

(ii) The lemma is proved by the formula of the prolongation of P (n). For n ∈ I2 the generator P (n) is
given by

P (n) =
n∑
k=1

(
n− 1

k − 1

)
tn−k∂xk

and its prolongation yields

P̂ (n) =
n∑
a=2

(
n− 1

n− a

)
tn−a

[
P̃ (a) −

n∑
k=a+1

(a− 1)Ua−1 k∂U0k

]
(11)

where

P̃ (n) = P̂ (n)
∣∣∣
t=0

= ∂xn − (n− 1)

{
Un−1∂U0 +

(
(n− 2)Un−2 + 2U0n−1

)
∂U00 +

n∑
k=1

Un−1 k∂U0k

}
(12)

and the terms containing ∂x1 are omitted. We give the explicit expressions for small values of n which
will be helpful to see the structure of Equation (11):

P̂ (2) = P̃ (2),

P̂ (3) = P̃ (3) + 2t(P̃ (2) − U13∂U03),

P̂ (4) = P̃ (4) + 3t(P̃ (3) − 2U24∂U04) + 3t2(P̃ (2) − U13∂U03 − U14∂U04)

Since P̃ (n) is independent of t, each symmetry condition P̂ (n)F = 0 decouples into some independent
equations. For example, P̂ (4)F = 0 decouples into the following equations:

P̃ (4)F = 0, (P̃ (3) − 2U24∂U04)F = 0, (P̃ (2) − U13∂U03 − U14∂U04)F = 0

The condition P̂ (2)F = 0 is equivalent to the condition P̃ (2)F = 0. It follows that the condition
P̂ (3)F = 0 yields two independent conditions P̃ (3)F = 0 and U13∂U03F = 0. The second condition
means that F is independent of U03. Repeating this for P̂ (n)F = 0 for n = 4, 5, . . . , `+ 1

2
one may prove

the lemma.
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Now we show the Equation (11). Set ξk(n) =

(
n− 1

k − 1

)
tn−k then P (n) =

n∑
k=2

ξk(n)∂xk (recall that

we omit ∂x1). By the Equations (6)–(8) we have

P̂ (n) = P (n) −
n∑
k=1

{
ξk0 (n)Uk∂U0 + (ξk00(n)Uk + 2ξk0 (n)U0k)∂U00 +

n∑
m=1

ξm0 (n)Umk∂Umk
}

(13)

Thus the maximal degree of t in P̂ (n) is n− 2. The following relation is easily verified:

∂a

∂ta
ξk(n) =


(n−1)!

(n−a−1)!
ξk(n− a), (1 ≤ k ≤ n− a)

0, (n− a < k)
(14)

Using this one may calculate the higher order derivatives of Equation (13):

∂a

∂ta
P̂ (n) =

(n− 1)!

(n− a− 1)!

{
P (n−a) −

n∑
k=n−a+1

n−a∑
m=1

ξm0 (n− a)Umk∂U0k

}
It follows that

P̂ (n) =
n−2∑
a=0

1

a!

(
∂a

∂ta
P̂ (n)

)
t=0

ta

=
n−2∑
a=0

(
n− 1

a

)
ta
[
P̃ (n−a) −

n∑
k=n−a+1

(n− a− 1)Un−a−1 k∂U0k

]
By replacing n − a with a we obtain the Equation (11). The Equation (12) is readily obtained by

setting t = 0 in the Equation (13).

Remark 1. By Lemma 1 the symmetry condition for M,H,P (n) with n ∈ I1 is summarized as

P̃ (n)F

(
xa,

Uµ
U
,
U00

U
,
U01

U
,
U02

U
,
Ukm
U

,

)
= 0, a ∈ I2, µ ∈ I0, k,m ∈ I1 (15)

where P̃ (n) is given by Equation (12).

The condition Equation (15) implies that F is independent of U00 if ` ≥ 7/2, since P̃ (n) has the term
U0k∂U00 with k ≥ 3. In fact one can make a stronger statement by looking at the symmetry conditions
for P (n) with `+ 3

2
≤ n ≤ 2`+ 1.

Lemma 2. F given in Equation (15) is independent of U00 if ` ≥ 5/2.

Proof of Lemma 2. We calculate the prolongation of P (n) for ` + 3
2
≤ n ≤ 2` + 1. The derivatives

∂t, ∂x1 , ∂U0k
(k ∈ I3) are ignored in the computation. Then

P (n) =

`+ 1
2∑

m=2

ξm(n)∂xm + η(n)∂U , (16)

ξm(n) =

(
n− 1

m− 1

)
tn−m, η(n) = −

n∑
m=`+ 3

2

ξm(n)Im−1x2`+2−mU (17)
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One may calculate derivatives of η(n) easily

ηk(n) =
∂η(n)

∂xk
=

 −ξ
2`+2−k(n)I2`+1−kU 2`+ 2− n ≤ k ≤ `+ 1

2

0 k < 2`+ 2− n

First and second order derivatives need some care:

η1(n) =

 −I2`U n = 2`+ 1

0 otherwise

η2(n) =


−2`tI2`−1U n = 2`+ 1

−I2`−1U n = 2`

0 otherwise

Then a lengthy but straightforward computation gives the following expression for the prolongation
of P (n) up to second order:

P̂ (n) = ηUM̂ +

`+ 1
2∑

k=2

ξk(n)∂xk +
(
η0(n)−

`+ 1
2∑

k=1

ξk0 (n)Uk
)
∂U0 +

`+ 1
2∑

k=2`+2−n

ηk(n)∂Uk

+
(
η00(n) + 2η0U(n)U0 −

`+ 1
2∑

k=1

(ξk00(n)Uk + 2ξk0 (n)U0k)
)
∂U00

+
∑
k=1,2

(
η0U(n)Uk −

`+ 1
2∑

m=1

ξm0 (n)Ukm
)
∂U0k
− δn,2`I2`−1U0∂U02

− δn,2`+1

(
I2`U0∂U01 + 2`I2`−1(U + tU0)∂U02

)
+

`+ 1
2∑

k=2`+2−n

`+ 1
2∑

m=1

ηkUUm∂Ukm +

`+ 1
2∑

k=2`+2−n

ηkUUk∂Ukk (18)

We have already taken into account the invariance under M̂ so that the first term of Equation (18) is
omitted in the following computations. It is an easy exercise to verify that

∂a

∂ta
η(n) =

(n− 1)!

(n− a− 1)!
×

 0 n− `− 1
2
≤ a

η(n− a) 0 ≤ a ≤ n− `− 3
2

and

∂a

∂ta

`+ 1
2∑

k=1

ξk(n) =
(n− 1)!

(n− a− 1)!
×



0 n ≤ a

n−a∑
k=1

ξk(n− a) n− `− 1
2
≤ a ≤ n− 1

`+ 1
2∑

k=1

ξk(n− a) 0 ≤ a ≤ n− `− 3
2
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It follows that for 0 ≤ a ≤ n− `− 3
2

∂a

∂ta
P̂ (n) =

(n− 1)!

(n− a− 1)!
P̂ (n−a) (19)

For n − ` − 1
2
≤ a ≤ n − 2 (i.e., 2 ≤ n − a ≤ ` + 1

2
) all the derivatives of η(n) vanishes and

Equation (13) is recovered. Therefore for all values of a from 0 to n− 2 the relation Equation (19) holds
true. Thus we have

P̂ (n) =
n−2∑
a=0

1

a!

(
∂a

∂ta
P̂ (n)

)
t=0

ta =
n−2∑
a=0

(
n− 1

a

)
P̃ (n−a)ta

where P̃ (n) = P̂ (n)
∣∣∣
t=0

. This means that the symmetry condition under P̂ (n) is reduced to

P̃ (n)F = 0, `+
3

2
≤ n ≤ 2`+ 1 (20)

Now we look at the part containing ∂U00 in Equation (18), namely, the second line of the equation.
The contribution to P̃ (n) from the term

∑
k

ξk0 (n)U0k∂U00 is U0 `+ 1
2
∂U00 . Since ` + 1

2
≥ 3 for ` ≥ 5

2

the condition Equation (20) gives ∂U00F = 0 for this range of `. Thus F has U00 dependence only for
` = 3

2
.

Lemma 2 requires a separate treatment of the case ` = 3
2
. In the following sections we solve

the symmetry conditions Equations (15) and (20) explicitly for ` = 3
2

and for ` > 3
2

separately.
Before proceeding further we here present the formulae of prolongation of D which is not difficult
to verify:

D̂ =

`+ 1
2∑

k=2

2(`+ 1− k)xk∂xk − 2U0∂U0 − δ`, 3
2

4U00∂U00 − 2
∑
k=1,2

(`+ 2− k)U0k∂U0k

− 2

`+ 1
2∑

k=1

[
(`+ 1− k)Uk∂Uk +

`+ 1
2∑

m=k

(2`+ 2− k −m)Ukm∂Ukm
]

(21)

The prolongation of C is more involved so we present it in the subsequent sections separately for
` = 3

2
and for other values of `.

3. The Case of ` = 3
2

The goal of this section is to derive the PDEs invariant under the group generated by g 3
2
. First we

solve the conditions Equations (15) and (20). We have from Equation (12)

P̃ (2) = ∂x2 −
(
U1∂U0 + 2U01∂U00 +

∑
k=1,2

U1k∂U0k

)
(22)

and collecting the t = 0 terms of Equation (18)

P̃ (3) = −2
[
U2∂U0 + U∂U2 + (U1 + 2U02)∂U00 + U12∂U01 + (U0 + U22)∂U02 + U1∂U12 + 2U2∂U22

]
,

P̃ (4) = −6
[
x2U∂U0 − U∂U1 + (U2 + 2x2U0)∂U00 + (x2U1 − U0)∂U01 + (x2U2 + U)∂U02

−(2U1∂U11 + U2∂U12)
]

(23)
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The symmetry conditions Equations (15) and (20) are the system of first order PDEs so that it can be
solved by the standard method of characteristic equation (e.g., [49]). It is not difficult to verify that the
following functions are the solutions to Equations (15) and (20).

φ1 =
U11

U
−
(
U1

U

)2

, φ2 =
U22

U
−
(
U2

U

)2

,

φ3 =
U12

U
− U1U2

U2
, φ4 =

U0

U
+
x2U1

U
− U22

2U
,

φ5 =
U01

U
− U0U1

U2
+ x2φ1 −

U2

U
φ3,

φ6 =
U02

U
+
U1

U
− U0U2

U2
− U2

U
φ2 + x2φ3,

φ7 =
U00

U
−
(
U0

U

)2

−
(
U1

U
+

2U02

U

)
U2

U
+

(
2U0

U
+
U22

U

)(
U2

U

)2

−
(
U2

U

)4

− x22φ1 + 2x2φ5 (24)

Thus we have proved the following lemma:

Lemma 3. Equation (4) is invariant under h 3
2

= 〈M,H,P (n) 〉n=1,2,3,4 if it has the form

F (φ1, φ2, . . . , φ7) = 0 (25)

Next we consider the further invariance under D and C. The computation of the second order
prolongation of C for ` = 3

2
is straightforward based on Equations (6)–(8). It has the form

Ĉ = −2x22 M̂ + tD̂ + 3x1P̃
(2) − C̃,

C̃ = x2U2∂U0 + 3U2∂U1 + 4x2U∂U2 + 2(U0 + x2U02)∂U00 + (3U1 + 3U02 + x2U12)∂U01

+ (U2 + 4x2U0 + x2U22)∂U02 + 6U12∂U11 + (4x2U1 + 3U22)∂U12 + 4(U + 2x2U2)∂U22 (26)

It is an easy exercise to see the action of C̃ on φk :

C̃φ1 = 2φ3, C̃φ2 =
4

3
, C̃φ3 = φ2, C̃φ4 = −2

3
, C̃φ5 = φ6,

C̃φ6 = 0, C̃φ7 =
1

3
φ2 +

2

3
φ4

It follows that the following combinations of φk are invariant of C̃ :

w1 =
1

2
φ2 + φ4, w2 = 2φ3 −

3

4
φ2
2, w3 =

1

2
√

2
φ6, w4 = φ1 −

3

2

(
w2φ2 +

1

8
φ3
2

)
,

w5 =
1√
2
φ5 −

3

4
√

2
w3φ2, w6 = φ7 −

1

2
w1φ2 (27)

On the other hand D̂ generates the scaling of wk :

w1 → e2εw1, w2 → e4εw2, w3 → e3εw3,

w4 → e6εw4, w5 → e5εw5, w6 → e4εw6

(28)
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With these observations one may construct all invariants of the group which is generated by g 3
2

:

ψ1 =
w2

w2
1

=
Ψ1

Φ2
, ψ2 =

w2
3

w3
1

=
Ψ2

2

Φ3
, ψ3 =

w4

w2
3

=
Ψ3

Ψ2
2

,

ψ4 =
w2

5

w5
1

=
Ψ2

4

Φ5
, ψ5 =

w6

w2

=
Ψ5

Ψ1

(29)

where

Φ = 2(U0 + x2U1)U − U2
2 ,

Ψ1 = 8(U12U − U1U2)U
2 − 3(U22U − U2

2 )2,

Ψ2 = (U1 + U02)U
2 − U2

(
(U0 + U22)U − U2

2

)
+ x2(U12U − U1U2)U,

Ψ3 = 8U11U
5 − 8U2

1U
4 − 12(U22U − U2

2 )(U12U − U1U2)U
2 + 3(U22U − U2

2 )3,

Ψ4 = 4U01U
4 − 4U0U1U

3 − 3
(
(U1 + U02)U − U0U2

)
(U22U − U2

2 )U + 3U2(U22U − U2
2 )2

+ x2
(
4U11U

3 − 4U2
1U

2 − 3(U22U − U2
2 )(U12U − U1U2)

)
U,

Ψ5 = 4U00U
3 − 2

(
2U2

0 + U0U22 + 2(U1 + 2U02)U2

)
U2 + 5(2U0 + U22)U

2
2U − 5U4

2

+ 2x2
(
4U01U

2 − (4U0U1 + 4U2U12 + U1U22)U + 5U1U
2
2

)
U + 4x22(U11U − U2

1 )U2 (30)

Thus we obtain the PDEs with the desired symmetry.

Theorem 4. The PDE invariant under the Lie group generated by the realization Equation (2) of g 3
2

is
given by

F (ψ1, ψ2, ψ3, ψ4, ψ5) = 0 (31)

where F is an arbitrary differentiable function and ψi is given in Equation (29). Explicit form of the
symmetry generators are as follows:

M = U∂U , D = 2t∂t + 3x1∂x1 + x2∂x2 , H = ∂t,

C = t(t∂t + 3x1∂x1 + x2∂x2) + 3x1∂x2 − 2x22U∂U ,

P (1) = ∂x1 , P (2) = t∂x1 + ∂x2 ,

P (3) = t2∂x1 + 2t∂x2 − 2x2U∂U ,

P (4) = t3∂x1 + 3t2∂x2 − 6(tx2 − x1)U∂U (32)

4. The Case of ` ≥ 5
2

: h`-Symmetry

As shown in Lemma 2 the function F is independent of U00 so that the PDE which we have at this
stage is of the form

F

(
xa,

Uµ
U
,
U01

U
,
U02

U
,
Ukm
U

,

)
= 0, a ∈ I2, µ ∈ I0, k,m ∈ I1 (33)

We wants to make the PDE Equation (33) invariant under all the generators of h`. Invariance underM
and P (1) has been completed. We need to consider the invariance under P (n) for n ∈ I2. The symmetry
conditions are Equations (15) and (20). We give P̃ (n) more explicitly. From Equation (12) we have

P̃ (n) = ∂xn − (n− 1)
(
Un−1∂U0 + U1n−1∂U01 + U2n−1∂U02

)
, 2 ≤ n ≤ `+

1

2
(34)
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For n ≥ ` + 3
2

the generator P̃ (n) is obtained by collecting t = 0 terms of Equation (18). It has a
slightly different form depending on the value of n. For n = `+ 3

2
it is given by

P̃ (`+ 3
2
) = −

(
`+

1

2

)[
U`+ 1

2
∂U0 +

∑
k=1,2

Uk `+ 1
2
∂U0k

+a`

(
U∂U

`+1
2

+

`+ 1
2∑

m=1

Um∂U
m`+1

2

+U`+ 1
2
∂U

`+1
2 `+

1
2

)]
(35)

where
a` =

((
`− 1

2

)
!
)2

For other values of n they are given by

P̃ (n) = −In−1

[
−(2`+ 2− n)x2`+3−n

(
U∂U0 +

∑
k=1,2

Uk∂U0k

)
+ U∂U2`+2−n

+

`+ 1
2∑

k=1

Uk∂Uk 2`+2−n + U2`+2−n∂U2`+2−n 2`+2−n

]
, `+

5

2
≤ n ≤ 2`− 1

P̃ (2`) = −I2`−1

[
−2x3(U∂U0 + U1∂U01) + U∂U2 + (U0 − 2x3U2)∂U02 +

`+ 1
2∑

k=1

Uk∂U2k
+ U2∂U22

]
and

P̃ (2`+1) = −I2`
[
−x2U∂U0 + U∂U1 + (U0 − x2U1)∂U01 − (U + x2U2)∂U02 +

`+ 1
2∑

k=1

Uk∂U1k
+ U1∂U11

]
The best way to solve the symmetry condition is to start from the larger values of n. We first

investigate the symmetry conditions for P (2`+1) to P (`+ 3
2
) in this order. They are separated in three

cases (two cases for ` = 5
2
).

Lemma 5. (i) Equation (33) is invariant under P (2`+1) and P (2`) if it has the form

F

(
xa,

U0

U
, φ̃,

Uk
U
, φ01, φ02, φ1b, φ2b, Ukm

)
= 0, a ∈ I2, k,m ∈ I3, b ∈ I1 (36)

where

φ̃ =
U0

U
+ x2

U1

U
+ 2x3

U2

U
,

φ01 =
U01

U
− U0U1

U2
, φ02 =

U02

U
+
U1

U
− U0U2

U2
,

φαk =
Uαk
U
− UαUk

U2
, α = 1, 2 (37)

(ii) Equation (36) is invariant under P (n), `+ 5
2
≤ n ≤ 2`− 1 if it has the form

F

(
xa, φ,

U`+ 1
2

U
, φ01, φ02, φkm

)
= 0, a ∈ I2, k,m ∈ I1 (38)

where φ01, φ02 are given in Equation (37) and

φ =
U0

U
+

`− 1
2∑

j=1

jxj+1
Uj
U
, φkm =

Ukm
U
− UkUm

U2
(39)
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(iii) Equation (38) is invariant under P (`+ 3
2
) if it has the form

F
(
xa, w, w01, w02, φkm

)
= 0, a ∈ I2, k,m ∈ I1 (40)

where φkm is given in Equation (39) and

w = φ−
U2
`+ 1

2

2a`U2
, w0α = φ0α −

φα `+ 1
2

a`

U`+ 1
2

U
, α = 1, 2 (41)

The constant a` is defined below the Equation (35).
For ` = 5

2
we have the cases (i) and (iii).

Proof of Lemma 5. (i) The symmetry conditions P̃ (2`+1)F = P̃ (2`)F = 0 is a system of first order
PDEs. They are solved by the standard technique and it is not difficult to see that the φ̃ and φ’s given
in Equation (37) are solutions to the system of PDEs; (ii) It is immediate to verify that φ01, φ02 solve
the symmetry conditions P̃ (n)F = 0 for ` + 5

2
≤ n ≤ 2` − 1. Rewriting the symmetry conditions

in terms of the variables given in Equation (37) it is not difficult to solve them and find φ and φkm in
Equation (39) are the solutions; (iii) It is immediate to see that all φkm, k,m ∈ I1 solves the symmetry
condition P̃ (`+ 3

2
)F = 0, however, φ, φ01 and φ02 do not. Rewriting the symmetry condition in terms

of φ’s then solving the condition is an easy task. One may see that the variables in Equation (41) are
solution of it.

Theorem 6. The PDE invariant under the group generated by h` with ` ≥ 5
2

is given by

F
(
w, αn, βn, φkm

)
= 0, n ∈ I2, k,m ∈ I1 (42)

where F is an arbitrary differentiable function and

αn = w01 + (n− 1)xnφ1n−1

=
U01

U
− U0U1

U2
−
U`+ 1

2

a`U

(
U1 `+ 1

2

U
−
U1U`+ 1

2

U2

)
+ (n− 1)xn

(
U1n−1

U
− U1Un−1

U2

)
,

βn = w02 + (n− 1)xnφ2n−1

=
U02

U
+
U1

U
− U0U2

U2
−
U`+ 1

2

a`U

(
U2 `+ 1

2

U
−
U2U`+ 1

2

U2

)
+ (n− 1)xn

(
U2n−1

U
− U2Un−1

U2

)
(43)

Proof of Theorem 6. Theorem is proved by making the Equation (40) invariant under P (n) with
2 ≤ n ≤ ` + 1

2
. It is easy to see that w and all φkm solve the symmetry conditions P̃ (n)F = 0 with

P̃ (n) given by Equation (34). Thus the symmetry conditions are written in terms of only xn and w0α :(
∂xn − (n− 1)(φ1n−1∂w01 + φ2n−1∂w02)

)
F = 0, n ∈ I2

It is easily verified that the solutions of this system of equations are given by αn and βn. Thus we
have proved the theorem.
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5. The Case of ` ≥ 5
2

: g`-Symmetry

Our next task is to make the Equation (42) invariant under D and C. From the Equation (21) one may
see that D generates the following scaling:

w → e−2εw, αn → e−2(`+1)εαn, βn → e−2`εβn, φkm → e−2(2`+2−k−m)εφkm (44)

Now we need the prolongation ofC up to second order. After lengthy but straightforward computation
one may obtain the formula:

Ĉ = −b`
2
x2
`+ 1

2
M̂ + tD̂ + 2`x1P̃

(2) − C̃,

C̃ = −
`− 1

2∑
k=2

λkxk∂xk+1
+

`+ 1
2∑

k=2

2(`+ 1− k)xkUk ∂U0

+

`− 1
2∑

k=1

[
λkUk+1∂Uk +

`− 1
2∑

m=k

(λkUk+1m + λmUkm+1)∂Ukm + (λkUk+1 `+ 1
2

+ b`x`+ 1
2
Uk)∂U

k `+1
2

]

+
∑
k=1,2

[
2(`+ 1− k)Uk +

`+ 1
2∑

m=2

2(`+ 1−m)xmUkm + λkU0 k+1

]
∂U0k

+ b`

[
x`+ 1

2
U ∂U

`+1
2

+ (U + 2x`+ 1
2
U`+ 1

2
)∂U

`+1
2 `+

1
2

]
, (45)

where
b` =

((
`+

1

2

)
!
)2
, λk = 2`+ 1− k

One may ignore M̂ and P̃ (2) since we have already taken them into account. C̃ is independent of t so
that the invariance under D and C is reduced to the one under D and C̃. An immediate consequence of
the Equation (45) of C̃ is that F may not depend on αn and βn :

Lemma 7. A necessary condition for the invariance of the Equation (42) under C is that the function F
is independent of αn and βn.

Proof of Lemma 7. C̃ has the term U03∂U02 and this is the only term having U03. On the other hand F is
independent of U03 so that we have the condition ∂U02F = 0. This means that F is independent of U02,

i.e., independent of βn. C̃ also has the term U02∂U01 and this is the only term having U02. Thus by the
same argument F is not able to depend on U01, i.e., αn.

Now we turn to the variables w and φkm. It is immediate to see that w is an invariant of C̃, however,
φkm’s are not:

C̃w = 0,

C̃φkm = λkφk+1m + λmφkm+1, C̃φk `+ 1
2

= λkφk+1 `+ 1
2
, 1 ≤ k,m ≤ `− 1

2
C̃φ`+ 1

2
`+ 1

2
= b` (46)

Thus the generator C̃ has the simpler form in terms of φkm (we omit ∂U0k
):

C̃ =

`− 1
2∑

k=1

`− 1
2∑

m=k

(λkφk+1m + λmφkm+1)∂φkm +

`− 1
2∑

k=1

λkφk+1 `+ 1
2
∂φ

k `+1
2

+ b` ∂φ
`+1

2 `+
1
2

(47)
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The characteristic equation of the symmetry condition C̃F = 0 is a system of the first order PDEs
given by

dφkm
λkφk+1m + λmφkm+1

=
dφ`+ 1

2
`+ 1

2

b`
, 1 ≤ k ≤ m ≤ `− 1

2
(48)

dφk `+ 1
2

λkφk+1 `+ 1
2

=
dφ`+ 1

2
`+ 1

2

b`
, 1 ≤ k ≤ `− 1

2
(49)

One may solve it recursively by starting with Equation (49) for k = `− 1
2

:

dφ`− 1
2
`+ 1

2

dφ
=
λ`− 1

2

b`
φ, φ = φ`+ 1

2
`+ 1

2

This gives the invariant of C̃ :

w`− 1
2
`+ 1

2
= φ`− 1

2
`+ 1

2
−
λ`− 1

2

b`

φ2

2
(50)

Next we rewrite the Equation (49) for k = `− 3
2

in the following way:

dφ`− 3
2
`+ 1

2

dφ
=
λ`− 3

2

b`
φ`− 1

2
`+ 1

2
=
λ`− 3

2

b`

(
w`− 1

2
`+ 1

2
+
λ`− 1

2

b`

φ2

2

)

Then we find an another invariant:

w`− 3
2
`+ 1

2
= φ`− 3

2
`+ 1

2
−
λ`− 3

2

b`
w`− 1

2
`+ 1

2
φ−

λ`− 3
2
λ`− 1

2

b2`

φ3

3!
(51)

The complete list of invariants of C̃ is given as follows:

Lemma 8. Solutions of the Equations (48) and (49) are given by

wkm = φkm −
∑
a+b≥1

cab(k,m)wk+am+b

φa+b
`+ 1

2
`+ 1

2

(a+ b)!
− γ(k,m)

φ2`+2−k−m
`+ 1

2
`+ 1

2

(2`+ 2− k −m)!
, (52)

1 ≤ k ≤ `− 1

2
, k ≤ m ≤ `+

1

2

where a, b run over nonnegative integers such that a ≤ `− 1
2
− k, b ≤ ` + 1

2
−m and k + a ≤ m + b.

The coefficient γ(k,m) depends on cab(k,m) with the maximal value of a and b :

γ(k,m) =


λ`− 1

2

b`
, (k,m) = (`− 1

2
, `+ 1

2
)

λ`− 1
2

b`
cmax(a) max(b)(k,m), otherwise

(53)

The coefficients cab(k,m) are calculated by the algorithm given below.

Algorithm. We borrow the terminology of graph theory.
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(1) For a given wkm, draw a rooted tree according to the branching rules given in Figure 1.
Each vetex and each edge of this tree are labelled. The root is labelled by wkm. Other vertices
and edges are labelled as indicaed in Figure 1. Each vertex has at most two children according to
its label. The vertex has no children if its label is w`− 1

2
`+ 1

2
. Thus the hight of the tree is 2`−k−m.

An example for ` = 7
2

is indicated in Figure 2.
(2) Take a directed path from the root to one of the verticies with label wk+a,m+b and multiply all

the edge labels on this path. For instance, take the path (w13, w14, w24) in Figure 2. Then the
multiplication of the labels is λ1λ3b−2

7/2.

(3) If there exit other vertices whose label is also wk+a,m+b (same label as (2)), then repeat the same
computation as (2) for the direct paths to such vertices. In Figure 2 there is one more vertex whose
label is w24 and the path is (w13, w23, w24). We have λ1λ3b−2

7/2 for this path, too.
(4) Take summation of all such multiplication for the paths to the vertices whose label is wk+am+b,

then this summation gives the coefficient cab(k,m). For the tree in Figure 2 the coefficient of w24

is obtained by adding the quantities calculated in (2) and (3): c11(1, 3) = 2λ1λ3b
−2
7/2.
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Figure 1. Vertices and edges.
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Figure 2. Example of rooted tree: ` = 7
2
.
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Proof of Lemma 8. The lemma is proved by induction on height of the trees. We have a tree of height
zero only when label of the root is w`− 1

2
`+ 1

2
. In this case no cab appears so that Equation (52) yields

w`− 1
2
`+ 1

2
= φ`− 1

2
`+ 1

2
− γ
(
`− 1

2
, `+

1

2

)φ2
`+ 1

2
`+ 1

2

2

This coincide with Equation (50). To verify the legitimacy of the algorithm calculating cab(k,m) we
need to start with a tree of height one. There are two possible labels of the root to obtain a tree of height
one. They are w`− 3

2
`+ 1

2
and w`− 1

2
`− 1

2
. Let us start with the label w`− 3

2
`+ 1

2

It is not difficult to verify, by employing the algorithm, that we obtain the Equation (51) for this case.
For the label w`− 1

2
`− 1

2
, the algorithm gives the following result:

w`− 1
2
`− 1

2
= φ`− 1

2
`− 1

2
−

2λ`− 1
2

b`
w`− 1

2
`+ 1

2
φ`+ 1

2
`+ 1

2
− 2

(
2λ`− 1

2

b`

)2 φ3
`+ 1

2
`+ 1

2

3!
(54)

It is easy to see that C̃ annihilates Equation (54). Thus the lemma is true for trees of height one.
Now we consider trees of height h > 1. If label of the root is wkm (k < m < `+ 1

2
), then the tree has

two rooted subtrees (height h − 1) such that one of then has the root whose label is wk+1m and another
has the root whose label is wkm+1. On the other hand, if label of the root is wkk or wk `+ 1

2
, then the tree

has only one rooted subtree (height h − 1) such that the subtree has the root whose label is wk k+1 or
wk+1 `+ 1

2
. By the algorithm one may find relations between the coefficients cab, γ for the tree of height

h and the subtrees of height h− 1 :

cab(k,m) =
λk
b`
ca−1 b(k + 1,m) +

λm
b`
ca b−1(k,m+ 1),

γ(k,m) =
λk
b`
γ(k + 1,m) +

λm
b`
γ(k,m+ 1),

cab(k, k) =
2λk
b`
ca b−1(k, k + 1), γ(k, k) =

2λk
b`
γ(k, k + 1) (55)

We understand that cab and γ are zero if their indices or arguments have a impossible value.
Assumption of the induction is that the lemma is true for any rooted subtrees whose height is

smaller than h. Namely, we assume that C̃wk+am+b = 0 for a + b ≥ 1 and what we need to show
is that C̃wkm = 0. We separate out a + b = 1 terms from the summation in Equation (52) and use
Equation (46) to calculate the action of C̃ on wkm. For k < m < `+ 1

2
we have

C̃wkm = C̃φkm − λkwk+1m − λmwkm+1

− b`
∑
a+b≥2

cab(k,m)wk+am+b

φa+b−1
`+ 1

2
`+ 1

2

(a+ b− 1)!
− b`γ(k,m)

φ2`+1−k−m
`+ 1

2
`+ 1

2

(2`+ 1− k −m)!

= C̃φkm − λkwk+1m − λmwkm+1

−
∑
a+b≥1

(
λkcab(k + 1,m)wk+1+am+b + λmcab(k,m+ 1)wkm+1

)φa+b`+ 1
2
`+ 1

2

(a+ b)!

−
(
λkγ(k + 1,m) + λmγ(k,m+ 1)

) φ2`+1−k−m
`+ 1

2
`+ 1

2

(2`+ 1− k −m)!
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The second equality is due to the relations Equation (55) and the replacement a− 1 (resp. b− 1) with
a (resp. b). By the assumption of the induction one may use Equation (52) to obtain:

C̃wkm = C̃φkm − (λkφk+1m + λmφkm+1) = 0

The second equality is due to Equation (46).
The proof of C̃wkk = C̃wk `+ 1

2
= 0 is done in a similar way. This completes the proof of

Lemma 8.

Corollary 9. The variables wk `+ 1
2

(1 ≤ k ≤ `− 1
2
) are easily calculated by this method.

wk `+ 1
2

= φk `+ 1
2
−

`− 1
2
−k∑

n=1

(
2`+ 1− k

n

)
wk+n `+ 1

2

(
φ`+ 1

2
`+ 1

2

b`

)n

−

(
2`+ 1− k
`+ 1

2

)
1

b
`+ 1

2
−k

`

φ
`+ 3

2
−k

`+ 1
2
`+ 1

2

`+ 3
2
− k

Proof of Corollary 9. The rooted tree used for this computation is indicated in Figure 3. It follows that
the coefficient of wk+a `+ 1

2
is given by

ca0(k, `+ 1
2
) =

λkλk+1 · · ·λk+a−1

ba`
=

(
2`+ 1− k

a

)
a!

ba`

By Equation (53) the coefficient γ(k, `+ 1
2
) is calculated as γ(k, `+ 1

2
) = λ`− 1

2
b−1
` c`− 1

2
−k 0(k, `+ 1

2
).

Thus we obtain the expression of wk `+ 1
2

given in the corollary.
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Figure 3. Rooted tree for the computation of wk `+ 1
2
.

Our final task is to consider the invariance under D. It is immediate to see that D̂ scales wkm as

wkm → e−2(2`+2−k−m)εwkm

Together with the scaling law Equation (44) we arrive at the final theorem.

Theorem 10. The PDE invariant under the group generated by g` with ` ≥ 5
2

is given by

F
( wkm
w2`+2−k−m

)
= 0, 1 ≤ k ≤ `− 1

2
, k ≤ m ≤ `+

1

2
(56)

where F is an arbitrary differentiable function. The variables w and wkm are given in Equations (41)
and (52), respectively. This is the PDE with `+ 3

2
independent and one dependent variables. The function

F has 1
2

(
`− 1

2

)(
`+ 5

2

)
arguments.
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Example 1. Invariant PDE for ` = 5
2
.

F
(w11

w5
,
w12

w4
,
w13

w3
,
w22

w3
,
w23

w2

)
= 0

where

w =
U0

U
+ x2

U1

U
+ 2x3

U2

U
− U2

3

8U2
,

w23 = φ23 −
1

18
φ2
33,

w22 = φ22 −
2

9
φ23φ33 +

2

35
φ3
33,

w13 = φ13 −
5

36
φ23φ33 +

5

2235
φ3
33,

w12 = φ12 −
1

9
φ13φ33 −

5

36
φ22φ33 +

5

2333
φ23φ

2
33 −

5

2535
φ4
33,

w11 = φ11 −
5

18
φ12φ33 +

5

2234
φ13φ

2
33 −

25

2434
φ22φ

2
33 −

25

2436
φ23φ

3
33 −

5

2438
φ5
33

The symmetry generators are given by

M = U∂U , D = 2t∂t + 5x1∂x1 + 3x2∂x2 + x3∂x3 , H = ∂t,

C = t(t∂t + 5x1∂x1 + 3x2∂x2 + x3∂x3) + 5x1∂x2 + 4x2∂x3 − 18x23U∂U ,

P (1) = ∂x1 , P (2) = t∂x1 + ∂x2 , P (3) = t2∂x1 + 2t∂x2 + ∂x3 ,

P (4) = t3∂x1 + 3t2∂x2 + 3t∂x3 − 12x3U∂U ,

P (5) = t4∂x1 + 4t3∂x2 + 4t2∂x3 − 24(2tx3 + x2)U∂U ,

P (6) = t5∂x1 + 5t4∂x2 + 10t3∂x3 − 120(t2x3 − tx2 + x1)U∂U

6. Concluding Remarks

We have constructed nonlinear PDEs invariant under the transformations generated by the realization
of CGA given in Equation (2). This was done by obtaining the general solution of the symmetry
conditions so that the PDEs constructed in this work are the most general ones invariant under
Equation (2). A remarkable property of the PDEs is that they do not contain the second order derivative
in t if ` > 3

2
. It means that there exist no invariant PDEs of wave or Klein–Gordon type for ` > 3

2
.

This type of `-dependence does not appear in the linear PDEs constructed in [1,4] based on the
representation theory of g`. This will be changed if one start with a realization of CGA which is different
from Equation (2).

The CGAs considered in this work are only d = 1 members. Extending the present computation to
higher values of d would be an interesting future work. Because the d = 2 CGA has a distinct central
extension so that we will have different types of invariant PDEs. For d ≥ 3 CGAs have so(d) as a
subalgebra. This will also cause a significant change in invariant PDEs.
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44. Andrzejewski, K.; Gonera, J.; Maślanka, P. Nonrelativistic conformal groups and their dynamical
realizations. Phys. Rev. D 2012, 86, doi:10.1103/PhysRevD.86.065009.

45. Aizawa, N.; Kuznetsova, Z.; Toppan, F. `-oscillators from second-order invariant PDEs of the
centrally extended Conformal Galilei Algebras. J. Math. Phys. 2015, 56, 031701:1–031701:14.

46. Olver, P. Applications of Lie Groups to Differential Equations; Springer : New York, NY,
USA, 2000.

47. Bluman, G.W.; Kumei, S. Symmetries and Differential Equations; Springer: New York, NY,
USA, 1989.

48. Stephani, H. Differential Equations: Their Solution Using Symmetries; Cambridge University Press:
New York, NY, USA, 1989.

49. Courant, R.; Hilbert, D. Methods of Mathematical Physics; CUP Archive: New York, NY, USA,
1966; Volume 1.

c© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article
distributed under the terms and conditions of the Creative Commons Attribution license
(http://creativecommons.org/licenses/by/4.0/).


	Introduction
	CGAs and Preliminary Consideration
	The Case of  bold0mu mumu = 32= 322005/06/28 ver: 1.3 subfig package= 32= 32= 32= 32
	The Case of  bold0mu mumu 52522005/06/28 ver: 1.3 subfig package52525252  : bold0mu mumu hh2005/06/28 ver: 1.3 subfig packagehhhh-Symmetry
	The Case of  bold0mu mumu 52522005/06/28 ver: 1.3 subfig package52525252  : bold0mu mumu gg2005/06/28 ver: 1.3 subfig packagegggg-Symmetry
	Concluding Remarks

