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Abstract: The Misner–Sharp–Hernandez mass defined in general relativity and in spherical
symmetry has been recognized as having a Newtonian character in previous literature.
In order to better understand this feature we relax spherical symmetry and we study
the generalization of the Misner–Sharp–Hernandez mass to general spacetimes, i.e., the
Hawking quasilocal mass. The latter is decomposed into a matter contribution and a
contribution coming solely from the Weyl tensor. The Weyl tensor is then decomposed into
an electric part (which has a Newtonian counterpart) and a magnetic one (which does not),
which further splits the quasilocal mass into “Newtonian” and “non-Newtonian” parts. Only
the electric (Newtonian) part contributes to the quasilocal mass.
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1. Introduction

The concept of mass of a gravitating system in general relativity, especially a non-isolated one, has
been the subject of much research. The equivalence principle forbids the introduction of an energy
density for the gravitational field because, locally, one can eliminate this field. The next best thing
seems to be introducing a quasilocal energy, and this avenue has been pursued for a long time with the
introduction of many definitions of quasilocal energy (see [1] for a review). Some emphasis seems to
be given, in recent literature, to the Hawking and Hayward constructs. It is fair to say that a definitive
prescription which is appropriate for all problems in relativity does not yet exist, with various definitions
being applied to different problems and for different purposes. This situation is far from ideal and,
overall, quasilocal energies remain rather abstract and formal concepts, at least for non-asymptotically
flat geometries. It is only recently that the Hawking–Hayward quasilocal construct has been applied
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to more “practical” problems in cosmology, such as the Newtonian simulations of large scale structure
formation [2] and the old problem [3–21] of the turnaround radius of the largest bound structures in
the universe [22].

The problem of deciding once and for all what is the “mass of a gravitating system” in general
relativity is far from being solved, and the physical understanding of the various quasilocal definitions
is the first step in this direction. The present manuscript contributes by examining the “Newtonian”
character of the Hawking mass. It has been pointed out [23] that, in a spherically symmetric
spacetime, the behaviour of timelike geodesics in general relativity discriminates somehow between the
Misner–Sharp–Hernandez [24,25] and the Brown–York [26] quasilocal energies. As seen from timelike
geodesic observers, the Misner–Sharp–Hernandez mass (to which the Hawking mass reduces in spherical
symmetry) plays the role of a Newtonian energy, while the Brown–York quasilocal energy plays the role
of a relativistic energy [23]. This approach is intriguing, as it discloses from an unconventional but
physical point of view, physical properties of these two quasilocal constructs which help understanding
them better. Here, we want to go beyond the limitation of spherical symmetry of Reference [23] and we
analyze the Hawking mass in general geometries. In order to make progress, one has to specify what
is meant by “Newtonian” character of a quasilocal energy and we identify this property on the basis of
the electric and magnetic decomposition of the Weyl tensor introduced long ago [27] and widely used
in cosmology [28–35]. With this idea in mind, it is necessary to relate the Hawking mass MH with the
Weyl tensor. To this end, we first split the Hawking mass into two contributions, one due to matter and
one to the “pure” gravitational field, i.e., to the Weyl tensor Cabcd. If matter is described by a perfect
fluid, the matter contribution to the quasilocal mass does not depend on the pressure.

As a second step, we perform the splitting of the Weyl tensor into its electric and magnetic parts in the
gravitational (Weyl) contribution to MH with the goal of identifying a part (coming from the electric part
of Cabcd) which has a Newtonian counterpart and another part (coming from the magnetic part of Cabcd)
which has no Newtonian counterpart. In so doing, we find that the gravitational contribution to MH is
due only to the electric part of Cabcd and is, in this sense, “Newtonian”, while the magnetic part gives
zero contribution, corroborating the result found by [23] in spherical symmetry (although the meaning
of the adjective “Newtonian” is different in our context).

We use metric signature−+++, G is Newton’s constant, round (resp., square) brackets around a pair
of indices denote symmetrization (resp., antisymmetrization), units in which the speed of light is unity
are used, and otherwise we follow the notation of Wald’s textbook [36].

2. Decomposing the Hawking Mass

The Hawking–Hayward quasilocal mass contained by a 2-surface S is defined in the following
way [37,38]. Consider a spacetime (M, gab) in general relativity and let S be a spacelike, embedded,
compact, and orientable 2-surface in the spacetime manifold M . Let hab and R(h) be the 2-metric and
Ricci scalar induced on S by the spacetime metric gab. Let µ be the volume 2-form on S and let A be
the area of S. Consider the congruences of ingoing (−) and outgoing (+) null geodesic emanating from
the surface S, and let θ(±) and σ(±)

ab be the expansion scalars and the shear tensors of these congruences,
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respectively. Let ωa be the projection onto S of the commutator of the null normal vectors to S, i.e., the
anoholonomicity [38]. The Hawking–Hayward quasilocal mass is [37,38]

MHH =
1

8πG

√
A

16π

∫
S
µ

(
R(h) + θ(+)θ(−) −

1

2
σ
(+)
ab σ

ab
(−) − 2ωaω

a

)
(1)

In spherical symmetry the Hawking–Hayward mass MHH reduces to the Misner–Sharp–Hernandez
mass [24,25] for a 2-sphere of symmetry and is a conserved Noether charge [39]. The Kodama vector
(defined only in general relativity in the presence of spherical symmetry [40]) is used in place of a
timelike Killing vector when none exists, and generates an energy current (“Kodama current”) which,
surprisingly, is conserved in the absence of timelike Killing vectors [40] (the “Kodama miracle” [41]).
The Misner–Sharp–Hernandez mass is the conserved Noether charge corresponding to the conservation
of the Kodama current [39].

If the term −2ωaω
a is dropped from Equation (1), MHH reduces to the Hawking quasilocal

prescription [37], which we denote by MH. The quantity ωaω
a is gauge-dependent [1], which is

a weakness of the construct (1), and we will drop it in the following, restricting ourselves to the
Hawking mass MH.

We are now going to decompose MH into two components, which can be identified as a contribution
due to the mass-energy on the topological 2-sphere S , and one due to the gravitational field.

We take advantage of the contracted Gauss equation [38]

R(h) + θ(+)θ(−) −
1

2
σ
(+)
ab σ

ab
(−) = hachbdRabcd (2)

where Rabcd is the Riemann tensor, to compute the first three terms in the integral of Equation (1). The
Riemann tensor splits into Ricci part and Weyl part [36]

Rabcd = Cabcd + ga[cRd]b − gb[cRd]a −
R

3
ga[cgd]b (3)

where Rab and Cabcd are the Ricci and Weyl tensors, respectively, and R ≡ Rc
c is the Ricci scalar. The

Einstein equations in the form

Rab = 8πG

(
Tab −

1

2
gabT

)
(4)

and their contraction R = −8πGT , where T ≡ T c
c, yield (in conjunction with Equation (2))

hachbdRabcd = hachbdCabcd + 8πGhachbd
[
ga[cTd]b − gb[cTd]a −

T

2

(
ga[cgd]b − gb[cgd]a

)]
(5)

It is easy to see that

hachbd
(
ga[cTd]b − gb[cTd]a

)
= habTab (6)

hachbd
(
ga[cgd]b − gb[cgd]a

)
= 2 (7)

which reduces MH to the sum of a matter contribution and of a Weyl contribution (A version of
Equation (8) for scalar-tensor gravity appears in Reference [42])

MH =

√
A

16π

∫
S
µ

(
habTab −

2T

3

)
+

1

8πG

√
A

16π

∫
S
µhachbdCabcd (8)
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The first integral on the right hand side of Equation (8), which does not contain Newton’s constant G,
is determined directly by the matter present on S and it vanishes in vacuo. The second integral, which
contains G and does not depend on matter directly, can be seen as a “pure field” contribution, although
it contains the 2-metric hab which is also determined by matter through the Einstein equations.

To visualize the first contribution, imagine the special (but very common in the literature) situation in
which the matter content of spacetime is a perfect fluid, described by the stress-energy tensor

Tab = (P + ρ)uaub + Pgab (9)

where ρ, P , and uc are the energy density, (isotropic) pressure, and 4-velocity field of the fluid,
respectively. If we choose the 2-surface S in such a way that the 4-velocity ua is normal to it, i.e.,
habu

b = 0, then we have

habTab −
2T

3
=

2ρ

3
(10)

and the quasilocal mass does not depend explicitly on the pressure, a feature which was already
noted in References [38,39] in spherical symmetry and is now generalized to arbitrary spacetimes.
Of course, realistically, there will be an equation of state of the fluid relating energy density and
pressure. Nevertheless, the property that pressures do not contribute to MH is noteworthy because one
of the first things that one learns in relativity is that the pressure of a fluid gravitates together with
its energy density, for example in the Tolman–Oppenheimer–Volkoff equation for interior solutions, or
in the Einstein–Friedmann equations for Friedmann–Lemaître–Robertson–Walker cosmology [36]. In
this sense, it seems that this contribution to the Hawking mass behaves more like a Newtonian than a
relativistic mass.

Let us consider now an imperfect fluid, the stress-energy tensor of which has the general form

Tab = ρuaub + Pγab + qaub + qbua + Πab (11)

where γab is the 3-metric on the 3-space orthogonal to ua and is defined by gab = −uaub + γab, qa is
a purely spatial heat current vector satisfying qcuc = 0, and Πab is the symmetric and trace-free shear
tensor. For such an imperfect fluid the trace is still T = −ρ+ 3P and one finds that

habTab −
2T

3
=

2

3
ρ+ habΠab =

2

3
ρ+ Π2

2 + Π3
3 =

2

3
ρ− Π1

1 (12)

labeling (x2, x3) the coordinates on S. Therefore, while the principal stresses associated with directions
lying along S do not contribute to the mass MH, the one corresponding to the third direction normal to
S does contribute to MH (when it is non-zero) hence, to some extent, non-isotropic stresses gravitate
according to Hawking’s prescription.

As a special case of an imperfect fluid, bulk and viscous stresses can be introduced as follows:

P = P(e) + P(ne) (13)

where P(e) is an equilibrium pressure and P(ne) is a non-equilibrium component, while viscosity
is described by P(ne) = −ζθ, with η a viscosity coefficient and θ = ∇cuc the expansion of the timelike
congruence with tangent uc. Although not the most general form of an imperfect fluid, this is in fact the
form reported in several textbooks (e.g., [43,44]) and technical articles. The stress-energy tensor in this
case is

Tab = ρuaub + P(e)γab − ζθγab + qaub + qbua − 2ησab (14)
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which gives

habTab −
2T

3
=

2

3
ρ+ 2ησ1

1 (15)

3. “Newtonian” Character of the Hawking mass

We now decompose further the gravitational contribution to the Hawking mass with the purpose
of identifying its “Newtonian” and “non-Newtonian” parts relative to an observer with 4-velocity ua.
To give a meaning to these adjectives, we decompose the Weyl tensor into its electric and magnetic
parts. While the electric part Eab of the Weyl tensor has a Newtonian analogue, its magnetic part Hab

does not [34] and we identify the “Newtonian” contribution to MH with the terms due to Eab in the
second integral on the right hand side of Equation (8), and the non-Newtonian part with the contribution
due to Hab.

To proceed, remember that electric and magnetic parts of the Weyl tensor are defined relative to an
observer. It is natural to identify the 4-velocity ua of the observer with the timelike unit normal to the
spacelike 2-surface S. Then the electric and magnetic parts of the Weyl tensor are (Here we follow the
definitions of [35], which differ from that of [34] in the magnetic part of the Weyl tensor and correct a
sign error)

Eac(u) = Cabcdu
bud (16)

Hac(u) =
1

2
ηabpqC

pq
ceu

bue (17)

respectively, where ηabcd =
√
−g εabcd with εabcd the alternating symbol and g the determinant of the

metric tensor gab. In other words, ηabcd = η[abcd] and η0123 = 1/
√
−g. Eab and Hab are purely spatial,

symmetric, and trace-free,
Eabu

a = Eabu
b = Habu

a = Habu
b = 0 (18)

Eab = E(ab) Hab = H(ab) (19)

Ea
a = Ha

a = 0 (20)

The Weyl tensor is reconstructed from its electric and magnetic parts according to [34,35]

Cabcd = (gabefgcdpq − ηabefηcdpq)ueupEfq − (ηabefgcdpq + gabefηcdpq)u
eupHfq (21)

where
gabef ≡ gaegbf − gafgbe (22)

Therefore, we have

Cabcd = (gaegbf − gafgbe) (gcpgdq − gcqgdp)ueupEfq − ηabefηcdpqueupEfq

− [ηabef (gcpgdq − gcqgdp) + (gaegbf − gafgbe) ηcdpq]ueupHfq

= uaucEbd − uaudEbc − ubucEad + ubudEac − ηabefηcdpqueupEfq

−ηabefucueHf
d + ηabefu

eudH
f
c − uaupηcdpqH

q
b + ubu

pηcdpqH
q
a (23)
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By contracting twice with the (inverse) 2-metric hab most terms vanish, leaving

hachbdCabcd = −ηabefηcdpqhachbdueupEfq (24)

To summarize, after the two splittings are performed, the Hawking mass can be written as

MH =

√
A

16π

∫
S
µ

(
habTab −

2T

3

)
− 1

8πG

√
A

16π

∫
S
µ ηabefηcdpqh

achbdueupEfq

(25)

The “pure gravity” contribution to MH comes only from the electric part of the Weyl tensor, which has
a counterpart in Newtonian gravity [34]. The magnetic part of Cabcd which, on the contrary, has no
Newtonian counterpart [34], gives zero contribution. In this sense, the Hawking mass is “Newtonian”.
Although our meaning of the adjective “Newtonian” is quite different from that of Reference [23],
the spirit is not too different and Equation (25) can be seen as a statement that the Hawking mass is
“Newtonian” on the same lines of the result of [23]. The statement is much stronger, in the sense that
our discussion leading to Equation (25) is not restricted to spherical symmetry.

4. Conclusions

It is intriguing that, in spherical symmetry, the Hawking quasilocal energy (which reduces to the
Misner–Sharp–Hernandez one) is found to have “Newtonian” character [23]. A previous discussion
of the Newtonian character in the literature [23] relied on the behaviour of timelike geodesics in
spherically symmetric general-relativistic spacetimes. When one tries to extend this result to arbitrary
general-relativistic spacetimes, which we have done here, one needs to identify what “Newtonian
character” means. It is in principle possible that spherical symmetry hides some physical features of
the Newtonian or non-Newtonian nature of the quasilocal mass, which would then be brought into light
by relaxing this symmetry. While there are a priori several possibilities, it is rather natural to think of
characterizing Newtonianity by using the decomposition of the Weyl tensor into its electric and magnetic
parts. In fact, the magnetic part of the Weyl tensor Cabcd does not have a Newtonian counterpart, while
its electric part does, corresponding to tidal fields [27,34,35]. This approach is quite different from that
of Reference [23] and could, in principle, lead to completely different results. The problem is how
to relate the Hawking quasilocal mass with the decomposition of Cabcd. Fortunately, this question is
answered easily by using the contracted Gauss Equation (2). The splitting of the Hawking mass MH

into a matter part and a purely gravitational part (determined by Cabcd) is then straightforward. When
the matter content of spacetime is a perfect fluid or a mixture of perfect fluids, this part of MH does
not depend on the (isotropic) pressure, contributing to the interpretation of MH as a Newtonian, as
opposed to relativistic, quantity. However, for an imperfect fluid MH depends on the principal stress in
the spatial direction orthogonal to the compact spacelike 2-surface S on which MH is defined (but not on
the principal stresses along the two directions in S).

Then, the decomposition of the Weyl tensor into an electric (“Newtonian”) part and a magnetic
(“non-Newtonian”) part determines a corresponding splitting of the Hawking quasilocal mass. However,
the magnetic Weyl part vanishes identically in all situations in general relativity, leaving only the
electric part that we identified as “Newtonian”. This means that the Hawking mass is due only to
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contributions from matter distributions and from tidal fields. Our procedure in identifying Newtonian and
non-Newtonian contributions is not directly applicable to other quasilocal energy prescriptions. What is
more, the characterization of “Newtonian” followed here may ultimately not be the most convenient one.
These issues become more relevant in light of relativistic virial theorems [45] and the application of the
quasilocal energy to cosmological perturbations [2,22] and will be considered further in the future.
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