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Abstract: The Estrada index of a graph G of n vertices is defined by EE(G) =
∑n

i=1 e
λi ,

where λ1, λ2, · · · , λn are the eigenvalues ofG. In this paper, we give upper and lower bounds
of EE(G) for almost all bipartite graphs by investigating the upper and lower bounds of the
spectrum of random matrices. We also formulate an exact estimate of EE(G) for almost all
balanced bipartite graphs.
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1. Introduction

The topological structures of many social, biological, and technological systems can be characterized
by the connectivity properties of the interaction pathways (edges) between system components
(vertices) [1]. Starting with the Königsberg seven-bridge problem in 1736, graphs with bidirectional
or symmetric edges have ideally epitomized structures of various complex systems, and have developed
into one of the mainstays of the modern discrete mathematics and network theory. Formally, a simple
graph G consists of a vertex set V = {1, 2, · · · , n} and an edge set E ⊆ V × V . The adjacency matrix
of G is a symmetric (0, 1)-matrix A(G) = (aij) ∈ Rn×n, where aij = aji = 1 if vertices i and j are
adjacent, and aij = aji = 0 otherwise. It is well-known in algebraic graph theory that A(G) has exactly
n real eigenvalues λ1 ≥ λ2 ≥ · · · ≥ λn due to its symmetry. They are usually called the spectrum
(eigenvalues) of G itself [2].

A spectral graph invariant, the Estrada index EE(G) of G, is defined as

EE(G) =
n∑
i=1

eλi .

This quantity was introduced by Estrada [3] in 2000. It has noteworthy chemical applications, such as
quantifying the degree of folding of long-chain molecules and the Shannon entropy [3–7]. The Estrada
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index provides a remarkable measure of subgraph centrality as well as fault tolerance in the study of
complex networks [1,8–10]. Building upon varied symmetric features in graphs, mathematical properties
of this invariant can be found in, e.g., [11–18].

The Estrada index can be readily calculated once the eigenvalues are known. However, it is
notoriously difficult to compute the eigenvalues of a large matrix even for (0, 1)-matrix A(G). In the
past few years, researchers managed to establish a number of lower and upper bounds to estimate this
invariant (see [13] for an updated survey). A common drawback is that only few classes of graphs attain
the equalities of those bounds. Therefore, one may naturally wonder the typical behavior of the invariant
EE(G) for most graphs with respect to other graph parameters such as the number of vertices n.

The classical Erdős–Rényi random graph model Gn(p) includes the edges between all pairs of vertices
independently at random with probability p [19]. It has symmetric, bell-shaped degree distribution,
which is shared by many other random graph models. Regarding the Estrada index, Chen et al. [20]
showed the following result: Let Gn(p) ∈ Gn(p) be a random graph with a constant p ∈ (0, 1), then

EE(Gn(p)) = enp(eO(
√
n) + o(1)) a.s. (1)

Here, we say that a certain property P holds in Gn(p) almost surely (a.s.) if the probability that a random
graph Gn(p) has the property P converges to 1 as n tends to infinity. Therefore, the result (1) presents
an analytical estimate of the Estrada index for almost all graphs.

Our motivation in this paper is to investigate the Estrada index of random bipartite graphs, which
is a natural bipartite version of Erdős–Rényi random graphs. Bipartite graphs appear in a range of
applications in timetabling, communication networks and computer science, where components of the
systems are endowed with two different attributes and symmetric relations are only established between
these two parts [21–23]. Formally, a bipartite graph is a graph whose vertices can be divided into two
disjoint sets V1 and V2 such that every edge connects a vertex in V1 to a vertex in V2. A bipartite graph is
a graph that does not contain any odd-length cycles; (chemical) trees are bipartite graphs. The random
bipartite graph model is denoted by Gn1,n2(p), where ni = |Vi| for i = 1, 2, satisfying n1 + n2 = n.

The authors in [20] posed the following conjecture pertaining to bipartite graphs.

Conjecture 1. Let Gn1,n2(p) ∈ Gn1,n2(p) be a random bipartite graph with a constant p ∈ (0, 1). Then

EE(Gn1,n2(p)) = e
n
2
p(eO(

√
n) + o(1)) a.s. (2)

if and only if limn→∞ n2/n1 = 1.

In this paper, by means of the symmetry in Gn1,n2(p) and the spectral distribution of random
matrix, we obtain lower and upper bounds for EE(Gn1,n2(p)). For ease of analysis, we assume that
limn→∞ n2/n1 := y ∈ (0, 1]. We establish the estimate

Theorem 1.
en2p(eO(

√
n) + o(1)) ≤ EE(Gn1,n2(p)) ≤ en1p(eO(

√
n) +O(1)) a.s. (3)

Thus a weak version of Conjecture 1 follows readily:

EE(Gn1,n2(p)) = e
n
2
p(eO(

√
n) +O(1)) a.s.
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holds, provided limn→∞ n2/n1 = 1 (i.e., y = 1).

2. Examples

In this section, we give some analytical and numerical examples to demonstrate that our estimate (3)
is valid, and is better than some existing bounds obtained by algebraic approaches.

Example 1. Let G be a bipartite graph with vertex set V = V1 ∪ V2, |V | = |V1| + |V2| = n1 + n2 = n

and m edges. In [11] and [18], it was proved that

√
n2 + 4m ≤ EE(G) ≤ n− 2 + 2 cosh(

√
m), (4)

where the equality on the left-hand side of (4) holds if and only ifG is an empty graph, while the equality
on the right-hand side of (4) holds if and only if G is a union of a complete bipartite graph and some
isolated vertices. If G ∈ Gn1,n2(p), then the number of edges is m = n1n2p a.s. [19]. Hence, the lower
bounds in (4) becomes

√
n2 + 4m =

√
n2 + 4n1n2p� en2p(eO(

√
n) + o(1)) a.s.

The upper bound in (4) becomes

n− 2 + 2 cosh(
√
m) = n− 2 + e

√
n1n2p + e−

√
n1n2p = en1p(en1(

√
yp−p) + o(1))

= en1p ·
(
e
n
(√

yp−p

1+y

)
+ o(1)

)
� en1p(eO(

√
n) +O(1)), a.s.

if n2/n1 → y > p.

Example 2. In [15], the authors bounded the Estrada index of a graph G of order n by its graph
energy E(G):

EE(G) ≤ n− 1 + e
E(G)

2 ,

with equality if and only if E(G) = 0. If G ∈ Gn1,n2(p), it can be shown that [24] E(G) =

(2n2
√
n1C(p)n−3/2 + o(1))n3/2 a.s., where C(p) > 0 is a constant depending on p. Hence, we have

EE(G) ≤ n− 1 + e

(
2n2
√
n1C(p)n−

3
2 +o(1)

)
n

3
2
, a.s. (5)

We calculate the upper bound in (5) as

n− 1 + e

(
2n2
√
n1C(p)n−

3
2 +o(1)

)
n

3
2

= en1p ·

(
e

(
2yC(p)n

3
2
1 n
− 3

2 +o(1)

)
n

3
2−n1p

+ o(1)

)

= en1p ·
(
e

(
2y(1+y)−

3
2C(p)+o(1)

)
n

3
2−np(1+y)−1

+ o(1)

)
� en1p(eO(

√
n) +O(1)). a.s.
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Example 3. Let G be a bipartite graph with n vertices and m ≥ 1 edges. Denote by n0 the number of
zero eigenvalues in the spectrum of G. It was proved in [25] and [12] that

EE(G) ≥ n0 + (n− n0) cosh

(√
2m

n− n0

)
, (6)

where the equality holds if and only if n − n0 is even, and G consists of copies of complete bipartite
graphs Kai,bi , i = 1, · · · , (n − n0)/2, such that all products aibi are mutually equal. If G ∈ Gn1,n2(p),
then the number of edges is m = n1n2p a.s. Hence, the lower bound in (6) becomes

n0 + (n− n0) cosh

(√
2m

n− n0

)
= n0 +

1

2
(n− n0)

(
e

√
2n1n2p
n−n0 + e

−
√

2n1n2p
n−n0

)
≤ en2p

(
n

2
e

√
2n1n2p

n
−n2p + o(1)

)
= en2p

(n
2
e
√
2ynp−ynp

1+y + o(1)
)

� en2p(eO(
√
n) + o(1)). a.s.

Example 4. An upper bound for EE(Gn1,n2(p)) was derived in [20] as

EE(Gn1,n2(p)) ≤ enp(eO(
√
n) + o(1)) a.s. (7)

Since
en1p(eO(

√
n) +O(1))

enp(eO(
√
n) + o(1))

= (1 + o(1))e−
ynp
1+y = o(1),

our upper bound in Theorem 1 is better than that in (7).
In Table 1, we compare the estimates for EE(Gn1,n2(1/2)) in Theorem 1 with numerical value

obtained by Matlab software. The results are in good agreement with the theory.

Table 1. Estrada index of Gn1,n2(p) with n1 = 3000 and p = 1/2. Numerical results are
based on average over 10 independent runs.

n2 y Theoretical lower bound Numerical value Theoretical upper bound
3000 1 e1500(eO(77.46) + o(1)) e1543.72 e1500(eO(77.46) +O(1))

2700 0.9 e1350(eO(75.50) + o(1)) e1528.29 e1500(eO(75.50) +O(1))

2400 0.8 e1200(eO(73.48) + o(1)) e1497.03 e1500(eO(73.48) +O(1))

2100 0.7 e1050(eO(71.41) + o(1)) e1456.85 e1500(eO(71.41) +O(1))

3. Proof of Theorem 1

This section is devoted to the proof of Theorem 1, which heavily relies on the symmetry in Gn1,n2(p).
Throughout the paper, we shall understand p ∈ (0, 1) as a constant. Let M = (mij) ∈ Rn×n

be a random matrix, where the entries mij (i ≤ j) are independent and identically distributed with
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mij = mji. We denote by the eigenvalues ofM by λ1(M), λ2(M), · · · , λn(M) and its empirical spectral
distribution by

ΦM(x) =
1

n
·#{λi(M)|λi(M) ≤ x, i = 1, 2, · · · , n}

=
1

n

n∑
i=1

1{λi(M)≤x}.

Lemma 1. (Marčenko–Pastur Law [26]) Let X = (xij) ∈ Rn2×n1 be a random matrix, where the
entries xij are independent and identically distributed with mean zero and variance p(1 − p). Suppose
that n1, n2 are functions of n, and limn→∞ n2/n1 = y ∈ (0,∞). Then, with probability 1, the empirical
spectral distribution Φ 1

n1
XXT (x) converges weakly to the Marčenko–Pastur Law Fy as n → ∞, where

Fy has the density

fy(x) =
1

2πp(1− p)xy
√

(b− x)(x− a)1{a≤x≤b}

and has a point mass 1 − 1/y at the origin if y > 1, where a = p(1 − p)(1 − √y)2 and
b = p(1− p)(1 +

√
y)2.

The above result formulates the limit spectral distribution of 1
n1
XXT , which will be a key ingredient

of our later derivation for EE(Gn1,n2(p)). The main approach employed to prove the assertion is called
moment approach. It can be shown that for each k ∈ N,

lim
n→∞

∫ ∞
0

xkdΦ 1
n1
XXT (x) =

∫ ∞
0

xkdFy(x) a.s. (8)

We refer the reader to the seminal survey by Bai [26] for further details on the moment approach and the
Marčenko–Pastur Law-like results.

The following two lemmas will be needed.

Lemma 2. (In Page 219 [27]), Let µ be a measure. Suppose that functions gn, hn, fn converge almost
everywhere to functions g, h, f , respectively, and that gn ≤ fn ≤ hn almost everywhere. If

∫
gndµ →∫

gdµ and
∫
hndµ→

∫
hdµ, then

∫
fndµ→

∫
fdµ.

Lemma 3. (Weyl’s inequality [28]) Let X ∈ Rn×n, Y ∈ Rn×n and Z ∈ Rn×n be symmetric matrices
such that X = Y + Z. Suppose their eigenvalues are ordered as λ1(X) ≥ λ2(X) ≥ · · · ≥ λn(X),
λ1(Y ) ≥ λ2(Y ) ≥ · · · ≥ λn(Y ), and λ1(Z) ≥ λ2(Z) ≥ · · · ≥ λn(Z), respectively. Then

λi(Y ) + λn(Z) ≤ λi(X) ≤ λi(Y ) + λ1(Z),

for any 1 ≤ i ≤ n.

Recall that the random bipartite graph Gn1,n2(p) consists of all bipartite graphs with vertex set
V = V1 ∪ V2, in which the edges connecting vertices between V1 and V2 are chosen independently with
probability p ∈ (0, 1). We assume |Vi| = ni (i = 1, 2), n1 + n2 = n and limn→∞ n2/n1 := y ∈ (0, 1].

For brevity, let An = A(Gn1,n2(p)) be the adjacency matrix, and denote by Qn = (qij) ∈ Rn×n a
quasi-unit matrix, where qij = qji = 1 if i, j ∈ V1 or i, j ∈ V2, and qij = qji = 0 otherwise. Let
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In ∈ Rn×n be the unit matrix and Jn ∈ Rn×n be the matrix whose all entries are equal to 1. By labeling
the vertices appropriately, we obtain

Ān := An − p(Jn −Qn) =

(
0 XT

X 0

)
∈ Rn×n, (9)

where X = (xij) ∈ Rn2×n1 is a random matrix with all entries xij being independent and identically
distributed with mean zero and variance p(1−p). For λ ∈ R, by basic matrix transforms, namely, taking
the determinants of both sides of(

λIn1 0

−X λIn2

)(
λIn1 −XT

0 λIn2 − λ−1XXT

)
= λ

(
λIn1 −XT

−X λIn2

)
,

we have
λn1 det(λ2In2 −XXT ) = λn2 det(λIn − Ān),

where det(M) is the determinant of matrix M . Consequently,

λn1nn2
1 det

(
λ2

n1

In2 −
1

n1

XXT

)
= (
√
n1)nλn2 det

(
λ
√
n1

In −
Ān√
n1

)
.

Therefore, the eigenvalues of Ān/
√
n1 are symmetric: If λ̄ 6= 0, then λ̄ is the eigenvalue of Ān/

√
n1

if and only if λ̄2 is the eigenvalue of XXT/n1. Since XXT is positive semi-definite, we know that
Ān/
√
n1 has at least n1 − n2 zero eigenvalues and its spectrum can be arranged in a non-increasing

order as
λ̄1 ≥ · · · ≥ λ̄n2 ≥ 0 = · · · = 0︸ ︷︷ ︸

n1−n2

≥ λ̄n1+1
‖

− λ̄n2

≥ · · · ≥ λ̄n
‖

− λ̄1

,

assuming n1 ≥ n2 when n is large enough.
In what follows, we shall investigate EE(Gn1,n2(p)) and prove Theorem 1 through a series of

propositions. For convenience, we sometimes writeEE(M) :=
∑n

i=1 e
λi(M) for a real symmetric matrix

M ∈ Rn×n. Thus, EE(Gn1,n2(p)) = EE(An).

Proposition 1.

lim
n→∞

∫ ∞
1

exdΦ 1
n1
XXT (x) =

∫ ∞
1

exdFy(x) a.s.

Proof. Let φ 1
n1
XXT be the density of Φ 1

n1
XXT . By means of Lemma 1, we get φ 1

n1
XXT converges to fy

a.s. as n tends to infinity. It follows from the bounded convergence theorem that

lim
n→∞

∫ 1

0

exdΦ 1
n1
XXT (x) =

∫ 1

0

exdFy(x) a.s. (10)

By Lemma 1 we know that there exists a large ω <∞ such that all eigenvalues of 1
n1
XXT do not exceed

ω. Since the expansion ex =
∑∞

k=0 x
k/k! converges uniformly on [0, ω], we obtain from (8) that

lim
n→∞

∫ ∞
0

exdΦ 1
n1
XXT (x) =

∫ ω

0

exdFy(x) =

∫ ∞
0

exdFy(x) a.s. (11)
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Combining (10) with (11) we derive

lim
n→∞

∫ ∞
1

exdΦ 1
n1
XXT (x) = lim

n→∞

(∫ ∞
0

exdΦ 1
n1
XXT (x)−

∫ 1

0

exdΦ 1
n1
XXT (x)

)
=

∫ ∞
0

exdFy(x)−
∫ 1

0

exdFy(x)

=

∫ ∞
1

exdFy(x) a.s.

2

Proposition 2.

EE

(
Ān√
n1

)
= n1 − n2 + n2

∫
√
b√
a

2 cosh(x)
√(

b
x2
− 1
) (

1− a
x2

)
dx

πp(1− p)y
+ o(1)

 a.s.,

where a and b are given as in Lemma 1.

Proof. Define

Ψ(x) =
1

n2

n2∑
i=1

1{√
λi(

1
n1
XXT )≤x

}.
Then we have

eλ̄1 + · · ·+ eλ̄n2 = n2

∫ ∞
0

exdΨ(x) = n2

∫ ∞
0

e
√
xdΦ 1

n1
XXT (x). (12)

Analogous to the proof of (10) we derive

lim
n→∞

∫ 1

0

e
√
xdΦ 1

n1
XXT (x) =

∫ 1

0

e
√
xdFy(x) a.s.

For any x ∈ [1,∞), we have 0 ≤ e
√
x ≤ ex. By Lemma 2 and Proposition 1 we deduce that

lim
n→∞

∫ ∞
1

e
√
xdΦ 1

n1
XXT (x) =

∫ ∞
1

e
√
xdFy(x) a.s.

Accordingly, we have

lim
n→∞

∫ ∞
0

e
√
xdΦ 1

n1
XXT (x) =

∫ ∞
0

e
√
xdFy(x) a.s. (13)

It follows from (12) and (13) that

eλ̄1 + · · ·+ eλ̄n2

→ n2

∫ ∞
0

e
√
xdFy(x)

=

∫ b

a

e
√
x

2πp(1− p)xy
√

(b− x)(x− a)dx

=
1

πp(1− p)y

∫ √b
√
a

ex

√(
b

x2
− 1

)(
1− a

x2

)
dx a.s. (14)
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Next, we calculate the sum of the exponentials of the smallest n2 eigenvalues of Ān/
√
n1. Similarly

as in (12), we obtain

eλ̄n1+1 + · · ·+ eλ̄n = n2

∫ ∞
0

e−xdΨ(x) = n2

∫ ∞
0

e−
√
xdΦ 1

n1
XXT (x). (15)

Noting that 0 ≤ e−
√
x ≤ ex for x ∈ [1,∞), we likewise have

lim
n→∞

∫ ∞
0

e−
√
xdΦ 1

n1
XXT (x) =

∫ ∞
0

e−
√
xdFy(x) a.s. (16)

by employing Lemma 2 and Proposition 1. It then follows from (15) and (16) that

eλ̄n1+1 + · · ·+ eλ̄n

→ n2

∫ ∞
0

e−
√
xdFy(x)

=
1

πp(1− p)y

∫ √b
√
a

e−x

√(
b

x2
− 1

)(
1− a

x2

)
dx a.s. (17)

Finally, combining (14), (17) and the fact that λ̄n2+1 = · · · = λ̄n1 = 0, we readily deduce the assertion
of Proposition 2. 2

Proposition 3.

n1 − n2 + n2

(
(e−
√
n1b + e

√
n1a)C

πp(1− p)y
+ o(1)

)

≤ EE
(
Ān
)
≤ n1 − n2 + n2

(
(e−
√
n1a + e

√
n1b)C

πp(1− p)y
+ o(1)

)
a.s.,

where a, b are given as in Lemma 1, and C =
∫ √b√

a

√(
b
x2
− 1
) (

1− a
x2

)
dx.

Proof. Define

Ψ̃(x) =
1

n2

n2∑
i=1

1{√
n1λi(

1
n1
XXT )≤x

}.
Then we have Ψ̃(x) = Ψ(x/

√
n1). Therefore, the sum of the exponentials of the largest n2 eigenvalues

of Ān is

eλ1(Ān) + · · ·+ eλn2 (Ān) = n2

∫ ∞
0

exdΨ̃(x) = n2

∫ ∞
0

e
√
n1xdΨ(x)

= n2

∫ ∞
0

e
√
n1xdΦ 1

n1
XXT (x).

Analogous to the proof of (14) we obtain

lim
n→∞

eλ1(Ān) + · · ·+ eλn2 (Ān)

=
1

πp(1− p)y

∫ √b
√
a

e
√
n1x

√(
b

x2
− 1

)(
1− a

x2

)
dx

∈

[
Ce
√
n1a

πp(1− p)y
,

Ce
√
n1b

πp(1− p)y

]
a.s. (18)
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where C =
∫ √b√

a

√(
b
x2
− 1
) (

1− a
x2

)
dx. Similarly, the sum of the exponentials of the smallest n2

eigenvalues of Ān satisfies

lim
n→∞

eλn1+1(Ān) + · · ·+ eλn(Ān)

=
1

πp(1− p)y

∫ √b
√
a

e−
√
n1x

√(
b

x2
− 1

)(
1− a

x2

)
dx

∈

[
Ce−

√
n1b

πp(1− p)y
,
Ce−

√
n1a

πp(1− p)y

]
a.s. (19)

Combining (18), (19) and the fact that λn2+1(Ān) = · · · = λn1(Ān) = 0, we complete the proof of
Proposition 3. 2

Proposition 4.

e−pn1(eO(
√
n1) +O(1)) ≤ EE(An) ≤ epn1(eO(

√
n1) +O(1)) a.s.

Proof. Since n1 ≥ n2 for large n, by the Geršhgorin circle theorem we deduce

−pn1 ≤ λn(p(Jn −Qn)) ≤ · · · ≤ λ1(p(Jn −Qn)) ≤ pn1.

In view of Lemma 3 and An = Ān + p(Jn −Qn), we get

λi(Ān) + λn(p(Jn −Qn)) ≤ λi(An) ≤ λi(Ān) + λ1(p(Jn −Qn))

for all i. Consequently, e−pn1EE(Ān) ≤ EE(An) ≤ epn1EE(Ān). It then follows from
Proposition 3 that

e−pn1(n1 − n2) + e−pn1n2

(
(e−
√
n1b + e

√
n1a)C

πp(1− p)y
+ o(1)

)

≤ EE (An) ≤ epn1(n1 − n2) + epn1n2

(
(e−
√
n1a + e

√
n1b)C

πp(1− p)y
+ o(1)

)
a.s. (20)

Note that the rate of convergence in (18) as well as (19) can be bounded by O(n−1) using the moment
approach (for instance, see Theorem 4.5.5 in [29] ) and the estimates in [26] (pp. 621–623). Hence, the
infinitesimal quantity o(1) on both sides of (20) is equivalent to O(n−1). Inserting n1 = n/(1 + y) and
n2 = yn1 into (20), we have

e−pn1(eO(
√
n1) +O(1)) ≤ EE(An) ≤ epn1(eO(

√
n1) +O(1)) a.s.

as desired. 2
With Proposition 4 in our hands, we quickly get the proof of our main result.

Proof of Theorem 1. Since n1 = O(n), the upper bound in Proposition 4 yields EE(Gn1,n2(p)) ≤
en1p(eO(

√
n) +O(1)) a.s. On the other hand, the lower bound EE(Gn1,n2(p)) ≥ en2p(eO(

√
n) + o(1)) a.s.

can be easily read out from Theorem 3.1 of [20]. 2
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We mention that it is possible that our method can be pushed further to obtain sharper bounds, for
example, a more fine-grained analysis in Proposition 2 could give better estimates for the second order
terms in the expansion for ln(EE(An)).
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