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Abstract: Many remarkably robust, rapid and spontaneous self-assembly phenomena occurring
in nature can be modeled geometrically, starting from a collection of rigid bunches of spheres.
This paper highlights the role of symmetry in sphere-based assembly processes. Since spheres
within bunches could be identical and bunches could be identical, as well, the underlying symmetry
groups could be of large order that grows with the number of participating spheres and bunches.
Thus, understanding symmetries and associated isomorphism classes of microstates that correspond
to various types of macrostates can significantly increase efficiency and accuracy, i.e., reduce the
notorious complexity of computing entropy and free energy, as well as paths and kinetics, in high
dimensional configuration spaces. In addition, a precise understanding of symmetries is crucial for
giving provable guarantees of algorithmic accuracy and efficiency, as well as accuracy vs. efficiency
trade-offs in such computations. In particular, this may aid in predicting crucial assembly-driving
interactions. This is a primarily expository paper that develops a novel, original framework for
dealing with symmetries in configuration spaces of assembling spheres, with the following goals.
(1) We give new, formal definitions of various concepts relevant to the sphere-based assembly
setting that occur in previous work and, in turn, formal definitions of their relevant symmetry
groups leading to the main theorem concerning their symmetries. These previously-developed
concepts include, for example: (i) assembly configuration spaces; (ii) stratification of assembly
configuration space into configurational regions defined by active constraint graphs; (iii) paths
through the configurational regions; and (iv) coarse assembly pathways. (2) We then demonstrate
the new symmetry concepts to compute the sizes and numbers of orbits in two example settings
appearing in previous work. (3) Finally, we give formal statements of a variety of open problems
and challenges using the new conceptual definitions.

Keywords: sphere assembly; configuration space; stratification; distance constraints; Cayley
geometry; entropy; kinetics; pathways

1. Motivation

Supramolecular assembly is prevalent in nature, healthcare and engineering, but poorly
understood. The assembly starts with identical copies of structures drawn from a small number
of types. Modeling these starting structures as rigid bunches of spheres is well suited to assembly
processes driven by so-called short-range or hard sphere interaction potentials.

More formally, an input to a computational model of an assembly process is an assembly system
consisting of the following:
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• A collection of k rigid molecular components belonging to a few types; a rigid component is
specified as the set of positions of the centers of their constituent atoms, in a local coordinate
system. In many cases, an atom could be the representation of the average position of a collection
of atoms in an amino acid residue. Note that an assembly configuration is given by the positions
and orientations of the entire set of k rigid molecular components in an assembly system, relative
to one fixed component. Since each rigid molecular component has six degrees of freedom, a
configuration is a point in 6(k− 1) dimensional Euclidean space.

• The pairwise component of the potential energy function of the assembly system is specified
as a sum of potential energy terms between pairs of constituent atoms i and j in two different
rigid components of the assembly system. The weak interaction between the rigid molecular
components is captured by this potential energy function. The pairwise potential energy terms
are, in turn, specified using pairwise potential energy functions similar to so-called Lennard–Jones
potentials and Morse potentials [1]. The potential energy is a function of the distance di,j between
i and j.

• A non-pairwise component of the potential energy function is in the form of global potential
energy terms that capture the tethers between the rigid components within a monomer, as well
as other global potential energy terms that implicitly represent the solvent (water or lipid bilayer
membrane) effect [2–4]. These are independent of particular pairs of atoms.

It is important to note that all of the above potential energy terms are functions of the assembly
configuration.

The formal conceptual framework we develop here is inspired by the following types of
prediction questions.

• Input: the 3D descriptions of the rigid molecular components and their interactions (Section 2
describes how they are formally specified). Output: prediction of the final assembly structures
and their likelihood.

• Input: as in the previous item, plus a 3D configuration of the final assembled structure.
Output: prediction of those interactions that are crucial for the assembly process to terminate
in the given input assembly configuration.

• Input: as in the previous item. Output: prediction of minimal alterations of the building blocks or
interactions that would significantly increase the likelihood of the assembly process terminating
in the given input assembly configuration.

• Input: as in the previous item; additionally, more than one choice of final assembly configuration.
Output: prediction of key events, such as specific intermediate sub-assembly configuration
choices during assembly that determine which one of the final assembly configurations is more
likely to result.

Experimentally, in vitro or vivo, these types of predictions about supramolecular assembly
processes are difficult because of the remarkable rapidity, spontaneity and robustness of assembly
processes. The prediction tasks highlight combinatorial explosion and, thus, the insufficiency of
experimentation (trying various possibilities) and guesswork, even with the help of known data on
similar assemblies and biological knowledge about evolutionarily-conserved structures. In addition,
many of the current experimental methods are labor and resource intensive, making blind alleys
expensive in time and effort.

On the other hand, computer simulations guided by theoretical first principles and standard
paradigms, such as Monte Carlo (MC) or molecular dynamics (MD), are limited due to the reasons
detailed in the next subsections.

1.1. Assembly Configurational Volume

The stability and binding affinity of subassemblies depend on free energy, whose landscape in the
case of assembly is heavily influenced by configurational entropy (volume measure of microstates
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corresponding to a macrostate; see [5]); this depends on accurate computation of configurational
volumes by sampling, attempted by a long and distinguished series of methods [5–13]. Assembly
configuration spaces are high dimensional, and the number of required samples is typically
exponential in the dimension. Sampling on a high-dimensional ambient space grid typically means
computing a large proportion of samples that lie outside any region of interest, which is effectively of
lower dimension, and these samples must be discarded. Not only are the relevant regions in the case
of short-ranged potentials of effectively lower dimension, they are also geometrically/topologically
complex; hence, grid-based sampling in Cartesian space, as well as non-ergodic methods, like MC
or MD, have to generate impractically dense sampling to accurately reflect the volume/measure
ratios of these important, relatively low volume regions having complex geometry and topology.
These methods do not exploit the abundance of symmetries of the landscape. They are used both
for assembly processes, whose feasible regions are defined by one-sided pairwise distance equalities
and inequalities between atom-centers, and folding processes, where the feasible regions are defined
by pairwise distance equalities. The difference of complexity between the two is a litmus test for the
limitations that are addressed by the Cayley configuration space approach taken by efficient atlasing
and search of assembly landscapes (EASAL) described in Section 1.5.

Conventional methods to compute the energy landscape of small clusters are based on
searching for local minima [1,14,15]. Point group symmetrization schemes [16–18] and local
rigidification schemes [19,20] have been exploited in global optimization algorithms to gain
computational efficiency.

Because of the complexity of the problem of dealing with the short range of interaction of
hard spheres leading to narrow regions of lower potential energy, separated by vast flat parts,
conventional local minima-based methods for energy landscape computation [14] are limited. These
methods have the additional disadvantage of small perturbations to energy values requiring complete
recomputation, and also, they do not deal well with the very flat landscape that is the signature of
short-range potentials.

An alternative approach for short-range potentials is to consider the “sticky sphere limit” based
on taking the limit as the range of interaction goes to zero [21–23]. In this limit, the energy landscape
reduces to a collection of manifolds of different dimensions, glued together at their boundaries
(formally, a Thom–Whitney stratification of real semi-algebraic sets), as described in theoretical
models proposed independently and separately by Holmes-Cerfon et al. [24] in 2013 and by the first
author’s research group [25,26] in 2011.

The background provided in the remainder of this section recalls previously-developed concepts
for describing assembly configuration spaces. This motivates the conceptual framework for
symmetry in assembly under short-range potentials given in Section 2.

1.2. Kinetics, Topology and Geometric Complexity

Kinetics and transition rates between subassemblies also require an explicit understanding of the
geometry, topology and multiple paths in the assembly configuration space. For cluster assemblies
from spheres, there are a number of methods [27–33] to compute the entire configuration space
of small molecules, such as cyclo-octane [34–36]. Some methods from robotics and computational
geometry [12], such as the probabilistic roadmap [37], effectively give bounds to approximate free
energy without relying on MC or MD sampling. Starting from MC and MD samples, recent
heuristic methods infer topology [38–41] and use topology to guide dimensionality reduction [42].
Yet, most prevailing methods are unable to extract the topology in a sufficiently efficient and accurate
manner as to be able to feasibly compute volume or path integrals (required for entropy or kinetics
computations), even for small assemblies. Moreover, even those prevailing methods that exploit
symmetry in the configuration space to compute free energy and kinetics do not employ a formal and
precise group-theoretic framework.
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1.3. Recursive Decomposition, Assembly Trees and Combinatorial Entropy

For larger, microscale assemblies, a direct study of the free energy and configurational entropy
is computationally emphatically intractable. At these coarser scales, the primitives are stable
subassemblies and transition rates (obtained from the computational tasks of the previous two
subsections). Still, the combinatorial entropy of multiple pathways makes it difficult to isolate crucial
combinations of assembly-driving interface interactions.

This issue has been addressed by the first author’s previous work on recursive
decompositions [43–45] of larger assemblies into smaller subassemblies. This work introduces
structures called assembly trees and the notion of combinatorial entropy, applied to model viral
capsid assembly in [46].

While trees of various types have been used to model various processes related to
assembly [47,48], to the best of our knowledge, the assembly trees from [46] have a formal structure
that is distinct from other tree representations of assembly pathways. In particular, non-root
nodes of the assembly tree contain subassemblies, rather than configurations of the entire assembly
system; and any pair of nodes that are incomparable (neither ancestor or child in the tree) is a
disjoint sub-assembly, i.e, they do not contain any common rigid components; moreover, only rigid
sub-assembly configurations are represented. In addition, the authors have taken the first steps
towards precisely formalizing the effect of symmetries on a highly simplified version of assembly
trees; specifically, their orbits under the action of a fixed group of symmetries, called assembly
pathways [49]. These concepts will be discussed in detail in Sections 2 and 3.

1.4. Symmetry in Chemistry

Since spheres within rigid bunches of an assembly system could be identical and bunches
could be identical, as well, the underlying symmetry groups could be of large order, which
grow with the number of participating spheres and bunches. Therefore, all of the tasks in the
previous three subsections can be significantly simplified by taking advantage of natural symmetries
of the configuration space that arise due to identical assembling units, their symmetries and
symmetries of the final assembled structure. However, none of the prevailing methods discussed
above computationally incorporates these symmetries. Group theory has been used to study the
symmetry of molecules and molecular orbits [50–53] for a long time. The well-known Pólya
enumeration theorem [54], which provides a method to find the number of orbits of a group
action, is motivated by the problem of enumerating permutational isomers of a given molecular
skeleton. Group theory is widely used in crystallography to describe crystallographic symmetry and
to classify crystal structures [55,56]. Other applications include using the molecule symmetry group
in studying molecular spectroscopy [57] and using generating functions in understanding nuclear
spin statistics of nonrigid molecules [58]. However, most of these works only involve the symmetry
of individual structures. The literature is sparse in the context of symmetry in assembly systems or in
configuration spaces.

1.5. EASAL: Efficient Atlasing and Search of Assembly Landscapes

A recent method of the first author, EASAL (efficient atlasing and search of assembly
landscapes) [25,26], formally addresses the issues highlighted in the first two subsections
above: computation of configurational entropy and kinetics, via geometrization, stratification and
convexification using Cayley parameterization of assembly configuration spaces. Geometrization
and stratification were also used later in [24] independently (as mentioned at the end of Section 1.1):
the geometrization is achieved in [24] via a somewhat different process consistent with smooth
potential energy functions, while the stratification is the standard Thom–Whitney stratification of
semi-algebraic sets as laid out in [25,26].
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On the other hand, Cayley convexification based on [59] is a unique feature of EASAL not
present in [24], which makes it tractable to sample and compute entropy integrals over higher
dimensional constant potential energy regions of the assembly configuration space. In addition,
Cayley convexification helps formalize and precisely explain the intuitively clear observation that
assembly configuration spaces are significantly simpler geometrically and topologically than folding
configuration spaces. The difference in complexity is especially stark when there are cycles of
pairwise constraints between atom centers.

We describe the geometrization and stratification aspects of EASAL’s approach below.
Stratification is explained in further detail in Section 2, and Cayley parameters for configuration
spaces and convexification based on [59] are explained in Section 4.

1.5.1. Geometrization

The assembly configuration space is represented as a semi-algebraic set satisfying geometric
constraints specified as distance inequalities between atom centers. The short-range or hard sphere
potential interaction is typically discretized to take different constant values on three intervals for
the distance value di,j: (0, ri,j), (ri,j, ri,j + δi,j) and (ri,j + δi,j, ∞). Typically, ri,j, the so-called van der
Waals or steric radius, specifies “forbidden” regions around atoms i and j. Additionally, ri,j + δi,j
is a distance where the attractive (electrostatic or other weak) forces between the two atoms are no
longer strong (typically, these forces decay as the reciprocal of some power of the distance di,j between
atom centers). Intuitively, the interval (0, ri,j) is where the repulsive force highly dominates, and
(ri,j, ri,j + δi,j) is where the attractive force and repulsive forces are balanced; also, (ri,j + δi,j, ∞) is
where neither force is strong. Over these three intervals, respectively, the potential assumes a very
high value, a very low value and a medium value mi,j. All of these bounds for the intervals for di,j, as
well as the values for the potential on these intervals are specified as part of the input to the assembly
model. These constants are specified for each pair of atoms i and j, i.e., the subscripts are necessary.
The interval with the low value is called the well. The hard sphere potentials are defined solely by
the van der Waals’ forbidden distance constraint, δi,j = 0.

The information in the potential energy landscape can thus be geometrized, i.e., represented
using assembly constraints, in the form of distance intervals. These constraints define feasible
configurations. The set of feasible configurations is called the assembly configuration space.
The active constraint regions of the configuration space are regions where at least one of the
short-range inter-atom distances lies in the potential energy well, i.e., the interval (ri,j, ri,j + δi,j).

1.5.2. Stratification

The above geometrization of an assembly configuration space makes it natural to stratify an
assembly configuration space into an atlas of active constraint regions. More details are provided
in Section 2.4. The active constraint regions of the configuration space are regions where at least
one of the inter-atom distances lies in the potential energy well. The active constraint regions are
stratified by dimension into a topological Thom–Whitney complex, with the boundary region being
one dimension smaller. The active constraint regions can be modeled as so-called convexifiable
Cayley configuration spaces [59], a combinatorially-definable concept by first labeling each region
by its unique active constraint graph (see Section 2). A demo movie of EASAL is available at [60].
Standard algorithms can be employed for a fast computation of paths from one configuration to
another in the atlas. However, the computation of entropy integrals over these paths poses several
challenges.

1.6. Organization and Contribution

This is a primarily expository paper that develops a novel, original framework for dealing
with symmetries in configuration spaces of assembling spheres under short-range potentials.
It is motivated by a longer term goal to exploit natural symmetries using assembly trees and other
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concepts described in the previous sections that have appeared in various avatars in the community,
including our work on EASAL. Such an understanding of symmetries is essential for significantly
reducing the complexity of the computation of configurational and combinatorial entropy, as well as
kinetics, since spheres within rigid bunches of an assembly system could be identical and bunches
could be identical, as well, giving underlying symmetry groups of large order, which grow with the
number of participating spheres and bunches.

To this end, we develop a formal conceptual framework for assembly under short-range
potentials, as an assembly of rigid bunches of spheres. As different definitions of assembly
macrostates are appropriate in different contexts, for example depending on whether different
copies of identical atoms or molecules are considered interchangeable or not, we carefully define
and differentiate between the congruence and isomorphism of configurations. We then show how
symmetries of assembly configuration spaces arise due to: multiple copies of identical building
blocks (in particular, when these building blocks are rigid bunches of spheres), internal symmetries
of building blocks and the symmetries of the final assembled structure.

The organization of this paper is as follows. In Section 2, we define the new conceptual
framework for symmetry in assembly under short-range potentials (or an assembly of rigid bunches
of spheres) leading to the main Theorem 4. An application of some of these results on symmetry
can be found in [26]. In Section 3, we illustrate one aspect of our approach [49] for computing
combinatorial entropy using generating functions for counting the number and size of simplified
assembly pathways (orbits of a symmetry group action on assembly trees). Note that while this
simple example has a fixed group size, the method demonstrated applies also when the underlying
symmetry group grows with the size of the system. In Section 4, open questions and directions
are given.

2. Framework for Symmetry in an Assembly

In this section, we define natural groups of symmetries acting on various previously-defined
objects related to symmetry that are described in Section 1 and later in this section. The four
new groups we defined are the weak automorphism group, the strict congruence group, the strict
order preserving isomorphism group and the strict permuted congruence group of an assembly
configuration. We consider the action of these groups on various objects defined in previous literature
on assembly and sketched in Section 1 [25,26,46], such as assembly configuration space, active
constraint regions, active constraint graphs, assembly paths and trees. These resulting symmetry
classes will be used to formalize the main new Theorem 4 and two applications in Example 1 and
Section 3, as well as open problems in the last section of this paper.

Let X be a set under the action of a group G, and x be any element of X. The orbit of x under
G is the set G(x) = {φ(x) : φ ∈ G}. An element g of G fixes x if g(x) = x. The stabilizer subgroup
stabG(x) of x in G is the group of all elements in G that fix x, i.e., stabG(x) = {φ ∈ G|φ(x) = x}.

The following theorem from standard group theory can be used to determine the number of
orbits and the size of orbits for various objects defined in this section. An explicit application of this
theorem is shown in the next section.

Theorem 1. Let X be a set under the action of a group G. For all x ∈ X, the equalities:

|G(x)| = |G|/|stabG(x)| (Orbit–Stabilizer theorem)

and

|X/G| = 1
|G| ∑

φ∈G
|Xφ| (Burnside’s lemma)

hold, where |X/G| is the number of orbits of X and Xφ is the set {x ∈ X : φ(x) = (x)}.
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Different definitions of macrostates are appropriate in different contexts, for example depending
on whether different copies of identical atoms or molecules are considered interchangeable or not.
For this reason, we carefully define and differentiate between the congruence and isomorphism
of configurations.

In order to give a physically meaningful formalization of an assembly system under short-range
potentials, we define the notion of a bunch, i.e., a rigid configuration of spheres of varying colors
and radii.

2.1. A Bunch and Its Symmetries

Let SE(3) denote the group of orientation-preserving isometries of R3.
A bunch is a tuple (P; C, r, δ) where P = (p1, p2, . . . , pn) is an ordered set of points in R3, and

C, r, δ are functions defining colored spheres centered at the points in P. Specifically, C : P → C
where C is a finite set of “colors”, and r, δ : P → R+, such that the spheres are non-intersecting, i.e.,
‖pi− pj‖2 ≥ r(pi) + r(pj) for any i 6= j. The map δ is interpreted as the width of the annulus specified
by the potential energy well and is used in the definition of an active constraint graph of an assembly
configuration later in this section. For a bunch B, P(B) is used to denote the point set B; similarly, we
have C(B), r(B) and δ(B).

Two bunches B = (P; C, r, δ) and B′ = (P′; C ′, r′, δ′) are isomorphic if there is an element φ of
SE(3) and a permutation π ∈ Sn, such that φ(pi) = p′

π(i) for all i, where n = |P|, and φ preserves the
color, radius and annulus of points. In this case, with a slight abuse of notation, we write B′ ∈ φ(B),
where φ(B) denotes the set of bunches that are isomorphic to B under φ and some permutation in Sn.
See Figure 1 for an example.

Two bunches B = (P; C, r, δ) and B′ = (P′; C ′, r′, δ′) are strictly isomorphic, if there is a
permutation π ∈ Sn such that B and B′ are isomorphic under π and the identity element in SE(3).
The weak automorphism group of B, denoted Waut(B), is the group of all permutations π ∈ Sn that
take B to a strictly isomorphic B′.

B1 B2

1

3

2

4 3

5

3 4

1

5

2

Figure 1. Two isomorphic bunches of five spheres.

Two bunches B = (P; C, r, δ) and B′ = (P′; C ′, r′, δ′) are order-preserving isomorphic or
congruent, if there is a φ ∈ SE(3), such that B and B′ are isomorphic under φ and the identity
permutation. In this case, with a slight abuse of notation, we write B′ = φ(B).

We have the following observation that describes strict isomorphism using the notion
of congruence.

Observation 2. Two congruent bunches B and B′ are strictly isomorphic, if and only if P̃ = P̃′, where P̃ and
P̃′ denote the unordered point sets of B and B′, respectively, and for all p ∈ P′, C ′(p) = C(p), r′(p) = r(p),
δ′(p) = δ(p).
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2.2. An Assembly Configuration Space and Its Symmetries

An assembly configuration is an ordered set B = (B1, B2 . . . Bk), where Bi = (Pi; Ci, ri, δi) is a
bunch for all i, such that for all i, j and all x ∈ Pi, y ∈ Pj, x 6= y, we have:

‖x− y‖2 ≥ ri(x) + rj(y) (1)

Two assembly configurations B = (B1, . . . , Bk) and B′ = (B′1, . . . , B′k) are configurations of the
same assembly system (see Section 1) if Bi is congruent to B′

σ(i) for some permutation σ ∈ Sk, for all i.
Notice that the congruence between bunches could be different for each i. The set of all assembly
configurations of an assembly system is called an assembly configuration space. The assembly
configuration space containing the assembly configuration B is denoted A(B) or simply A when
the context is clear.

In the following discussion, we always restrict our universe to assembly configurations in the
same assembly configuration space.

Two assembly configurations B = (B1, . . . , Bk) and B′ = (B′1, . . . , B′k) are isomorphic if there is
an element φ of SE(3) (isomorphism between bunches) and a permutation σ ∈ Sk, such that for all i,
B′

σ(i) is isomorphic to Bi under φ and a permutation πi ∈ Sni , where ni = |Pi|.
Two assembly configurations B and B′ are strictly isomorphic, if there is a permutation σ ∈ Sk,

such that for all i, B′
σ(i) is isomorphic to Bi under the identity element in SE(3) and a permutation

πi ∈ Sni , where ni = |Pi|. Thus, a strict isomorphism is a tuple of permutations (σ, π1, . . . , πk),
where σ ∈ Sk and πi ∈ Sni . The weak automorphism group of B, denoted Waut(B), is the group
of all such tuples (σ, π1, . . . , πk) that take B to a strictly isomorphic B′, with the group operation
(σ, π1, . . . , πk)(σ

′, π′1, . . . , π′k) = (σσ′, π1π′1, . . . , πkπ′k).
Note that all assembly configurations in the same assembly configuration space A have the

same weak automorphism group. Thus, we define the weak automorphism group of an assembly
configuration space A, denoted WautA, to be the weak automorphism group of any assembly
configuration B in A.

Two assembly configurations B and B′ are congruent if there is an isomorphism φ ∈ SE(3) that
preserves both the order of the bunches and the order of points within each bunch, i.e., for all i, B′i
is congruent to Bi under φ. Two assembly configurations B and B′ are strictly congruent if they
are both congruent and strictly isomorphic. In general, we think of two strict congruent assembly
configurations as the same. The strict congruence group of an assembly configuration B is the
stabilizer of the set strictly congruent assembly configurations of B under WautA. It is the stabilizer
subgroup stabWautAB of the assembly configuration B under WautA.

Two assembly configurations B and B′ are order-preserving isomorphic if there is an
isomorphism φ ∈ SE(3) that preserves the order of the bunches, i.e., for all i, B′i is congruent to
φ(Bi). Two assembly configurations B and B′ are strictly order preserving isomorphic if they are
both order-preserving isomorphic and strictly isomorphic. The strict order-preserving isomorphism
group of an assembly configuration B is the stabilizer of the set of strictly order-preserving
isomorphic configurations of B under WautA.

Two assembly configurations B and B′ are permuted congruent if there is an isomorphism that
preserves the order of points within each bunch, i.e., there is an element φ of SE(3) and a permutation
σ ∈ Sk, such that for all i, B′

σ(i) is congruent to Bi under φ. Two assembly configurations B and B′ are
strictly permuted congruent if they are both permuted congruent and strictly isomorphic. The strict
permuted congruence group of an assembly configuration B is the stabilizer of the set of permuted
congruent configurations of B under WautA.

For an example, refer to Figure 2. The assembly configuration B1 consists of three congruent
bunches. The assembly configuration B2 is obtained from B1 with a strict congruence (σ, π1, π2, π3)

induced by a rotation in SE(3), where σ = (1 3), and πi = id for all i. The assembly configuration B3

is obtained from B1 with a strict permuted congruence (σ, π1, π2, π3), where σ is a cyclic permutation
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of the three bunches, and πi = id for all i. On the other hand, B4 is obtained from B1 with a strict
isomorphism (σ, π1, π2, π3), where σ is a cyclic permutation of the three bunches, π1 = (1 2) and
π2 = π3 = id.
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Figure 2. The assembly configuration B1 consists of three isomorphic bunches. B2 is obtained from
B1 with a strict congruence; B3 is obtained from B1 with a strict permuted congruence; and B4 is
obtained from B1 with a strict isomorphism that is neither a strict congruence, nor a strict permuted
congruence, nor a strict order preserving isomorphism.

Figure 3 shows another example of four assembly configurations each containing two bunches.
The strict congruence group stabWautAB of the assembly configuration B1 is of size two and contains
those tuples (σ, π1, π2), where π1 ∈ {id, (2 4)}, σ = id, π2 = id. The weak automorphism
group WautA of the assembly system is of size four and contains those tuples (σ, π1, π2),
where π1 ∈ {id, (2 4), (3 1), (2 4)(3 1)}, σ = id, π2 = id. All four strictly isomorphic assembly
configurations are obtained by applying WautA to the assembly configuration B1. Notice that B2 and
B1 (B4 and B3) are strictly congruent, while B3 and B1 are strictly order-preserving isomorphic. The
orbit of B1 under WautA is of size two and consists of B1 and B3.

B1

1

3

24

1

2 B2

1

3

42

1

2 B3

3

1

24

1

2 B4

3

1

42

1

2

1

2

1

2

1

2

1

2

Figure 3. Four assembly configurations obtained by applying WautA on the assembly configuration
B1. B2 is obtained from B1 with a congruence, while B3 is obtained from B1 with a strict
order-preserving isomorphism.

We have the following observations for alternative characterizations of strict congruence, strict
order-preserving isomorphism and strict permuted congruence of assembly configurations.

Observation 3. Given two assembly configurations B = (B1, . . . , Bk) and B′ = (B′1, . . . , B′k) in the same
assembly configuration space,

1. B and B′ are strictly congruent if and only if they are congruent, and

(*) B andB′ have the same unordered partition of the unordered point set into bunches, i.e., {P̃1, . . . , P̃k} =
{P̃′1, . . . , P̃′k}, where P̃i is the unordered point set of the bunch Bi, and each point has the same color,
radius and annulus in B and B′.
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2. B and B′ are strictly order-preserving isomorphic if and only if they are order preserving isomorphic and
satisfy the condition (*).

3. B and B′ are strictly permuted congruent if and only if they are permuted congruent and satisfy the
condition (*).

2.3. Symmetries in an Active Constraint Graph and an Active Constraint Region

An active constraint graph G(B) of an assembly configuration B = (B1, . . . , Bk) is a graph
(V, E), where the vertex set V has one vertex for each point p ∈ P1 ∪ . . . ∪ Pk, labeled by a tuple
(i, l), representing that the point p appears as the i-th point pi in the l-th bunch Bl of B, and a vertex
pair {x, y} ∈ E if x and y lie in distinct bunches of B and:

r(x) + r(y) ≤ ‖x− y‖2 ≤ (r(x) + δ(x)) + (r(y) + δ(y)).

An element (σ, π1, . . . , πk) of the weak automorphism group WautA of B’s assembly
configuration space A acts on G(B) by taking the tuple (i, l) to (πl(i), σ(l)).

Two active constraint graphs G1, G2 are isomorphic if there is a ψ = (σ, π1, . . . , πk) ∈ WautA,
such that {x, y} ∈ E(G1)⇐⇒ {ψ(x), ψ(y)} ∈ E(G2). In this case, we say G1

∼=ψ G2 or ψ(G1) = G2.
The automorphism group of an active constraint graph G is the group of elements ψ ∈ WautA,

such that ψ(G) = G, i.e., it is the stabilizer subgroup stabWautAG.
For example, Figure 4 shows all of the non-isomorphic active constraint graphs with 12 edges of

an assembly system consisting of six bunches, where all bunches are identical singleton spheres.

0
1

2

3

4

5

e12g0

0

1

2

3
4

5

e12g1

0

1

2

3
4

5

e12g2

0

1
2

3

4

5

e12g3

0

1

2

3

4

5

e12g4

Figure 4. All non-isomorphic active constraint graphs with 12 edges of an assembly system of six
bunches that are identical singleton spheres. The label on top is automatically generated by EASAL
and specifies the orbit number of the shown active constraint graph.

Note: It is clear that stabWautAB ⊆ stabWautAG(B). Moreover, there are assembly configurations B,
such that stabWautAB ( stabWautAG(B), i.e., the strict congruence group of B does not have all of the
automorphisms of the corresponding active constraint graph. Refer to the assembly configuration B
and its active constraint graph G in Figure 5, where each bunch is a singleton sphere. The permutation
σ = (1 2 3) ∈ WautA is contained in stabWautA(G). However, it is not contained in the strict congruence
group stabWautAB of the assembly configuration.

4

65

2

1

3

12

3

4

5 6

Figure 5. An assembly configuration whose automorphism group is strictly contained in that of the
corresponding active constraint graph. Here, the bunches are singleton spheres, and bunches of the
same color have the same C, r and δ.

The full graph G∗ of an active constraint graph G is obtained by adding edges to G to make the
set of vertices in each bunch into a clique.
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An active constraint region RG of the assembly configuration space A contains all assembly
configurations B with the active constraint graph G(B) = G. The action of elements of WautA on an
active constraint region and the stabilizer of an active constraint region in WautA are well-defined by
the action of WautA on assembly configurations.

The following theorem gives containment and equality relations between stabilizer subgroups
of an active constraint graph, an active constraint region and individual configurations in the active
constraint region.

Theorem 4. For an active constraint graph G = G(B) of an assembly configuration space A, it holds that:

stabWautAB ⊆ stabWautAG = stabWautARG

In addition, there exist active constraint graphs G of assembly configuration spaces A where the above
containment is strict, i.e.,

for all B such that G = G(B), stabWautAB ( stabWautAG = stabWautARG

Proof. (1) It is straightforward to see that stabWautAB ⊆ stabWautAG(B). We give an example to show
the existence of G where stabWautAB ( stabWautAG for any assembly configuration B of G. Refer to
the assembly configuration in Figure 6, where each bunch is a singleton sphere. The permutation
σ = (1 2 3) is contained in the automorphism group stabWautAG of the active constraint graph
G. However, it is not contained in the strict congruence group of any corresponding assembly
configuration, as the position of the sphere six is asymmetric with respect to 1, 2, 3 in any assembly
configuration of G. Thus, stabWautAB ( stabWautAG for any assembly configuration B of G.

5

1

4

2

6

1

2

3

4

5

6
3

Figure 6. Any assembly configuration corresponding to the active constraint graph G has its strict
congruence group strictly contained in stabWautAG. Here, the bunches are singleton spheres, and
bunches of the same color have the same C, r and δ.

(2) stabWautAG = stabWautARG: from the definition of permutations in the weak automorphism
group of the assembly configuration space, it follows that stabWautAG ⊆ stabWautARG. To show
stabWautARG ⊆ stabWautA), consider any element ψ ∈ stabWautARG. For any assembly configuration
B ∈ RG, if a pair of spheres (x, y) are “touching” (i.e., they yield an edge in the corresponding
active constraint graph), it must be the case that (ψ(x), ψ(y)) are also “touching” in ψ(B), since
G(B) = G(ψ(B)) = G. Similarly, ψ must map “non-touching” pairs to “non-touching” pairs.
Therefore, ψ ∈ stabWautAG.

Remark 1. We expect the strict order-preserving isomorphism group and the strict permuted congruence
group of an assembly configuration B to lie between the strict congruence group stabWautAB and the
automorphism group stabWautAG of its active constraint graph. However, the containment relationship between
these two groups is not clear.
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2.4. Symmetries in Stratification, Assembly Path and Pathway

A stratification S(A) of the assembly configuration spaceA is a partition of the space into strata
Xi ofA that form a filtration ∅ ⊂ X0 ⊂ X1 ⊂ . . . ⊂ Xm = A, m = 6(n− 1). EachXi is a union of active
constraint regions RG, where the corresponding active constraint graph G has m − i independent
edges, i.e., m − i inequality constraints are active. Each active constraint graph G is itself part of at
least one, and possibly many, hence, l-indexed, nested chains of the form ∅ ⊂ Gl

0 ⊂ Gl
1 ⊂ . . . ⊂

Gl
m−i = G ⊂ . . . ⊂ Gl

m.
These induce corresponding reverse nested chains of active constraint regions RGl

j
: ∅ ⊂ RGl

m
⊂

RGl
m−1
⊂ . . . ⊂ RGl

m−i
= RG ⊂ . . . RGl

0
. Note that here, for all l, j, RGl

m−j
⊆ Xj is closed and j

dimensional. See Figure 7 for an example of assembly configuration space stratification.
Given two active constraint graphs Gi and Gj, RGi (resp. Gi) is a parent of RGj (resp. Gj) (resp.

RGj is a child of RGi ) if Gi ( Gj, and there does not exist an active constraint graph Gm, such that
Gi ( Gm ( Gj. The parent-child relation provides a Hasse diagram of active constraint regions in the
stratification of A.

Figure 7. A fundamental region of the stratification for the assembly configuration space of the
assembly configurations in Figure 4 of six bunches, with each bunch being a singleton sphere
and all bunches identical. Therefore, WautA is the complete symmetric group of the permutations
of six elements, S6. Each node shown is an orbit representative of an active constraint region
corresponding to an active constraint graph. The grey part is those active constraint graphs (orbit
representatives) whose corresponding constraint regions are empty. The example active constraint
graph representatives on the right have arrows pointing to their regions in the stratification. The
labels in the circles are unimportant: they are automatically generated and specify an orbit of an
active constraint graph (example shown on the right).

An assembly path from G1 to Gm in the stratification is a sequence G1 ( G2 ( G3 ( . . . ( Gm

where Gi+1 is a child of Gi for all 1 ≤ i ≤ m. A coarse assembly path from G1 to Gm in the stratification
is a sequence G1 ( G2 ( G3 ( . . . ( Gm where G∗i+1 has exactly one new rigid component S not in
G∗i , with S containing a set of two or more rigid components S1 . . . Sm of Gi. In addition, for all proper
subsets Q ( {S1 . . . Sm} with |Q| ≥ 2, the subgraphs of G∗i+1 induced by Q are not rigid (The rigid
components of a graph are the maximal rigid subgraphs. Two rigid components cannot intersect on
more than two vertices. We refer the reader to combinatorial rigidity concepts in [61]).
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For example, In Figure 7, the sequence of active constraint graphs on the right form an
assembly path.

An assembly forest corresponding to a coarse assembly path from G1 to Gm is the unique forest
where the leaves are the maximal rigid components of G∗1 . The internal nodes are the new rigid
components S occurring in some G∗i+1 in the path. The children of S are the set of rigid components
S1 . . . Sm contained in S that occur in G∗i . The roots of the forest are the rigid components of G∗m.
An assembly tree is an assembly forest with only one root. See Section 3 for examples of assembly
trees [46,49,62].

A full (coarse) assembly path is an (coarse) assembly path from G1 to Gm, where G1 is the
empty active constraint graph, and G∗m is a rigid active constraint graph. A (coarse) assembly path
from primitives has the first property of the full assembly path, i.e., G1 is the empty active constraint
graph, but not the last property, i.e., Gm can be any active constraint graph. The full assembly tree
and assembly tree from primitives are also defined in this way.

A path between full active constraint graphs G and H where G * H and H * G is a sequence
G = Gi, Gi+1, Gi+2, . . . , Gi+m = H, where any pair Gi+k and Gi+k+1 is on some assembly path, and
Gi+k ( Gi+k+1 if k is even, Gi+k ) Gi+k+1 if k is odd.

The fundamental domain of the stratification S(A) is the minimal sub-stratification S̃(A),
such that

⋃
π∈WautA π(S̃(A)) = S(A), where π acts on S̃(A) via its action on the active constraint

regions (resp. active constraint graphs) of S̃(A). In other words the active constraint regions (resp.
active constraint graphs) in S̃(A) are orbit representatives of active constraint regions (resp. active
constraint graphs) under WautA.

An assembly pathway is an orbit of an assembly tree under WautA. The definition extends to
full and coarse assembly trees.

2.5. Example Illustrating the above Symmetries

Some of the symmetry concepts defined here were used in [26] to efficiently compute path and
higher dimensional region intervals in sphere-based assembly configuration spaces more efficiently
reproducing and extending the results in [24]. We give a brief description here in the form of an
example:

Example 1. As an example, Figure 7 shows the Hasse diagram of the fundamental region of a
stratification of an assembly system of six bunches that are identical singleton spheres considered
first in [24]. Figure 8 shows an (orbit representative of an) active constraint graph of the system
together with its parents and children in the Hasse diagram.

e11g3

e12g1 e12g2 e12g3

e10g10e10g8e10g6 e10g7 e10g4 e10g2 e10g3 e10g1

0

1

2

3

4

5

0

1

2

3
4

5

0

1

2

3
4

5

0

1
2

3

4

5

0

1
2

3

4

5

0
1 2

3

4

5

...

Figure 8. The neighbors of one active constraint graph in the Hasse diagram of the stratification for
the assembly system in Figure 4.
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In addition, orbit representatives of paths help with improving the efficiency of path integrals. In
Figure 7, any path that goes down from the top of the diagram to the bottom is the orbit representative
of an assembly path. In Figure 8, the sequence e10q6 ( e11g3 ( e12g2 is the orbit representative of
an assembly path, but not a coarse assembly path, as none of e11g3’s rigid components contains two
or more rigid components of e10g6. On the other hand, the sequence e10q6 ( e12g2 is the orbit
representative of a coarse assembly path.

3. Enumerating Simple Assembly Pathways

In this section, we consider the action of the strict congruence group of a single final
configuration on its assembly trees and use generating functions to count the number and sizes
of simplified assembly pathways [49]. Note that our approach could potentially be applied for all
other groups defined in Section 2, the largest of which is the weak automorphism group of the
final configuration, which would be the same as the weak automorphism group of the assembly
configuration space.

A simple assembly is modeled by a rooted tree; the leaves are abstract representation of
individual bunches, the root representing the final assembled configuration. The internal vertices
represent intermediate stages of assembly, simplified to be subsets instead of subgraphs of the root.
This simplification results in a loss of information about the assembly configuration space and active
constraint graphs of the intermediate stages of assembly. To compensate, the group is taken to be
the automorphism group G of the graph of the assembled structure at the root instead of the weak
automorphism group WautA of the assembly configuration space.

The definitions of assembly trees and pathways are simplified as follows. Given a finite group
G acting on a finite set X, we will define a simplified assembly pathway for the pair (G, X). First,
a simplified assembly tree is a rooted tree for which each internal vertex has at least two children
and whose leaves are bijectively labeled with elements of a set X. There is an induced labeling on all
of the vertices of a simplified assembly tree by labeling a vertex v by the set of labels on the leaves
that are descendents of v. We identify each vertex of a simplified assembly tree with its label. Two
simplified assembly trees are considered identical if there is a root-preserving, adjacency-preserving
and label-preserving bijection between their vertex sets. The 26 simplified assembly trees with four
leaves, labeled in the set X = {1, 2, 3, 4}, are shown in Figure 9.

For a simplified assembly tree τ, the action of G on X induces a natural action of G on the power
set of X and, thereby, on the set of vertices of τ. Let TX denote the set of all simplified assembly trees
for X. If g ∈ G, then define the tree g(τ) as the unique simplified assembly tree whose set of vertex
labels (including the labels of internal vertices) is {g(v) : v ∈ τ}. Thus, we have an induced action
of G on TX . Each orbit of this action of G on TX consists of a set of simplified assembly trees called a
simplified assembly pathway for (G, X).

Example 2. (Klein 4-group acting on T4) Consider the Klein 4-group G = Z2 ⊕Z2 acting on the set
X = {1, 2, 3, 4}. Writing G as a group of permutations in cycle notation, this action is:

G = {(1)(2)(3)(4), (1 2)(3 4), (1 3)(2 4), (1 4)(2 3)}.

For this example, there are exactly 11 simplified assembly pathways, which are indicated in
Figure 9 by boxes around the orbits. There are four simplified assembly pathways of size one, i.e.,
with one simplified assembly tree in the orbit, three simplified assembly pathways of size two and
four simplified assembly pathways of size four.

For any subgroup H of G, let tX(H) denote the number of trees in TX that are fixed by every
element of H. Furthermore, let t(H) := tX(H) denote the number of trees in TX that are fixed by
every element of H, but by no other elements of G. In other words,

tX(H) = |{τ ∈ TX | stabG(τ) = H}|. (2)
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Figure 9. Klein 4-group acting on T4. See Example 3.

The first theorem below reduces the enumeration of simplified assembly pathways to the
calculation of t(H) for subgroups H of G. The index of a subgroup H in G, i.e., the number of left
(equivalently, right), cosets of H in G is denoted by (G : H). By Lagrange’s theorem, this index equals
|G|/|H|. The second theorem below reduces the calculation of t(H) to the calculation of t(H). The
desired quantities tX(H) are computed from the numbers tX(H) using Möbius inversion on the lattice
of subgroups of G.

Theorem 5. The number of trees in any simplified assembly pathway for (G, X) divides |G|. If m divides |G|,
then the number N(m) of simplified assembly pathways of cardinality m is:

N(m) =
1
m ∑

H≤G : (G:H)=m
t(H).

Theorem 6. Let G be a group acting on a set X. If H is a subgroup of G, then:

tX(H) = ∑
H≤K≤G

µ(H, K) tX(K),
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where µ is the Möbius function for the lattice of subgroups of G.

Example 3. (Klein 4-group acting on T4, continued) Theorem 5, applied to our previous example of
Z2 ⊕Z2 acting simply on {1, 2, 3, 4}, states that the size of a simplified assembly pathway must be 1,
2 or 4, since it must be a divisor of 4 = |Z2 ⊕Z2|. To find the number of pathways of each size, note
that G has three subgroups of order two, namely

K1 = { (1)(2)(3)(4), (1 2)(3 4) },
K2 = { (1)(2)(3)(4), (1 3)(2 4) },
K3 = { (1)(2)(3)(4), (1 4)(2 3) },

and that:
t(G) = 4,

t(K1) = t(K2) = t(K3) = 2,

t(K0) = 16,

where K0 denotes the trivial subgroup of order one. The simplified assembly trees in TX that are fixed
by all elements of G are shown in Figure 9, A, B, C, D. For i = 1, 2, 3, those simplified assembly trees
in TX that are fixed by all elements of Ki and by no other elements of G are shown in Figure 9, E, F, G,
respectively. The remaining 16 simplified assembly trees in Figure 9 are fixed by no elements of G,
except the identity. Therefore, according to Theorem 5, the number of pathways of sizes 1, 2 and 4
are, respectively,

t(G) = 4,
1
2
(

t(K1) + t(K2) + t(K3)
)
=

1
2
(2 + 2 + 2) = 3,

1
4

t(K0) = 4.

The problem of enumerating simplified assembly pathways is reduced, using Theorems 5 and 6,
to calculating the number t(G) of simplified assembly trees fixed by a given group G. This is done
using permutation group theory and generating functions. It will be assumed, as is the case in many
of the biological applications, that G acts freely on X, i.e., if g(x) = x for some x ∈ X, then g must be
the identity. In this case:

|X| := |Xn| = n · |G|,

where n is the number of G-orbits in its action on X. Denote by tn(G) the number of trees in Tn := TXn

that are fixed by G. We define the exponential generating function:

fG(x) := ∑
n≥1

tn(G)
xn

n!

for the sequence {tn(G)}.
If G is the trivial group of order one, then let us denote this generating function simply by f (x).

This is the generating function for the total number of rooted, labeled trees with n leaves in which
every non-leaf vertex has at least two children. For H ≤ G, let:

f̂H(x) =
1

(G : H)
fH ((G : H)x) .

Theorem 7. The generating function fG(x) satisfies the following functional equations:

1− x + 2 f (x) = exp ( f (x)),
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and for |G| > 1,

1 + 2 fG(x) = exp

(
∑

H≤G
f̂H(x)

)
.

Although proofs are omitted in this survey, the rather involved proof of Theorem 7 relies on, in
addition to generating function techniques, a characterization of block systems arising from a group
acting on a set and a recursive procedure for constructing all trees in TX that are fixed by G (see [49],
Theorems 9 and 14).

Remark 2. Finding the generating function fG(x) depends on first finding the generating functions fH(x)
for proper subgroups H of G. In that sense, the procedure for finding fG(x) is recursive, proceeding up the
lattice of subgroups of G, starting from the trivial subgroup.

It is also worth mentioning that subgroups that are conjugate in G have the same generating function.

Example 4. (Klein 4-group acting on T4, continued)
Consider G = Z2 ⊕Z2 acting on Xn. Recall that |Xn| = 4n, the integer n being the number of

G-orbits. Recall that the subgroups of G are K0, K1, K2, K3, G, where K0 is the trivial group and:

K1 = { (1)(2)(3)(4), (1 2)(3 4) },
K2 = { (1)(2)(3)(4), (1 3)(2 4) },
K3 = { (1)(2)(3)(4), (1 4)(2 3) }.

The functional equations in the statement of Theorem 7 are:

1− x + 2 f (x) = exp ( f (x))

1 + 2 fKi (x) = exp
(

1
2

f (2x) + fKi (x)
)

for i = 1, 2, 3, and

1 + 2 fG(x) = exp
(

1
4

f (4x) +
1
2

fK1(2x) +
1
2

fK2(2x) +
1
2

fK3(2x) + fG(x)
)

.

Using these equations and MAPLE software, the coefficients of the respective generating
functions provide the following first few values for the number of fixed simplified assembly trees.
For the first entry t1(G) = 4 for the group G, the four fixed trees are shown in Figure 9A–D. For trees
with eight leaves, there are t2(G) = 104 simplified assembly trees fixed by G = Z2 ⊕Z2, and so on.

tn(K0) : 1, 1, 4, 26, 236, 2752

tn(Ki) : 1, 6, 72, 1312, 32128, 989696

tn(G) : 4, 104, 4896, 341120, 31945728, 3790876672.

Example 5. (The icosahedral group acting on a viral capsid)

A symmetry of a polyhedron is a transformation in SE(3) that keeps the polyhedron, as a whole,
fixed, and a direct symmetry is similarly defined. The icosahedral group is the group of direct
symmetries of the icosahedron. It is a group of order 60 denoted G60.

A viral capsid assembly configuration is modeled by a polyhedron P with icosahedral symmetry.
Its set X of facets represents the protein monomers. The icosahedral group acts on P and, hence, on
the set X. It follows from the so-called quasi-equivalence theory of the capsid structure that G60

acts freely on X. We have |X| := |Xn| = 60n, where n is the number of orbits in the action of the
icosahedral group on X. Not every n is possible for a viral capsid; n must be a T-number, that is a
number of the form h2 + hk + k2, where h and k are nonnegative integers.

Note: An icosahedral viral capsid assembly configuration has a corresponding icosahedral
active constraint graph. Additionally, the group G60, viewed as a subgroup of the symmetric group
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S60, is the automorphism group of this active constraint graph. As mentioned in the beginning
of this section, we are interested in the orbits of simplified assembly trees under the action of
this automorphism group. However, we continue to use the more intuitive view of G60 as a
geometric group.

Before the number of simplified assembly trees can be enumerated, basic information about the
icosahedral group is needed. The group G60 consists of:

• the identity,
• 15 rotations of order 2 about axes that pass through the midpoints of pairs of diametrically

opposite edges of P,
• 20 rotations of order 3 about axes that pass through the centers of diametrically opposite

triangular faces and
• 24 rotations of order 5 about axes that pass through diametrically opposite vertices.

There are 59 subgroups of G60 that play a crucial role in the theory. Besides the two trivial
subgroups, they are the following:

• 15 subgroups of order 2, each generated by one of the rotations of order 2,
• 10 subgroups of order 3, each generated by one of the rotations of order 3,
• 5 subgroups of order 4, each generated by rotations of order 2 about perpendicular axes,
• 6 subgroups of order 5, each generated by one of the rotations of order 5,
• 10 subgroups of order 6, each generated by a rotation of order 3 about an axis L and a rotation of

order 2 that reverses L,
• 6 subgroups of order 10, each generated by a rotation of order 5 about an axis L and a rotation of

order 2 that reverses L,
• 5 subgroups of order 12, each the symmetry group of a regular tetrahedron inscribed in P.

From the above geometric description of the subgroups, it follows that all subgroups of a given
order are conjugate in the group G60. Representatives of the conjugacy classes of the subgroups of the
icosahedral group are denoted by G0, G2, G3, G5, G6, G10, G12, G60, where the subscript is the order of
the group. The set of subgroups of G60 forms a lattice, ordered by inclusion. A partial Hasse diagram
for this lattice L is shown in Figure 10. The number on the edge joining Gi (below) and Gj (above)
indicates the number of distinct subgroups of order i contained in each subgroup of order j. The
number in parentheses on the edge joining Gi (below) and Gj (above) indicates the number of distinct
subgroups of order j containing each subgroup of order i. The Möbius function of L is shown in
Figure 11. The entry in the table corresponding to the row labeled Gi and column Gj is µ(Gi, Gj).
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Figure 10. Partial Hasse diagram for the lattice of subgroups of the icosahedral group.
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Figure 11. The values of the Möbius function of the subgroup lattice of G60.

Consider the case |X| = 60, i.e., for the T = 1 capsid. Using Theorem 7 and MAPLE software,
the generating functions fGi (x) were computed, and hence, their coefficients t60/i(Gi), which count
simplified assembly trees that are fixed by any copy of Gi, were also computed. Note that, since
|X| = 60, the number of orbits of Gi in its action on X is 60/i. Substituting these values into
Theorem 6 and using the Möbius, Figure 11 yields the numerical values for t60/i(Gi), the number
of simplified assembly trees over X with |X| = 60 that are fixed by Gi, but by no other elements
of G60. In other words, these are the numbers of trees whose stabilizer in G60 is exactly Gi.
Substituting these numbers t into Theorem 5, we arrive at the number of simplified assembly
pathways of each possible size:

204 simplified assembly pathways of size 1
∼ 168× 108 simplified assembly pathways of size 5
∼ 223× 109 simplified assembly pathways of size 6
∼ 613× 1017 simplified assembly pathways of size 10
∼ 102× 1017 simplified assembly pathways of size 12
∼ 334× 1028 simplified assembly pathways of size 15
∼ 504× 1031 simplified assembly pathways of size 20
∼ 835× 1051 simplified assembly pathways of size 30
∼ 320× 1099 simplified assembly pathways of size 60

4. Open Questions

4.1. Enumeration Problems in (Non-Simplified) Assembly Framework

We are interested in the following enumeration problems related to the action of WautA for the
framework in Section 2:

(1) How does one compute the size of orbits/stabilizers and the number of orbits under WautA for
assembly configurations, active constraint graphs, active constraint regions, (coarse) assembly
paths and assembly trees/forests?

(2) How does one compute the number of coarse assembly paths that correspond to a particular
assembly tree/forest?

(3) Given two active constraint graphs G and H, where G and H are incomparable, i.e., G * H and
H * G, how does one compute the number of paths between them?

(4) Given two active constraint graphs G1 and Gm, where G1 ( Gm, how does one compute the
number of (coarse) assembly paths from G1 to Gm?

(5) What are the orbits of the (coarse) assembly paths in (4) under the action of stabWautA(Gm)?
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(6) What are the orbits of the (coarse) assembly paths in (4) under the action of the group H, where
H = WautA if stabWautA(G1) = WautA (i.e., G1 is the empty active constraint graph), or
H = stabWautA(G1) ∩ stabWautA(Gm) otherwise?

4.2. Symmetries within an Active Constraint Region via Cayley Configurations

So far, we have discussed the orbit of an active constraint region and active constraint graph
and pointed out that it is sufficient to deal with a single orbit representative provided we are able to
compute the multiplying factors associated with the size of the orbit, stabilizer, number of orbits, etc.

In fact, a single active constraint region could be decomposed into the union of nontrivial
subregions that form the orbit of a fundamental region, leading to enormous efficiencies in
sampling, the computation of volumes that are currently hopelessly intractable in high dimensional
configuration spaces, as discussed in Section 1.

In fact, since the fundamental region itself could have subregions with varying orders of
stabilizers, we could decompose into more than one orbit representative, with different stabilizers.
In any case, sampling or computing the volume of an active constraint region is simplified by
sampling these fundamental subregions and computing the size of their orbits.

One way to obtain such a decomposition of an active constraint region RG is via the locally
complete Cayley (assembly) configurations δF corresponding to the active constraint graph G.
Convex Cayley configuration spaces highlight the key difference between assembly and other
constraint systems, e.g., folding. This difference is captured in the combinatorial structure of active
constraint graphs. A Cayley parameter for an active constraint region RG is a non-edge of its active
constraint graph G. For specific sets of non-edges F, the set of vectors λF of attainable lengths of F
(in 3D realizations of a linkage (G, δ) with underlying graph G and edge lengths δ) is always convex
for any given lengths δ (that is, for all of the 3D realizations of the bar-joint constraint system or
linkage (G, δ)). This set is called the (three-dimensional) Cayley configuration space of the linkage
(G, δ) on the Cayley parameters F, denoted ΦF(G, δ), and can be viewed as a “projection” of the
space of pairwise distance vectors of realizations of (G, δ) on the Cayley parameters F. Such graphs
G are said to have convexifiable Cayley configuration spaces with parameters F. Convexity permits
the use of convex programming techniques for improving the efficiency of sampling, search, volume
computations, etc., for the configuration space.

The concept is best explained using key theorems of the first author in [59,63] discussed in
Section 4.

We assume knowledge of common graph operations, such as k-sums and resulting partial k-trees,
a minor-closed class (partial 2-trees are series-parallel graphs with a forbidden minor K4).

Theorem 8. [59] A graph H has a convexifiable Cayley configuration space with parameters F if and only if
for each f ∈ F, all of the minimal two-sum components of H ∪ F that contain both endpoints of f are partial
2-trees. The Cayley configuration space ΦF(H, δ) of a bar-joint system or linkage (H, δ) is a convex polytope.
When H ∪ F is a 2-tree, the bounding hyperplanes of this polytope are triangle inequalities relating the lengths
of edges of the triangles in H ∪ F.

Note: A major advantage of the convex Cayley method is that sampling the configuration
space can be effected by standard methods of convex programming. Another advantage is that
the method is completely unaffected when δ are intervals rather than exact values [59]. A different
characterization of inherent Cayley convexity for a graph G on a set F of non-edges as in the above
section has been proven also for higher dimensions d [59,64], showing equivalence to a minor closed
property of d-flattenability introduced in [65] and also for other, non-Euclidean distances (norms)
in [63]. Any realization of H in a normed space can be flattened into d-dimensional normed space (in
the same norm) maintaining the same edge distances.
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Theorem 9. [63] A graph H is d-flattenable if and only if for every partition of H into G ∪ F, G has a convex
Cayley configuration space on F in d-dimensions.

4.2.1. Fundamental Regions of Active Constraint Regions

After G has been completed with the convexifying Cayley parameters F, the locally rigid graph
G∪ F typically loses symmetries present in G, i.e., the automorphism group is smaller. However, F can
be replaced by any set of edges π(F) for π ∈ stabWautA(G). Each locally complete Cayley configuration
in the active constraint region G is of the form δF (lengths of edges in F, where G ∪ F is rigid).
Each Cartesian (assembly) configuration within an active constraint region with graph G corresponds
bijectively to a globally-complete Cayley configuration (δF, δH) where G ∪ F is rigid and G ∪ F ∪ H is
globally rigid (or even G ∪ F ∪ H is a complete graph).

Thus, when sampling the Cayley configuration space on F, one can find the boundaries of
the fundamental regions corresponding to the corresponding Cartesian assembly configurations
as follows. For a Cayley configuration δF, all of its generically finitely many real/Cartesian
configurations can be obtained as various corresponding values of δH , which include the values of
δπ(F). The boundary of a fundamental region occurs during sampling when we encounter a Cartesian
(assembly) configuration c where the lengths of π(F) correspond to already sampled lengths of F.

Note that there could be a different decomposition into fundamental regions, corresponding to
each Cartesian configuration (type) corresponding to the Cayley configuration. For example, for a
different configuration c′ from the configuration c above, the lengths of π(F) may not correspond
to already sampled lengths of F; or there could be another element σ ∈ stabWautA(G), with σ 6= π,
where the lengths of σ(F) in c′ could correspond to already sampled lengths of F. In this manner,
one can, in principle, algorithmically bound fundamental regions Ri

G of the active constraint region
RG, by inspecting the assembly configurations corresponding to the Cayley configuration space on F,
such that the active constraint region RG is the union of the orbits of the regions Ri

G (under the action
of stabWautA(G)).

Efficiently finding these fundamental regions, as well as the number and sizes of their orbits
are an open question, whose answer would enormously reduce the complexity of configurational
entropy computations for assembly.

4.3. g-Unfixable Unlabeled Trees

Call a tree g-unfixable if there is no leaf labeling, so that the resulting labeled tree is fixed by the
permutation g, and let us say that a tree is G-unfixable if it is g-unfixable for every nontrivial element
of the group G. A study of unlabeled trees that are g-unfixable may lead to relevant related results.
These properties are interesting for at least two reasons. First, they clarify the minimum quantifiable
information in a labeled tree that is necessary to decide if it is fixed by a group element g: if the
underlying unlabeled tree is g-unfixable, then the information in the labeling is unnecessary to make
this decision. This may lead to efficient algorithms that use properties of the automorphism group of
the tree to help in deciding whether a given labeled tree is fixed by the given group.

4.4. Depth of an Assembly Pathway

A result of [62] tells us that the orbit size of an assembly pathway is at least the depth of
the pathway. The number of assembly pathways and orbit sizes of assembly trees that constitute
a pathway must be taken into consideration in defining any probability space over pathways. If
the dynamics of transitioning between states along a pathway and thereby the density of states
influencing the configurational integral computation [66] and other such factors nullify the vast
differences in symmetry-induced numeracy factors between pathways, then that argument is yet
to be made. The local rule theories using simple geometric rules, ODEs and other first principles
physics-based simulations of the assembly of viral capsids [67–77] have been used to obtain the
assembly kinetics, including rates and concentrations of intermediates, and implicitly provide a
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probability distribution over pathways. A cautionary note in [78] uses an ODE-based model of
reaction kinetics to question simplistic models of assembly pathways. However, the model does
not contradict the simple and transparent thesis that when symmetric structures form from identical
units, the simple numeracy of orbit sizes of assembly trees must be taken into consideration in
any theory predicting likely assembly pathways. This paper shows the rich intricacy of possible
symmetries at play. We in fact conjecture that this symmetry factor increases with the depth of the
pathway. Proving this conjecture would strengthen the motivation for studying the symmetry factor.

4.5. Other Questions

Theorems 5 and 6, as well as our successful computation effort in the special case of |X| = 60
and T = 1 can serve as a motivation to revisit the following questions, first raised in [62].

1. Given two symmetry-invariant properties, how does one compute the ratio of the number of
pathways that satisfy both of these properties to the number of symmetry classes that satisfy only
one of these properties?

2. What can we say about larger (icosahedrally) symmetric polyhedral graphs (larger T numbers
of viral capsids, for example), fullerenes and fulleroids and polyhedra with different symmetry
groups? In such cases, the computations of Section 3 can also be phrased as algorithmic questions,
where the asymptotic complexity of the algorithm is expressed in terms of the number of facets of
the polyhedron (or the T number).

3. To fully extend the techniques in Section 3 to the framework of Section 2, each sub-assembly
must be a rigid subgraph of the graph at the root. Some assembly trees fail to satisfy the rigidity
condition and can never occur (probability zero). Such assembly trees are geometrically invalid.
In addition, a valid assembly tree can be assigned a non-zero probability according to how difficult
it is to find a solution to the constraints on each sub-assembly. Computing this probability, called
the geometric stability factor, is necessary to make the required predictions.

Dropping the rigidity requirement, but maintaining the subgraph (connectivity) requirement,
in [79], two of the authors study the number of assembly trees of graphs on labeled vertices. In
that model, each graph has a trivial automorphism group, but the enumeration of assembly trees
still leads to the use of a recent and very powerful technique from the theory of D-finite power
series in several variables.

Incorporating a nontrivial automorphism group of the graph could help understand the role of
capsid symmetry in the RNA assembly model of [80], which purports that RNA viruses assemble by
attaching to the internal (symmetry breaking) genome strand, since that would avoid having to deal
with the prohibitive number of possible assembly pathways. It should be noted that in our precise
and formal theory of assembly trees and their orbits (our pathways), assembly has an underlying
partial order of stable intermediates that are influenced by the connectivity and rigidity; they are
subgraphs of the underlying polyhedral graph given by active constraints. The informal definition
of the pathway in [80] is a linear order (in our language, an assembly tree that is a path) given by a
Hamiltonian circuit in the viral polyhedral (dual) graph. We are not aware of a clarification of why
the interactions of a given monomer in the sequence to multiple other monomers besides the previous
one in the sequence would be insignificant. If not, the assembly tree would indeed be a partial order
as in our case, and the tree would have a minimum fan-in required for rigidity, reducing the number
of assembly trees significantly and reducing the number of their symmetry classes or orbits further,
whereby this number alone is not a significant reason to adopt a alternate model of assembly (such as
RNA strand attachment) that cuts down the possible pathways.

As future work, we also aim to apply the symmetry framework developed in this paper to
explain more experimental and theoretical results from previous literature.
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5. Conclusions

In this paper, we developed a novel framework for symmetry in assembly under short
range potentials and considered the symmetry groups of various objects studied in previous
literature on assembly, including assembly configuration spaces, active constraint graphs, active
constraint regions, assembly trees and pathways. The new Theorem 4 formalizes the containment
relations between stabilizer subgroups of the active constraint graph and corresponding assembly
configurations. We then demonstrated the new symmetry concepts to compute the sizes and numbers
of orbits in two example settings appearing in previous work. The methods can improve efficiency for
large systems with multiple identical bunches and spheres that have large order symmetry groups.
The new symmetry framework helps formalize a number of questions for future work.
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