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Abstract: In this review paper, several new results towards the explanation of the accelerated
expansion of the large-scale universe is discussed. On the other hand, inflation is the early-time
accelerated era and the universe is symmetric in the sense of accelerated expansion. The accelerated
expansion of is one of the long standing problems in modern cosmology, and physics in general.
There are several well defined approaches to solve this problem. One of them is an assumption
concerning the existence of dark energy in recent universe. It is believed that dark energy is
responsible for antigravity, while dark matter has gravitational nature and is responsible, in general,
for structure formation. A different approach is an appropriate modification of general relativity
including, for instance, f (R) and f (T) theories of gravity. On the other hand, attempts to build
theories of quantum gravity and assumptions about existence of extra dimensions, possible variability
of the gravitational constant and the speed of the light (among others), provide interesting
modifications of general relativity applicable to problems of modern cosmology, too. In particular,
here two groups of cosmological models are discussed. In the first group the problem of the
accelerated expansion of large-scale universe is discussed involving a new idea, named the varying
ghost dark energy. On the other hand, the second group contains cosmological models addressed to
the same problem involving either new parameterizations of the equation of state parameter of dark
energy (like varying polytropic gas), or nonlinear interactions between dark energy and dark matter.
Moreover, for cosmological models involving varying ghost dark energy, massless particle creation
in appropriate radiation dominated universe (when the background dynamics is due to general
relativity) is demonstrated as well. Exploring the nature of the accelerated expansion of the large-scale
universe involving generalized holographic dark energy model with a specific Nojiri-Odintsov cut-off
is presented to finalize the paper.
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1. Introduction

The accelerated expansion of the large-scale universe (LSU) is one of the long standing problems
of physics [1–4]. In this case according to recent understanding of symmetries and physics of LSU,
dark energy (DE) (≈70%) should be used to provide acceleration to expanding universe [5,6]. On
the other hand, DE is not enough and according to astrophysical data, dark matter (DM) should be
involved in the energy budget of universe [7,8]. Various energy conditions have been developed in
order to distinguish DE and DM (Table 1) according to known symmetries of LSU. Introduction of
these ideas lunched a search of the correct candidates for both of them: DE breaks Strong Energy
Condition, dominates DM in LSU giving accelerated expansion and preserves symmetries.
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Table 1. Four energy conditions used in modern cosmology.

The Energy Condition Mathematical Expression

Null energy condition (NEC) ρ + P ≥ 0
Dominant energy condition (DEC) ρ ≥ 0 and ρ± P ≥ 0

Strong energy condition (SEC) ρ + 3P ≥ 0 and ρ + P ≥ 0
Weak energy condition (WEC) ρ ≥ 0 and ρ + P ≥ 0

Since the subject of this review is directly related to accelerated expansion of LSU and DE,
any future discussion on topics related to DM problem will be suppressed in a proper way.
Moreover, any additional disscusion on inflation (accelerated expansion of early universe) will be
suppressed alike [9–14] (and references therein). Cosmological constant (CC) is the first and the
simplest model of DE ever suggested and used in modern cosmology. The minimal model of modern
cosmology is ΛCDM concordance model, with Λ CC and non-relativistic pressureless cold dark
matter (CDM). In this model the dynamics of the background is described by the field equations of GR.
However, mainly two problems arise discussed in recent scientific literature very intensively with the
CC model of DE [15–17]. In particular, the fine-tuning problem indicates the absence of a fundamental
mechanism, which sets the CC to zero or to a very small value (in some sense violating symmetry). The
second problem is the cosmological coincidence problem (CCP) with the question about comparability
of the the densities of DE and DM in LSU.

In order to solve the mentioned problems various models of dynamical DE models have been
introduced without violating/recovering symmetries of LSU [5,6]. Among DE models are quintessence,
k-essence, tachyonic, phantom and quinton DE models, as well as dark fluids like Chaplygin gas (and
its modifications), van der Waals gas and polytropic gas involving also viscosity [18–48] and references
therein. In Table 2 the type of the fluids which can be modeled using equation of state parameter (EoS)
of the barotropic fluid: P = ωρ are summarized. In scientific literature an active discussion on possible
modification of this simple EoS are held. In general, one can consider dark fluids with more general
EoS, like [42,43]

PDE = P(ρDE, H, Ḣ), (1)

and some explicit examples of dark fluids of this type are [42,43]

P = −ρ− Aρα − BH2β, (2)

and
P = ω f ρ + ωH H2 + ωdH Ḣ. (3)

Another interesting approach in this direction is, for instance, consideration of an implicit relation
between P, ρ and H [42,43]

F(P, ρ, H) = 0. (4)

Table 2. The values of EoS parameter ω allowing one to have various forms of the matter in the
universe due to the barotropic fluid.

EoS Parameter Matter

ω = 0 dust
ω = 1/3 radiation

ω ∈ (1/3, 1) hard universe
ω = 1 stiff matter

ω ∈ (−1/3,−1) quintessence
ω = −1 cosmological constant
ω < −1 phantom matter
ω > 1 ekpyrotic matter
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One of the alternative models of DE is holographic DE based on the holographic principle which
establishes a link between the ultraviolet (UV) cut-off, defined through ρΛ, and the infrared (IR)
cut-off. In scientific literature different options for IR cut-off like Hubble horizon, particle horizon,
event horizon, Ricci scale or generalized IR cut-off, among many others, have been considered.
The starting point of holographic models is an expression for DE energy density from which EoS is
then derived. There is an active discussion on various modifications of this idea (to mention a few)
including modified holographic Ricci DE

ρ =
2

ξ − η

(
Ḣ +

3ξ

2
H2
)

, (5)

extended holographic Ricci DE
ρ = 3M2

Pl(ξH2 + ηḢ), (6)

ξ and η are free constants. Another option which can play the role of dynamical DE is the so called
Veneziano ghost DE with the following energy density

ρ = αH + βH2, (7)

where α and β are the constants of the model. Moreover, discussed models of holographic dark energy
models belongs to generalization considered in Reference [24] which allows us to unify symmetry in
early universe and LSU in sense of accelerated expansion.

In recent scientific literature there is an active interest towards in interacting DE models, which
is a non-gravitational coupling between DE and DM revealing interesting symmetry [49] (and
references therein). There are various forms of linear and non linear forms of interactions considered
in modern cosmology. There are various modifications of considered interactions. Some of the
examples (phenomenological) of non-gravitational interaction are

Q = 3Hbqρ, (8)

Q = 3Hbρ, (9)

and
Q = 3Hb

ρdeρdm
ρde + ρdm

, (10)

On the other hand, it has been demonstrated successfully, that to solve the problems of modern
cosmology and LSU, one can modify GR [50,51] (and references therein). The key ingredient of
the modification of GR is related with an appearing of a term in the field equations, which is in a
naive way eventually associated with DE. Various modifications of GR exist involving, for instance,
extra dimensions, variable gravitational constant and the speed of light. Moreover, scalar-tensor,
tensor-vector-scalar, scalar-tensor-vector theories (to mention a few) very actively studied to answer
open problems in modern cosmology can be involved. Toy models as Horava-Lifschitz gravity
proposed for quantum gravity, Brans-Dicke theory and particle physics theories such as Kaluza-Klein
theory (an attempt to unify gravity and electrodynamics), also can be involved. To finalize the
introductory part of this review one would like to mention about geometrical tools like statefinder
analysis with (r, s) parameters, Om, (ωde, ω′) and statefinder hierarchy analysis designed to study DE
and cosmological models [52–56]. For instance, Om analysis suggests to study the following parameter

Om =
x2 − 1

(1 + z)3 − 1
, (11)

where x = H/H0, H0 it is the value of the Hubble parameter at z = 0 (for the definition of the other
parameters and tools one refers to Appendix A ). On the other hand, there is an active discussion
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on the models via phase space analysis and providing the thermodynamics of the models is another
interesting approach relevant to the study of the models.

The goal of this paper is to present various novel results concerning to the solution of accelerated
expansion of LSU. There are two groups of the models discussed here. In case of the first group
of the models, GR has been considered as the theory to describe the background dynamics of the
universe. However, considered cosmological models involve new phenomenological modifications
of the ghost DE to explain the accelerated expansion of LSU. The study of massless particle creation
in appropriate radiation dominated universe is also had been carried out. On the other hand, in the
second group of the models, one has gathered various cosmological models either involving new
forms of the nonlinear interactions between dark components, or new parameterization of EoS of the
DE. It should be mentioned that in the considered models either mentioned cosmological problems are
solved due to the existence of interaction, or the problems do not rise at all.

The paper is organized as follows: In Section 2, new cosmological models involving various
models of the varying ghost dark energy allowing to explain the accelerated expansion of LSU
universe are discussed. Considered models are able to explain the accelerated expansion of LSU,
transition between decelerated expanding universe and accelerated expanding universe. Moreover,
in these models CCP either is solved, or does not observe at all. Moreover, massless particle creation
has been demonstrated for appropriate radiation dominated expanding universe, which evolves to
LSU containing suggested interacting varying ghost DE models. In Section 3, discussion is about
cosmological models which involve either new forms of interaction, or new parameterizations of EoS
of the DE (dark fluid) including holographic DE model with specific model of Nojiri-Odintsov cut-off.
In Section 3.3, we summarize the discussed material.

2. Varying Ghost Sark Energy Models

The ghost DE can be used to explain accelerated expansion of LSU. New phenomenological
modifications of the ghost DE named as varying ghost DE have been suggested recently. The first
model tries to operate on the existence of some dynamics between the ghost DE and a fluid making
sense of the proposed effect [57]. On the other hand, the second model of the varying ghost DE has
been considered and obtained results are presented in Section 2.1 corresponding to Reference [58].
For the other two models of the varying ghost DE presented in this section (Sections 2.2 and 2.3),
possible relationship between the energy density of the DM and the energy density of the ghost DE
has been considered [59,60] having an aim to find possible origin of DE from an interplay with DM
and geometry. Detailed presentation of the forms of the varying ghost DE models has been given in
appropriate subsections completing assumptions which have been used to construct cosmological
models for LSU. Within appropriate cosmographic analysis and constraints from observational data
demonstrated applicability of considered cosmological models to the problems of LSU. Moreover,
in case of two cosmological models (for the cosmological model presented in Section 2.3 this question
has been left as a subject for future discussion) having the background dynamics given according to
GR, massless particle creation possibility has been demonstrated.

Many authors had discussed the physics of the matter creation believing that particles are created
because the positive and negative frequency parts of the fields become mixed during expansion of
universe [61–79]. If one considers GR, then there is no creation of massless particles (no photon,
graviton or any other kind of massless particles) in a radiation dominated universe due to conformal
invariance of the metric. However, recently in case of modified theories of gravity, in particular, in case
of f (R) theory of gravity massless particle creation has been reported [80–82]. The study of particle
creation problem is complicated, since exists the problem of the definition of the particles and the
vacuum states. However, the problem may be solved by a Bogoliubov transformation and with a
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suitable boundary condition the total number of created particles Nk and antiparticles N̄k reads as [80]
(and references therein)

Nk = N̄k = |βk(η)|2 =
1

4ωk(η)
|χ′k|

2 +
ωk(η)

4
|χk|2 −

1
2

, (12)

where

ω2(η) = k2 + m2a2(η)− a′′(η)
a(η)

, (13)

ωk represents the frequency of the particle and k is the Fourier mode or wavenumber of the particle,
while η it is the conformal time which is related to the physical time with the relation

η =
∫ dt

a
, (14)

with ′ denotes the derivative with respect to the conformal time η, while the equation of motion for
the decoupled modes χk(η) is a second order differential equation. More details for this issue can
be found in Reference [80]. As the last step before starting the discussion of the results one would
like to remind that to describe the background dynamics of LSU in scope of GR, which contains
radiation (Pr = (1/3)ρr), the varying ghost DE coupled to the pressureless DM via an interaction,
the following set of equations should be considered (throughout this section geometrical units are
considered, i.e., 8πG = c = 1.)

ä
a
= −4πG

3
(ρ + 3P), (15)

ρ̇r + 4Hρr = 0, (16)

ρ̇de + 3H(ρde + Pde) = −Q, (17)

ρ̇dm + 3Hρdm = Q. (18)

Cosmographic and appropriate study of additional questions concerning considered varying ghost DE
models are presented in appropriate three subsections of this section.

2.1. Cosmological Model with ρde = αH + βam H2

The varying ghost DE has been suggested recently assuming that one of the parameters to
determine the energy density of the ghost DE could be a varying quantity. In particular, one of the
models of the varying ghost DE has the following energy density [57]

ρde = α0am H + β̂H2, (19)

instead of
ρde = αH + β̂H2, (20)

where α0, β̂ and m are constants and should be determined from observational data. The next model
considered in Reference [58] has the following form

ρde = αH + βamH2. (21)

It is easy to see, that the parameterization is according to the scale factor of universe in the form
of the power law. On the other hand, to gain a comprehensive understanding of the background
dynamics the author of Reference [58] assumed an existence of interaction between DE and DM and
considered the following form of the interaction

Q = 3Hbρ. (22)
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In Equation (22) ρ is the total energy density of the effective dark fluid consisting of considered
varying ghost DE and DM, while b is a constant. The first goal is to discuss theoretical results
corresponding to the cosmographic analysis of this model for appropriate constraints on the parameters
of the model. Obtained results will be used to study particle creation in this toy cosmological model.

2.1.1. Non-Interacting Model

Consideration of the non-interacting model implies Q equal to 0 in Equations (17) and (18). In this
case the first cosmological parameter which was studied is the deceleration parameter q (Figure 1) and
one sees that for appropriate values of parameter m one can obtain a transit universe. Moreover, it
can be seen that (when b = 0) decrease of m causes vanishing of possibility to have a transit universe,
in particular, when m = 0, which corresponds to the usual ghost DE case, the transit universe is not
possible. One can see that suggested modification allows to make the model very flexible with respect
to future observational data. On the other hand, the graphical behavior of the deceleration parameter
q and known fact that 0 < q ≤ −1, imposes some constraints on parameter m. In particular, for this
model the following constraint on m 0 < m ≤ 1.5 will be obtained. Moreover, the right plot of Figure 1
demonstrates that for appropriate values of parameters, the phantom divide crossing is also possible.
Figure 2 represents the graphical behavior of EoS parameter of the total effective fluid defined as

ωtot =
Pde + (1/3)ρr

ρde + ρdm + ρr
, (23)

and the density parameters Ωde and Ωdm and one sees that the model is free from CCP. Present day
values of the statefinder pair (r, s), (ω′de, ωde) and q are presented in Table 3. In this case β = 1.7.
α = 0.3, m = 1.0, H0 = 0.72, Ωdm ≈ 0.3 and Ωr ≈ 7× 10−5, with the transition redshift ztr ≈ 0.42
has been obtained from the distance modulus comparison with observational data. This is the model
of universe, where the varying ghost DE in LSU has quintessence nature, while at z = 0 it is a
cosmological constant with ωde = −1. On the other hand, the total effective fluid will have only
quintessence behavior in LSU.

Figure 1. Graphical behavior of the deceleration parameter q and ωde of the varying ghost dark energy
(DE), Equation (21), against redshift z. m = 0 corresponds to the usual ghost DE.
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Figure 2. Graphical behavior of EoS parameter of the effective fluid and Ωi = ρi/3H2 against redshift
z. Purple curve corresponds to Ωde, and the orange curve corresponds to Ωdm. m = 0 corresponds to
the usual ghost DE. ωtot is defined according to Equation (23).

Table 3. Present day values of (r, s), (ω′de, ωde) and q for various values of the parameter m,
when Ωdm ≈ 0.3, Ωr ≈ 7 × 10−5, while b = 0 and H0 = 0.72. m = 0 corresponds to the usual
ghost DE.

m (r, s) (ω′
de, ωde) q

1 (9.9,−2.937) (−5.96,−0.973) −0.51
0.5 (3.854,−1.531) (−2.38,−0.605) −0.121
0.0 (3.069,−2.974) (−1.68,−0.237) 0.268

2.1.2. Interacting Model

The energy density of DM in the case of interacting model according to Equations (18) and (22)
reads as

ρ̇dm + 3H(1− b)ρdm = 3Hbρde. (24)

In this case also the parameter m has significant effect on behavior of the deceleration parameter
q and EoS parameter of the varying ghost DE given by Equation (21) (see top panel of Figure 3 of
Reference [58]). In this model the best fit of the distance modulus to observational data is possible
when β = 0.7, α = 0.3, b = 0.03, m = 0.5, Ωdm ≈ 0.3, Ωr ≈ 7× 10−5, H0 = 0.72, and the transition
redshift is ztr ≈ 0.42. This model is also free from CCP (see Figure 4 of Reference [58]) with ztr ≈ 0.42.
Bottom panels of Figures 3 and 4 of Reference [58] present graphical behavior of q, ωde, ωtot and Ωi
depending on the interaction parameter b for a fixed value of the parameter m. In Tables 4 and 5 the
present day values of the statefinder pair (r, s), (ω′de, ωde) and q parameters are presented. Comparison
of theoretical results with observational data left only quintessence behavior for DE and the total
effective fluid. Numerical analysis presented in Reference [58] directly indicates creation of massless
particles in an appropriate radiation dominated expanding universe which evolving gives LSU (with
suggested varying ghost DE) compatible with recent observational data. On the other hand, massless
particles in these models (non-interacting and interacting) are not created immediately. Creation
requires some time to start. Moreover, the total number of created massless particles Nk for both
models is an increasing function. Moreover, massless particle creation will adopt a periodic character
in recent LSU.
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Table 4. Present day values of the statefinder pair (r, s), (ω′de, ωde) and q for various values of the
parameter m, when Ωdm ≈ 0.3, Ωr ≈ 7× 10−5, while b = 0.03 and H0 = 0.72. m = 0 corresponds to
the usual ghost DE. α = 0.3 and β = 1.7.

m (r, s) (ω′
de, ωde) q

1 (10.73,−2.827) (−6.315,−1.099) −0.648
0.5 (3.838,−1.246) (−2.361,−0.732) −0.299
0.0 (2.213,−1.084) (−1.29,−0.364) 0.130

Table 5. Present day values of the statefinder pair (r, s), (ω′de, ωde) and q for various values of the
interaction parameter b, when Ωdm ≈ 0.3, Ωr ≈ 7× 10−5, while m = 0.5 and H0 = 0.72. α = 0.3
and β = 1.7.

b (r, s) (ω′
de, ωde) q

0.0 (3.797,−1.475) (−2.348,−0.612) −0.132
0.01 (3.796,−1.382) (−2.348,−0.652) −0.174
0.03 (3.838,−1.246) (−2.361,−0.732) −0.26
0.05 (3.938,−1.161) (−2.393,−0.812) −0.343
0.07 (4.095,−1.111) (−2.445,−0.891) −0.428

2.2. Cosmological Model with ρde = αH + βρm
dmH2

In this subsection one will present the results corresponding to a model of the low redshift
universe with another model of the varying ghost DE having the following energy density [59]

ρde = αH + βρm
dmH2, (25)

where α, β and m are constants and ρdm is the energy density of the pressureless DM. Such consideration
is an attempt to have better understanding of the seeds for DE formation in early universe due to
existence of DM. It is easy to see that Equations (25) and (17) with Equation (22) allows us to obtain
EoS parameter of the varying ghost DE in terms of Ωde and Ωdm as

ωde =
AΩ2

dm + BΩdm + C
3 (6H(Ωde − 1)− α)ΩdeΩdm

, (26)

where A = 6HΩde − 18bH − α, B = −Ωde(α + 6H(−3b(m + 1) + 3m + 1)) + 2α(2− 3(b − 1)m) +

6HΩ2
de and C = −6bmΩde (α− 3HΩde). To obtain Equation (26) Pde = ωdeρde and that

1 = Ωde + Ωdm + Ωr, (27)

where
Ωi =

ρi
3H2 , (28)

is taken into account. On the other hand, for this model the deceleration parameter reads as

q = −1− Ḣ
H2 =

1
2
(2− (1− 3ωde)Ωde −Ωdm) . (29)

The study presented in Reference [59] indicates that the decrease of m leads to increase of transition
redshift and to decrease of the present day values of the deceleration parameter q and ωde. Moreover,
the increase of b leads to increase the transition redshift and to decrease of the present day values of
ωde and q. Moreover, in low redshift universe parameter b has a significant impact on these parameters.
b = 0.01, α = 0.75 and β = 0.85, m = −0.2, H0 = 0.69, Ωde ≈ 0.7, Ωdm ≈ 0.3 and Ωr ≈ 0.3× 10−5

constraints on the model parameters have been obtained during the comparison of the modulus



Symmetry 2016, 8, 110 9 of 29

distance with observational data to have the best fit. Present day values of the statefinder pair (r, s),
(ω′de, ωde) and q are presented in Table 6. Graphical behavior of Ωde and Ωdm against redshift z is
presented in Figure 2 of Reference [59].

Table 6. Present day values of (r, s), (ω′de, ωde), q and appropriate redshift transition for the various
values of the parameter m, when b = 0.01, α = 0.75 and β = 0.85, H0 = 0.69, Ωde ≈ 0.7, Ωdm ≈ 0.3 and
Ωr ≈ 0.3× 10−5. m = 0 corresponds to the usual ghost DE.

m (r, s) (ω′
de, ωde) q ztr

0.0 (2.247,−0.711) (−1.173,−0.576) −0.085 0.18
−0.1 (2.515,−0.745) (−1.033,−0.647) −0.177 0.3
−0.15 (2.852,−0.842) (−1.057,−0.707) −0.233 0.38
−0.2 (3.381,−0.996) (−1.171,−0.761) −0.297 0.42
−0.4 (8.883,−2.268) (−3.237,−1.042) −0.658 0.58

Statefinder Hierarchy and Thermodynamics

It is easy to see, that if one starts from the first law of thermodynamics

TdSde = dEde + PdedV, (30)

and with an assumption that DE, DM, radiation and event horizon are in thermal equilibrium, after
some mathematics for dS/dH for the varying ghost DE, Equation (25), one obtains [59]

dSde
dH

=
8π2

3H4

(
−α− 9HωdeΩde − 3HΩde +

6m (bΩde + (b− 1)Ωdm) (α− 3HΩde)

Ωdm ((3ωde − 1)Ωde −Ωdm + 4)

)
, (31)

where ωde is given by Equation (26) and the case b = 0, corresponds to thermodynamics of the
non-interacting varying ghost DE model. Moreover, the graphical behavior of S(1)

3 according to

Equation (A11) against redshift z presented in Reference [59] indicates that S(1)
3 in statefinder hierarchy

is a good indicator for this model. Moreover, it gives clear indication about possible deviation from
ΛCDM model. The cosmographic analysis demonstrated that suggested cosmological model is a
good model for low redshift universe. Moreover, this is a model with radiation like effective fluid for
high redshift, which evolves to a quintessence DE in present universe. Another interesting result of
Reference [59] is the demonstration of massless particle creation in a radiation dominated universe (see
Figure 4 of Reference [59]).

2.3. Cosmological Model with ρde = αρm
dm H + βH2

In Sections 2.1 and 2.2 the subject of study was accelerated expansion of LSU, where a varying
ghost DE of a certain type can take the role of DE. The model of the varying ghost DE with

ρde = αρm
dm H + βH2, (32)

presented in Reference [60] is another phenomenological modification of the ghost DE and completes
the logical chain of considered modifications. It is obvious α, m and β should accepts appropriate
values to have ρde > 0. One sees that the power law function of the energy density of the DM is
considered. The ghost DE model, Equation (32), may also be understood as an example of a fluid
introduced in References [43,44]. The first model considered in Reference [60] is a cosmological scenario
where DE and DM do not interact. One starts with the presentation of the results corresponding to this
scenario taking into account the constraints which were obtained Reference [60] according to the best
fit of theoretical results to luminosity distance.
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2.3.1. Non-Interacting Model

In the case of suggested modification in non-interacting model the EoS of the varying ghost DE
has the following form

ωde =
(2m− 1) (β− 3Ωde)

Ωde (β + 3Ωde − 6)
, (33)

with Ωde → 0 ωde → ∞, while in the case Ωde = 1, ωde = 2m− 1. On the other hand, the deceleration
parameter q of this model accepts the following form

q =
(6− 9m)Ωde + β(3m− 1)− 3

β + 3Ωde − 6
. (34)

Despite ωde → ∞, for the deceleration parameter q one have

q =
β(3m− 1)− 3

β− 6
, (35)

while for Ωde = 1

q =
(β− 3)(3m− 1)− 3

β− 3
. (36)

Demand discussed in Reference [60] on q ∈ [−1, 0), ωde ∈ [−1, 0) and for simplicity 0 ≤ β < 1,
gives the following constraints on Ωde and m

1
3
< Ωde ≤ 1, (37)

β− βΩde − 3Ω2
de + 3Ωde

2β− 6Ωde
≤ m <

β− 6Ωde + 3
3β− 9Ωde

. (38)

The study of Reference [60] provides a self-consistent picture about the behavior of the deceleration
parameter, EoS parameter of the varying ghost DE and EoS of the effective fluid for low and high
redshift. In particular, the attention of the authors has been concentrated on the study of the impact of
m parameter on the behavior and present day values of mentioned cosmological parameters. It has
been found that correct dynamics of ωde, ωtot and Ωde provides a phase transition from a decelerated
expanding universe to recent accelerated expanding universe and with an increase of m the transition
redshift will decrease. For the reconstruction of thermodynamics of DE model one should start from
the first law of thermodynamics and after some trivial mathematics for the dynamics of the entropy
Sde will be obtained

T
dSde
dH

= −4π ((6− 9m)Ωde + β(3m− 1)− 3) (Ωde (β + 3Ωde − 6m− 3) + β(2m− 1))
H2 (β + 3Ωde − 6) (−3(m− 1)Ωde + βm− 3)

, (39)

On the other hand, in Reference [60] the forms of two parameters of statefinder analysis are
presented corresponding to this case.

2.3.2. Interacting Model with Q = 3bH(ρde + ρdm)

The consideration of interaction term given by Equation (22), gives EoS parameter and the
deceleration parameter q of the model as follows

ωde =
−Ωde (6b(m− 1) + β + (6m− 3)Ωde − 2βm− 6m + 3) + 2b(βm− 3) + β− 2βm

(Ωde − 1)Ωde (β + 3Ωde − 6)
, (40)

q = −3(2m− 1)(3b− β + 3)
β + 3Ωde − 6

+
3bm

Ωde − 1
− 3m + 2. (41)
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As it is pointed in Reference [60], for Ωde → 0, ωde → ∞, but q is finite and is equal to

q = −3(2m− 1)(3b− β + 3)
β− 3

− 3bm− 3m + 2, (42)

and Ωde = 1 case should be excluded, since with Ωde → 1, ωde and q tend to infinity. It is easy to see
that the dynamics of the entropy of the varying ghost DE reads as

T
dSde
dH

=
4π

3H2

(
18(2m− 1)(3b− β + 3)

β + 3Ωde − 6
− 18bm

Ωde − 1
+ A + A1

)
, (43)

where

A =
(β− 3)2m(2m− 1)

(m− 1)2 (−3(m− 1)Ωde + βm− 3)
, (44)

and

A1 =
3(2− 3m)Ωde

m− 1
+

(2m− 1)(−β + 3m(3m− 5) + 9)
(m− 1)2 . (45)

The graphical behavior of cosmological parameters and the present day values of these
parameters summarized in Reference [60] directly indicate viability of considered model according to
observational data.

2.3.3. Interacting Model with Q = 3bHq(ρde + ρdm)

Another model considered in Reference [60] assumes that the non-gravitational interaction is sign
changeable and reads as

Q = 3bHq(ρde + ρdm). (46)

In Figure 3 the redshift dependent behavior of the deceleration parameter q and EoS parameter
of the varying ghost DE, Equation (32), corresponding to different values of the parameter b for
fixed values of β and m are plotted. It can be seen, that the considered sign changeable interaction,
Equation (46), leaves unaffected the transition redshift and a distinguishing interacting models from
non interacting is not possible. An estimation of the present day values of (r, s) and (ω′de, ωde) for this
model gives the same picture (for small values of b). The considered model is a model of a universe
where

ωde =
−Ωde (3b(m− 1) + β + (6m− 3)Ωde − 2βm− 6m + 3) + b(βm− 3) + β− 2βm

Ωde (Ωde (9b(m− 1) + β + 3Ωde − 9) + b(9− 3βm)− β + 6)
, (47)

q = − (Ωde − 1) (β + (9m− 6)Ωde − 3βm + 3)
Ωde (9b(m− 1) + β + 3Ωde − 9) + b(9− 3βm)− β + 6

. (48)

and the dynamics of the entropy of the varying ghost DE, Equation (32), has the following form

T
dSde
dH

=
4π (Ωde (β + (9m− 6)Ωde − 3(β + 2)m + 6) + β(2m− 1))

H2 (−3(m− 1)Ωde + βm− 3)
− 12πωdeΩde

H2 . (49)

There ωde is given by Equation (47). It is evident from Equation (48), that when Ωde = 1,
then q = 0, therefore in order to have LSU with accelerated expansion with q ∈ [−1, 0), ωde ∈ [−1, 0)
and for simplicity 0 ≤ b < 1 with 0 ≤ β < 1, it is necessary, that

1
3
< Ωde < 1, (50)

(Ωde − 1) (Ωde (−9b + β + 3Ωde − 3) + 3b− β)

((3b− 2)Ωde − b + 2) (β− 3Ωde)
≤ m <

β− 6Ωde + 3
3β− 9Ωde

. (51)
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For universe with Ωde = 0, i.e., matter dominated universe

q =
(β− 3βm + 3)

b(9− 3βm)− β + 6
. (52)

Figure 3. Graphical behavior of the deceleration parameter q and ωde of the interacting varying ghost
DE, Equation (32), against redshift z. m = 0 corresponds to the usual ghost DE. The interaction is given
via Equation (46).

2.3.4. Interacting Model with Q = 3bH(ρdm − ρde)

Discussed sign changeable interaction, Equation (46), is only an option. The following formulation

Q = 3bH(ρdm − ρde), (53)

provides another option and indicates that when ρde > ρdm DM will be transferred to DE, otherwise
DE will be transferred to DM. If one considers the interaction, Equation (53), then in such universe,
EoS parameter of the varying ghost DE has the following form [60]

ωde =
A3 + 2b(βm− 3) + β− 2βm
(Ωde − 1)Ωde (β + 3Ωde − 6)

, (54)

and the deceleration parameter reads as [60]

q = −3(2m− 1)(b(2β− 9)− β + 3)
β + 3Ωde − 6

− 3bm
Ωde − 1

+ 6bm− 6b− 3m + 2, (55)

where A3 = Ωde (3(4b(m− 1)− 2m + 1)Ωde − 2b(2βm + 3m− 9) + (β + 3)(2m− 1)). In order to
obtain LSU with accelerated expansion with q ∈ [−1, 0), ωde ∈ [−1, 0) and for simplicity 0 ≤ b < 1
with 0 ≤ β < 1, it is necessary [60]

1
3
< Ωde < 1 (56)

(Ωde−1)(Ωde(−12b+β+3Ωde−3)+6b−β)
2((2b−1)Ωde−b+1)(β−3Ωde)

≤ m < (Ωde−1)(6(3b−1)Ωde−9b+β+3)
3((1−2b)Ωde+b−1)(β−3Ωde)

. (57)

The study of Reference [60] shows that one has the model with the correct behavior of cosmological
parameters providing phase transition between decelerated and accelerated expansion of LSU.
Moreover, in Reference [60] another model of interaction with ρde − ρdm also has been considered.
The difference between these two models is the sign of the parameter b, therefore consideration of |b|
instead of b will describe physics of two models. Results related to these two models of the interaction
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are compared in Figures 7 and 8 of Reference [60]. For the dynamics of the entropy of the varying
ghost DE considered in this subsection has the following form [60]

T
dSde
dH

=
4π (Ωde (β + (9m− 6)Ωde − 3(β + 2)m + 6) + β(2m− 1))

H2 (−3(m− 1)Ωde + βm− 3)
− 12πωdeΩde

H2 , (58)

where ωde is given by Equation (54), and interaction parameter b has been changed to |b|. The study
of Reference [60] shows also that S3 parameter from the statefinder hierarchy is a good indicator to
distinguish the models, therefore attention can be concentrated on it only. Moreover, the study of
Reference [60] shows that Om is a good analysis for considered models. However, Om analysis is better
for low redshif analysis.

3. Alternative Look at the Problem

The purpose of this section is to discuss various cosmological models applicable to accelerated
expansion of LSU providing an alternative look to the problem. In particular, two models considered
in this section belong to the class of the models where the dynamics of the background is still according
to GR, however exotic forms of EoS and the interaction term between DE and DM is used. Instead of
directly solving the field equations for these models, phase space analysis has been performed. It is
known that in the phase space of a dynamical system all its possible states are represented making it
very useful tool for modern cosmology. To analyse the dynamical system of the interacting polytropic
gases considered in this section, one follows to existing scientific literature (see for instance [83]).
There is a huge number of articles presenting the phase space analysis of different cosmological
models [83–90] (to mention a few).

3.1. LSU with Interacting Polytropic Gas

Polytropic gas with non-linear EoS of the following

Pp = Kρ1+1/n
p , (59)

where K and n are two constants, has important applications in astrophysics and it is one of the models
of dark fluids used in modern cosmology. In Reference [91] various cosmological scenarios with
non-linear interacting polytropic gas models has been considered. Namely, two phenomenological
possibilities for interaction term are considered: non-linear and sign changeable non-linear interactions.
In particular, the following forms of interaction will be considered

Q = 3Hb
(

ρ +
ρ̂

ρ

)
, (60)

and

Q = 3Hbq
(

ρ +
ρ̂

ρ

)
, (61)

ρ is the energy density either of the effective fluid or one of the components of the effective fluid.
ρ̂ = ρiρj is the product of the energy densities of DE and DM.

3.1.1. Interacting Model with Q = 3Hb
(

ρp + ρm + ρ2
m

ρp+ρm

)
The study of Reference [91] starts with the model, when the following interaction is considered

Q = 3Hb
(

ρp + ρm +
ρ2

m
ρp + ρm

)
. (62)
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The autonomous system of this model reads as

x′ = −3b (2+ (x− 2)x)− 3(1− x)y, (63)

y′ = 3y(1+ y)− 3(1+ n)y (x + y + b(2+ (x− 2)x))
nx

. (64)

It has been found, that only one physically reasonable stable critical point (E.1.1) exists

(x, y) =

(
2b− 1+

√
1− 4b2

2b
,−1

)
, (65)

when

n ≤ −1, 0 < b <
1
4

√
2n2 − 1

n2 − 1
4n

, (66)

or
− 1 < n < 0, 0 < b <

1
2

. (67)

Moreover, this solution is simply a late time scaling attractor, because

r =
Ωm

Ωp
=

√
1− 4b2

2(1− 2b2)
− 1

2
. (68)

The study shows, that this late time scaling attractor describes the state of universe with ωe f f = −1,
q = −1 and EoS of the polytropic gas exhibits a phantom behavior (quintessence behavior is not
possible) with

ωp = − 2b
2b +

√
1− 4b2 − 1

, (69)

when
n ≤ −1, 0 < b ≤ 1

2
√

2
, (70)

or
− 1 < n < 0, 0 < b <

1
2

, (71)

or

−

√
1− 4b2

(1− 8b2)2 +
2b

1− 8b2 < n ≤ −1,
1

2
√

2
< b <

1
2

, (72)

3.1.2. Interacting Model with Q = 3Hb
(

ρp + ρm +
ρ2

p
ρp+ρm

)
In the second model conidered in Reference [91] the following form for the interacting has been

considered

Q = 3Hb

(
ρp + ρm +

ρ2
p

ρp + ρm

)
. (73)

The study shows that only one late time scaling attractor exists (E.1.2)

(x, y) =

(√
1− 4(b− 1)b− 1

2b
,−1

)
, (74)

obtained from the following autonomous system

x′ = −3b(1+ x2)− 3(1− x)y, (75)
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y′ = 3y(1+ y)− 3(1+ n)y (b + x(1+ bx) + y)
nx

. (76)

For this model, it is not hard to see that ωe f f = −1, q = −1, while

ωp = − 2b√
1− 4(b− 1)b− 1

, (77)

and

r =
Ωm

Ωp
=

2b +
√

1− 4(b− 1)b
2(1− b)

. (78)

Discussed late time scaling attractor represents a universe where the polytropic gas is phantom
DE, when one of the following conditions take a place

n ≤ −1, 0 < b <
n− 1

2n
, (79)

or
− 1 < n < 0, 0 < b < 1. (80)

3.1.3. Interacting Model with Q = 3Hb
(

ρp + ρm +
ρpρm

ρp+ρm

)
The third model studied in Reference [91] is a cosmological model with the following form of

interaction

Q = 3Hb
(

ρp + ρm +
ρpρm

ρp + ρm

)
, (81)

having four critical points and only one is a physically reasonable and has the following form (E.1.3)

(x, y) =

(
1+ b−

√
1+ (5b− 2)b
2b

,−1

)
, (82)

According to Reference [91] this solution is a late time scaling attractor describing universe with
ωe f f = −1, q = −1,

ωp = − 2b
1+ b−

√
1+ (5b− 2)b

, (83)

and

r =
Ωm

Ωp
=

3b +
√

1+ (5b− 2)b− 1
2(1− b)

, (84)

where the polytropic gas is phantom DE, when

n ≤ −1, 0 < b <
2n− 5

10n
+

1
10

√
5+ 4n2

n2 , (85)

or
− 1 < n < 0, 0 < b < 1. (86)

3.1.4. Sign Changeable Interactions

On the other hand in Reference [91] an attempt has been forwarded to construct new forms of
sign changeable interactions for the interaction terms considered in Sections 3.1.1–3.1.3. In particular,
the deceleration parameter q has been involved. The result (critical points) of the study presented in
Reference [91] is summarized in Table 7.
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Table 7. Critical points for the models where sign changeable non linear interactions are given via
Equations (87)–(89).

Critical Points Q x y

E.2.1 Equation (87) 1+2b±
√

1−4b2

2b −1

E.2.2 Equation (88) 1±
√

1−4b(1+b)
2b −1

E.2.3 Equation (89) 1
2 (1±

√
5) 0

E.2.4 Equation (89) b−1±
√

1+(2+5b)b
2b −1

In particular, the forms for Q have been considered

Q = 3Hbq
(

ρp + ρm +
ρ2

m
ρp + ρm

)
, (87)

Q = 3Hbq

(
ρp + ρm +

ρ2
p

ρp + ρm

)
, (88)

and

Q = 3Hbq
(

ρp + ρm +
ρpρm

ρp + ρm

)
. (89)

Analysis show that obtained critical points are not stable. Compared with the interactions terms in
Sections 3.1.1–3.1.3, appropriate sign changeable interactions do not allow to obtain late time attractors.

3.2. LSU with a Varying Polytropic Gas

In this section one will discuss results of the study presented in Reference [92]. The study of
Reference [92] involves new idea/ phenomenological model of dark fluid constructed in analogue
with a varying Chaplygin gas of the following form

Pc = Aρc −
BH−k

ρα
. (90)

In particular, in Reference [92] the following model of varying polytropic gas

Pde = AH−kρ1+1/n
de , (91)

where A, B, k and n are constants, is considered. In addition, pressureless DM to be the second
component of recent low redshift universe is assumed to exist. Moreover, the forms of interactions
considered in Reference [92] are particular examples obtained from

Q = qm (3Hbρi + γρ̇i) , (92)

m, b and γ are constants. There the subscript i stands for the energy density either of effective fluid,
or one of dark components. The study in Reference [92] starts form the models containing fixed sign
interactions, which correspond to m = 0 in Equation (92) with q ∈ [−1, 0), ωde ∈ [−1.05, 0), k ∈ (−2, 2)
and n ∈ (−2, 2). The lower limit on ωde is due to PLANCK 2015 satellite experiment constraints [93].

3.2.1. Interaction Q = 3Hbρde + γρ̇de

The first cosmological model studied in Reference [92] involves the following interaction

Q = 3Hbρde + γρ̇de, (93)
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between varying polytropic DE, Equation (91), and CDM. The autonomous system of this model reads
as [92]

x′ = 3x(1 + y)− 3(x + bx + y)
1 + γ

, (94)

y′ =
3
2
(2 + k)(1 + y)y− 3(1 + n)(x + bx + y)y

n(1 + γ)x
, (95)

and admits only one physically reasonable stable critical point (C.1.1) (is either a stable node or stable
focus) of the following form

(x, y) =
(

1
1 + b

,−1
)

. (96)

It is easy to see, that straightforward calculations give

r =
Ωdm
Ωde

= b, (97)

indicating that a solution of CCP directly depends on parameter b of interaction Equation (93). C.1.1
describes the universe where ωe f f = −1, q = −1 and EoS parameter of the varying polytropic DE
reads as

ωde = −1− b. (98)

In case of considered constraints in Reference [92] one will have only phantom polytropic dark
fluid. The study of Reference [92] reveals possible phase transition to accelerated expending low
redshift universe. On the other hand, the study of this model has been completed by estimation of the
present day values of (ω′de, ωde) and statefinder parameters (r, s), which are summarized in Table 8 of
this work.

Table 8. Present day values of (ω′de, ωde) and statefinder parameters (r, s) for the cosmological model
where H0 = 0.72, Ω0

de = 0.7 and Ω0
de = 0.3, while the interaction is given by Equation (93).

b γ (ω′
de, ωde) (r, s)

0.0 0.0 (−0.453,−0.998) (4.982,−1.266)
0.02 0.0 (−0.483,−0.998) (4.857,−1.226)
0.02 0.01 (−0.483,−0.998) (4.858,−1.226)
0.02 0.02 (−0.482,−0.998) (4.859,−1.227)
0.02 0.03 (−0.482,−0.998) (4.861,−1.228)

3.2.2. Interaction Q = 3Hbρdm + γρ̇dm

The second cosmological model considered in Reference [92] admits the following form of the
interaction

Q = 3Hbρdm + γρ̇dm. (99)

giving two late time attractors (Table 9). However, an attractor C.2.2 with x = 1 and y = 0, can not
describe accelerated expansion of recent LSU, therefore it is out of the future discussion. Late time
attractor C.2.1 with x = 1 and y = −1 describes the state of low redshift universe with ωe f f = −1,
ωde = −1 and q = −1 i.e it describes de Sitter universe (according to the constraints considered
in Reference [92]). On the other hand in Table 10 present day values of (ω′de, ωde) and statefinder
parameters (r, s) are summarized and the study revealed possible phase transition to accelerated
expending low redshift universe.
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Table 9. Critical points for the cosmological model, where interaction between varying polytropic dark
fluid Equation (91) is given via Equation (99).

Critical Points x y Type of Stability Acceleration

C.2.1 1 −1 Stable node Yes
C.2.2 1 0 Stable node No

Table 10. Present day values of (ω′de, ωde) and statefinder parameters (r, s) for the cosmological model
where H0 = 0.72, Ω0

de = 0.7 and Ω0
de = 0.3, while the interaction is given via Equation (99). The values

of the parameters are due to the behavior of the cosmological parameters presented in Figure 2 of
Reference [92]. m = −2.

b γ (ω′
de, ωde) (r, s)

0.0 0.0 (−0.453,−0.998) (4.982,−1.266)
0.02 0.0 (−0.466,−0.998) (4.928,−1.249)
0.02 0.01 (−0.459,−0.998) (4.955,−1.258)
0.02 0.03 (−0.447,−0.998) (5.011,−1.227)

3.2.3. Interaction Q = 3Hb(ρdm + ρde) + γ(ρ̇dm + ρ̇de)

Another possibility studied in Reference [92] is cosmological model where the interaction between
dark components reads as

Q = 3Hb(ρdm + ρde) + γ(ρ̇dm + ρ̇de), (100)

with only one late time attractor (C.3.1 with r = b/(1− b)) of the following form

(x, y) = (1− b,−1) , (101)

ωe f f = −1, q = −1 and

ωde = −
1

1− b
, (102)

giving a phantom LSU when b ∈ (0, 1). On the other hand, when b = 0 polytropic dark fluid is a CC
with ωde = −1. In Reference [92] the graphical behavior of the cosmological parameters reveals the
phase transition between decelerated and accelerated expansion.

3.2.4. Interaction Q = q (3Hbρde + γρ̇de)

In addition to considered three forms of interactions, in Reference [92] some forms of sign
changeable interactions also has been discussed to complete the study. In particular the following form
of sign changeable interaction

Q = q (3Hbρde + γρ̇de) , (103)

has been considered and demonstrated, that only one critical point exists (E.4.1 which is either stable
node or stable focus) with

(x, y) =
(

1
1− b

,−1
)

, (104)

ωde = −1 + b, ωe f f = −1 and q = −1. On the other hand, for this model Ωdm/Ωde is equal to
−b and in Reference [92] 0 ≤ b < 1 was assumed, which directly indicates that C.4.1 is physically
reasonable only with b = 0. Therefore, according to Reference [92] C.4.1 describes a state of LSU,
where only varying polytropic dark energy given by Equation (91) will dominate (an example of de
Sitter universe). Moreover, the considered model has phase transition to an accelerated expanding low
redshift universe.
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If interaction of the following form is considered

Q = q (3Hbρdm + γρ̇dm) , (105)

between varying polytropic DE and DM, then only one late time attractor will exist for this model,
which is an example de Sitter universe admitting phase transition (see Reference [92]).

3.2.5. Interaction Q = q (3Hb(ρdm + ρde) + γ(ρ̇dm + ρ̇de))

Autonomous system of cosmological model where interaction between suggested DE and DM
has the following form (the last model considered in Reference [92])

Q = q (3Hb(ρdm + ρde) + γ(ρ̇dm + ρ̇de)) , (106)

has one critical point (C.6.1)
(x, y) = (1 + b,−1), (107)

and describe a model of universe with q = −1, ωe f f = −1 and

ωde = −
1

1 + b
. (108)

However, in this case C.6.1 is a physically reasonable solution if b = 0 (according to considered
constrains), describing de Sitter universe. Moreover, it is easy to see that the explicit forms of the trace

Tr =
3(2 + 3b− (2 + b + k(1 + b))n + 2(1 + n)γ)

2(1 + b)n
, (109)

and the determinant
Det =

9k
2
− 9

n
, (110)

of the appropriate Jacobian matrix indicate for C.6.1 attractor to be either stable node or stable focus.
Present day values of (ω′de, ωde) and statefinder parameters (r, s), for different values of the parameters
of all models studied in Reference [92] are summarized in appropriate tables (for more details on this
issue one referees the readers to Reference [92]).

3.3. Cosmological Models with Generalized Holographic DE

In this subsection, following Reference [94], one will consider particular model of the generalized
holographic DE with the Nojiri- Odintsov cut-off defined as [24].

ρde =
3c2

L2 , (111)

with
c
L
=

1
L f

[
α0 + α1L f + α2L2

f

]
(112)

where L f it is the future horizon and defined as

L f = a
∫ ∞

t

dt
a

, (113)

while c, α0, α1 and α2 are numerical constants.
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3.3.1. Models with Q = 3Hb(ρde + ρdm)

Generalized holographic DE model of Reference [24] includes arbitrary cut-off depending
on L f , scale factor, H etc and their derivatives. In Reference [94] particular class of such
generalized holographic DE model with Nojiri-Odintsov cut-off as Equation (112) has been considered.
The cosmological model of LSU, where the interaction between the dark energy and dark matter is
given by Q = 3Hb(ρde + ρdm) contains the DE with the following EoS parameter

ωde = −
3bH2L f + 2

√
Ωde L̇ f (α1 + 2α2L f ) + HΩde(HL f + 2)

3H2L f Ωde
, (114)

while the deceleration parameter q reads as

q =
(1− 3b)H2L f − 2

√
Ωde L̇ f (α1 + 2α2L f )− HΩde(HL f + 2)

2H2L f
. (115)

Analysis of Reference [94] shows that in such model ztr ≈ 0.682 (transition redshift) when b = 0
and the present day value of q defined by Equation (115) will decrease, the transition redshift ztr

will increase, when the value of the interaction parameter b will increase. Moreover, an increase of
the interaction parameter b will speed up an increase of the amount of Ωde and this model is free
from CCP. Moreover, the study of Reference [94] indicates clearly, that the impact of the interaction is
imprinted into the dynamics of Ωde and Ωdm. Moreover, for b ∈ [0, 0.03] the value of the EoS parameter
of DE (recent epoch) satisfies to the constraints according to the Planck satellite 2015 experiments.
On the other hand, in this case with an increase of b the EoS will change its nature from quintessence
to phantom (for higher redshifts), while for the lower redshifts gives an increase of ω′de and a decrease
of ωde. Another constraint on the parameter b is b ∈ [0, 0.005] due to the demand for DE to have only
the quintessence nature. From Table 11 one sees that an increase of b will decrease and increase the
present day values of r and s parameters, respectively.

Table 11. Present day values of the deceleration parameter q, (ωde, ω′de) of interacting dark energy,
(r, s) statefinder parameters and the value of the transition redshift ztr for several values of the
interaction parameter b, when the interaction is given by Q = 3Hb(ρde + ρdm). The best fit of the
theoretical results to the recent observational data has been obtained for H0 = 0.7, α0 = 0.15, α1 = 0.25,
c = 0.75.

b q (ωde, ω′
de) (r, s) ztr

0.0 −0.522 (−0.978, 0.249) (2.86,−0.61) 0.682
0.01 −0.537 (−0.993, 0.257) (2.76,−0.57) 0.728
0.03 −0.567 (−1.022, 0.269) (2.57,−0.49) 0.832
0.05 −0.596 (−1.051, 0.279) (2.39,−0.42) 0.954
0.07 −0.626 (−1.079, 0.284) (2.23,−0.36) 1.101

3.3.2. Models with Non-Linear Interactions

The cosmographic study of Reference [94] has been completed with an assumption about possible
existence of the interaction between DE and DM of the following form

Q = 3bH
ρdeρdm

ρde + ρdm
. (116)
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Straightforward calculations showed that such assumption gives a universe, where the EoS parameter
of DE and the deceleration parameter read as

ωde =
1
3

(
3bΩde − 3b−

2L̇ f (α1 + 2α2L f )

H2L f
√

Ωde
− 2

HL f
− 1

)
(117)

and

q =
3bH2L f Ω2

de − HΩde(H(3bL f + L f ) + 2)− 2
√

Ωde L̇ f (α1 + 2α2L f ) + H2L f

2H2L f
. (118)

The appropriate comparison of the results for the cosmological models where the interaction is
given by Q = 3Hb(ρde + ρdm), Equation (116),

Q = 3bH
ρ2

de
ρde + ρdm

, (119)

and

Q = 3bH
ρ2

dm
ρde + ρdm

, (120)

is presented in Reference [94]. The analysis shows, that with the interaction Q = 3Hb(ρde + ρdm)

one will obtain the highest value for the transition redshift ztr, while Equations (116), (119) and (120)
interactions will increase ztr. Moreover the study shoes that the maximum and minimal present day
values for the deceleration parameter will be obtained in case of b = 0 and Q = 3Hb(ρde + ρdm),
respectively. It also has been found that the ztr significantly will be affected in case of Q = 3Hb(ρde +

ρdm) and the dynamics of Ωde and Ωdm carry information about the nature of the interactions. Moreover,
the author of Reference [94] demonstrated, that with Q = 3Hb(ρde + ρdm) and Equation (120) DE is
phantom, while in case of b = 0 and when the interaction terms are given by Equations (116) and (119),
DE is quintessence (for higher redshifts). However, during the evolution DE will change the nature
giving either a quintessence universe, or a phantom universe. Such behavior has been found directly
imprinted on the behavior of the other parameters.

Besides cosmographic analysis, the models have been studied by Om and Om3 analysis and the
graphical behavior (redshift dependent) of the Om and Om3 parametes are presented in Figures 4
and 5, respectively. Figures demonstrate departures from ΛCDM model (Ω0

dm = 0.3 line). Moreover,
one can see clearly, that Om analysis is good enough for these models, while Om3 analysis shows
that at lower redshifts non-gravitational interaction can be switched off. On the other hand S3

parameter (corresponding to the statefinder hierarchy analysis) is good to study the models for
lower redshifts only (Figure 6). In Reference [94] the validity of the generalized second law of
thermodynamics

Ṡtot = Ṡde + Ṡdm + Ṡh, (121)

with Sh = 8π2L2 it is the entropy associated with the horizon, has been confirmed. On the other hand,
b ∈ [0, 0.01) has been obtained from the validity of the generalized second law of thermodynamics.
One can see that in this case the DE will have phantom nature at higher redshifts.
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Figure 4. Graphical behavior of the Om parameter against the redshift z. The blue curve represents
non interacting model with b = 0, the orange curve represents the model, when the interaction is
given by Q = 3Hb(ρde + ρdm), the red curve represents the model when the interaction is given by
Equation (116), the green curve represents the model with the interaction given by Equation (119),
while the black curve represents the model with the interaction given by Equation (120), when H0 = 0.7,
α0 = 0.15, α1 = 0.25, c = 0.75. The left plot corresponds to the case when b = 0.03. The right plot
represents the case when for the interacting models b = 0.05.

Figure 5. Graphical behavior of the Om3 parameters against the redshift z. The blue curve represents
non interacting model with b = 0, the orange curve represents the model, when the interaction is
given by Q = 3Hb(ρde + ρdm), the red curve represents the model when the interaction is given by
Equation (116), the green curve represents the model with the interaction given by Equation (119),
while the black curve represents the model with the interaction given by Equation (120), when H0 = 0.7,
α0 = 0.15, α1 = 0.25, c = 0.75. The left plot corresponds to the case when b = 0.03. The right plot
represents the case when for the interacting models b = 0.05. z1 = 0.3 and z2 = 0.35.
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Figure 6. Graphical behavior of the S3 parameters against the redshift z. The blue curve represents
non interacting model with b = 0, the orange curve represents the model, when the interaction is
given by Q = 3Hb(ρde + ρdm), the red curve represents the model when the interaction is given by
Equation (116), the green curve represents the model with the interaction given by Equation (119),
while the black curve represents the model with the interaction given by Equation (120), when H0 = 0.7,
α0 = 0.15, α1 = 0.25, c = 0.75. The left plot corresponds to the case when b = 0.03. The right plot
represents the case when for the interacting models b = 0.05.

4. Conclusions

Accelerated expansion of LSU is one of the long standing problems. There are various attempts to
solve this problem and in this review paper one has presented some of the possible new solutions of
this problem. In particular, it has been demonstrated, that the problem of accelerated expansion can
be solved by the new models of the varying ghost DE. Moreover, for two models massless particle
creation in appropriate readiation dominated universe has been observed numerically. On the other
hand within phase space analysis two alternative possibilities have been demonstrated. In the first case
new models of nonlinear and nonlinear sing changeable interactions have been considered between
polytropic DE and CDM. On the other hand for the second case, the solution to the problem has
been demonstrated within new phenomenological modification of polytropic gas. Finally, the third
alternative possibility presented in this work is due to the generalized holographic DE model with a
specific form of cut-off. In this case, various forms of non-gravitational interaction between DE and
DM have been considered to complete the study. Presented all models either are free from CPP, or
the CCP can be avoided due to appropriate interaction. All models give phase transition between
decelerated and accelerated expansion.

Comparison of the results with observational data proved the viability of suggested scenarios.
On the other hand, one should try to deepen the position of these models involving into the game
other forms of non-gravitational interaction, find scalar field description of the models (find the form
of the potential) and construct, for instance, the f (R) theory. There is another important direction of
research related to the classification and understanding of the formation of finite time singularities in
these models [95–100]. One hopes that results of this study will be reported soon elsewhere.
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Appendix A

The last decade has been fruitful for the research on problems of universe and allowed to collect
a huge amount of observational/scientific data. Such success is directly related to the new and
innovative developments in technology. Available sets of observational data allow to use various tests
to compare the theoretical results and obtain appropriate constraints on the parameters of the models.
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The first attempt to constraint the parameters of the model could be provided from H(z) data. For this
case the test requires to minimize χ2

H defined as

χ2
H = ∑

i

(
H(zi, P)th − H(zi)

obs

σi
H

)2

, (A1)

where H(zi, P)th it is the theoretical value of the Hubble parameter H obtained from the Friedmann
equation for a given redshift zi, while Hobs represents appropriate estimates of the Hubble parameter
from various missions with its error σi

H . The goal of this test is to obtain constraints on the parameters
P of the model via minimizing the χ2

H . Appropriate constraints can be obtained using data from
Supernova Cosmology project through the fitting the distance modulus µ(z),

µ(z) = 5 log10(dL(z)) + µ0, (A2)

where µ0 = MB − 5 log10 h, with absolute magnitude MB of the SNeIa and h being the Hubble
parameter at present in units of 100 kms−1Mpc−1 with

dL(z) = (1 + z)
∫ z

0

H0

H(z′)
dz′, (A3)

and the χ2
SN to fit the data is then given by

χ2
SN = ∑

i

(
µ(zi, P)th − µ(zi)

obs

σi
µ

)2

. (A4)

In this case the values of the parameters minimizing χ2
SN must be computed. One can use also data

from CMB and BAO to obtain appropriate constraints. Moreover, tests can be applied simultaneously
and the demand in this case is to minimize the value of the total χ2

tot

χ2
tot = ∑

j
χ2

j , (A5)

where j ∈ {H, SN, CMB, BAO}. Additionally, one can impose constraints on phenomenological
models using, for instance, observational data corresponding to the active galactic nucleus clustering.
There is also an active discussion on possible constraints provided by strong and weak gravitational
lensing data if one has a good knowledge of lens models. The fact that the cosmological gravitational
field bends the paths of the light rays when they pass through the astronomical objects one can extract
important information, for instance, on the mass distribution. Therefore. gravitational lensing has
developed into an important astrophysical tool for probing the cosmology, the structure formation and
the evolution of galaxies. Data fitting and the estimation of the parameters of the cosmological model
in case of strong gravitational lensing is based on the distance ratio

D(zl , zs) =
dA(zl , zs)

dA(0, zs)
=

∫ zs
zl

dz′/H(z′)∫ zs
0 dz′/H(z′)

, (A6)

where zs and zl are the redshifts of the source and lens, respectively, while

dA(zd, zs) =
1

1 + zs

∫ zs

zd

H0

H(z′)
dz′, (A7)
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it is the angular diameter distance between zd and zs in a flat universe (in units of c/H0). It is obvious,
that the angular diameter distance dA carries all information concerning to the background dynamics
of universe, therefore data fitting test like χ2

SGL

χ2
SGL = ∑

i

(
D(zi, P)th − D(zi)

obs

σi
D

)2

, (A8)

also can be used to obtain appropriate constraints. Consideration of D(zl , zs) allows one to eliminate
uncertainty between the stellar velocity dispersion σ0 and the velocity dispersion of the singular
isothermal sphere/ellipsoid [101–104] (and references therein which can provide additional references
to dark energy models, interaction in modern cosmology, modified theories of gravity, etc.). One can
involve various geometrical tools like statefinder analysis with r = ˙̈a

aH3 and s = r−1
3(q−1/2) parameters,

(ω′de, ωde), Om, Om3 and statefinder hierarchy analysis to study cosmological models. For instance,
(ω′de, ωde) analysis suggests to study the behavior of the DE in ω′de and ωde plane, where ω′de is the
derivative of EoS of DE with respect to N = log a. On the other hand, the three-point diagnostic Om3

Om3 =
Om(z2, z1)

Om(z3, z1)
, (A9)

where the two point Om reads as

Om(z2, z1) =
x(z2)

2 − x(z2
1)

(1 + z2)2 − (1 + z1)2 , (A10)

is also very convenient tool as well. An interesting approach to study DE models is statefinder
hierarchy analysis requiring to study the following parameters

S(1)
3 = A3, (A11)

S(1)
4 = A4 + 3(1 + q), (A12)

S(1)
5 = A5 − 2(4 + 3q)(1 + q), (A13)

etc. An reads as

An =
a(n)

aHn , (A14)

with
a(n) =

dna
dtn . (A15)
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