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Abstract: We enumerate the regular and chiral polyhedra (in the sense of Grünbaum’s skeletal
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1. Introduction

The primitive cubic lattice, face-centred cubic lattice, and body-centred cubic lattice are
well-known geometric objects widely studied in mathematics, and also used in other fields as models
of various concepts. There are several interesting topics closely related to these lattices; for example,
packings of spheres in Euclidean space [1] and crystal systems [2]. These lattices are a useful tool for
the study of the affinely-irreducible discrete groups of isometries of Euclidean space [3], and are the
ambient space for other interesting mathematical objects [4–6].

According to [7], a polyhedron is a connected and discrete collection of polygons in Euclidean
space where every edge belongs to two cycles (faces). Polyhedra are not required to be convex, are
not required to be finite, and their faces are not required to be contained in a plane. Regular and
chiral polyhedra admit combinatorial rotations along all their faces and around all their vertices.
Regular polyhedra admit combinatorial reflections, while chiral polyhedra do not. Regular polyhedra
were classified in [8,9]; chiral polyhedra were classified in [10,11].

In this paper, we prove the following theorem.

Theorem 1. The only chiral polyhedra in Euclidean space whose vertex and edge sets are subsets of pcu, fcu, or
bcu are P(1, 0) and P1(1, 0) in pcu, and Q(1, 1) and P2(1,−1) in bcu.

The polyhedra P(1, 0), P1(1, 0), Q(1, 1), and P2(1,−1) are among the chiral polyhedra described
in [10,11]. We recall some of their main aspects and provide some local pictures in Section 4.

In Section 2, we provide background on the primitive cubic lattice pcu, face-centred cubic lattice
fcu, and body-centred cubic lattice bcu in the context of nets of Euclidean space. Rotary, chiral, and
regular polyhedra are defined and described in Section 3. Finally, in Section 4, we prove Theorem 1 by
enumerating the rotary polyhedra whose vertex and edge sets can be taken from those of one of the
three lattices mentioned above.

2. Nets

By a net, we mean a connected graph embedded with straight edges in Euclidean space R3,
invariant under translations by three linearly independent vectors. The vertex set of the net must
be discrete. Nets arise naturally when modelling periodic structures in chemistry. They are commonly
denoted by three letters abc that often carry information about chemical compounds whose links can
be represented by that net. They are also natural structures for mathematicians to study.
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A symmetry of a net is an isometry of R3 that preserves the vertex and edge sets. A wealth
of highly-symmetric nets can be found in the Reticular Chemistry Structure Resource database [12].
In what follows, we describe some of these nets that are relevant for this work. They are all highly
related with the cubic tessellation T of Euclidean space. For convenience, we assume that the vertex
set of T is the set of points with integer coordinates.

The primitive cubic lattice pcu consists of all vertices and edges of T (see Figure 1a). Every vertex
is 6-valent and has edges with three distinct direction vectors; namely, those of the coordinate axes.

The face-centred cubic lattice fcu can be constructed from T by taking as vertices all vertices of
pcu whose sum of coordinates is even (one part of the natural bipartition of pcu) and as edges all
diagonals of squares of T with endpoints in the vertex set (see Figure 1b). The vertices are 12-valent,
and there are six distinct directions of the edges. There are precisely four vertices of each cube of T in
the vertex set of fcu; their convex hull is a regular tetrahedron. Given any vertex of pcu that is not a
vertex of fcu, its six neighbours in pcu all belong to fcu, and are the vertices of an octahedron. These
tetrahedra and octahedra are the cells of tessellation #1 in [13]. Each triangle of that tessellation can
be extended to a plane tessellation by equilateral triangles, where all triangles are also triangles of
tessellation #1 in [13]. By gluing sets of six triangles together, we can obtain the vertex and edge set of
a tessellation by regular hexagons as a subset of the net fcu.

The body-centred cubic lattice bcu has as vertex set all vertices of pcu whose coordinates are
either all odd or all even; two vertices are adjacent whenever they are endpoints of a diagonal of a
cube of T (see Figure 1c, where the thin gray lines represent only those lines containing edges of T
where two of the coordinates are even). The vertices are 8-valent, and there are four distinct directions
of the edges.

(a) (b) (c)

Figure 1. Nets pcu (a); fcu (b); and bcu (c).

The three nets just described are the only nets whose symmetry groups induce only one kind of
vertex and whose vertex-stabilizers are isomorphic to the symmetry group [3, 4] of the octahedron.

The symmetry group of any net is a crystallographic group, and hence it contains no rotations of
order 5 (for example, see [10], Lemma 4.1).

In this paper, we shall think of the nets as rigid objects in Euclidean space, although the same
combinatorial structures could be embedded in a less symmetric way. Except in the third column of
Tables 2–4, all nets should be understood as geometric objects and not only as combinatorial ones.

We shall need the following straightforward result.

Lemma 1. The angle between two edges incident to the same vertex is

• either π or π/2 if the edges are in pcu;
• either π/3, π/2, 2π/3, or π if the edges are in fcu;
• and either cos−1(1/3), cos−1(−1/3), or π if the edges are in bcu.

The angles listed in Lemma 1 are highlighted in Figure 2.
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Figure 2. The angles formed by edges of the nets pcu, fcu and bcu.

3. Regular and Chiral Polyhedra

Highly symmetric convex polyhedra have been studied for centuries. It is well-known that there
are only five convex regular polyhedra and 13 Archimedean solids, which, together with the infinite
families of prisms and antiprisms, are the only convex polyhedra whose faces are regular polygons
and whose symmetry groups induce only one kind of vertex.

In order to get a richer theory, we admit other combinatorial structures in R3 as polyhedra.
In particular, we allow infinite polyhedra and even infinite polygons, and we abandon the idea of
polygons being spanned by a 2-dimensional membrane.

3.1. Definitions

For us, a polygon is an embedding to R3 of a connected 2-regular graph; that is, of a cycle or
of a two-sided infinite path. Polygons are explicitly allowed to be • skew (non-planar) and infinite,
but we require the vertex set to be discrete.

A polyhedron is a (finite or infinite) collection of polygons (also called faces) with the
properties that

• the set of vertices is discrete,
• the graph determined by all vertices and edges is connected,
• every edge belongs to exactly two faces,
• the vertex-figure at every vertex is a finite polygon. (The vertex-figure at a vertex v is the graph

whose vertices are the neighbours of v, two of them joined by an edge whenever they are the
neighbours of v in some face of the polyhedron.)

Convex polyhedra clearly satisfy the previous definition, as also do face-to-face tilings of the
Euclidean plane (embedded in R3) and many more interesting structures.

A symmetry of a polyhedron P is an isometry of R3 that preserves P . The group of all isometries
of P is denoted G(P).

Whenever there is a symmetry of P that cyclically permutes the vertices of a face F, we say that
P has abstract rotations along F. Similarly, if there is a symmetry of P that cyclically permutes the
neighbours of a given vertex v, we say that P has abstract rotations around v. An abstract reflection of P
is a symmetry that, for some triple of mutually incident vertex, edge, and face, it preserves two of the
elements while moving the third.

When P is a convex polyhedron, abstract rotations and abstract reflections are indeed rotations
around some axes and reflections with respect to planes. However, if the faces are not planar, or they
are not finite, then the abstract rotations about the faces are determined by the nature of the faces,
and cannot be rotations about lines.

Some polygons admitting abstract rotations are shown in Figure 3. An abstract rotation of a finite
polygon that has all vertices on a plane may be either a geometric rotation or a rotatory reflection
(composition of a rotation about a line l and a reflection with respect to a plane perpendicular to l).
If the polygon is finite but skew (no plane contains all vertices), then an abstract rotation mapping
a vertex to an adjacent vertex is necessarily a rotatory reflection. Some examples of finite polygons
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can be seen in the left side of Figure 3. The abstract rotation that maps a vertex of a planar zigzag to
a neighbouring vertex is either a twist (composition of a translation and a rotation with axis in the
direction of the translation) or a glide reflection (composition of a translation and a reflection about the
plane containing the direction of the translation). If the polygon is a helix then such an abstract rotation
is necessarily a twist. A helix and a zigzag are shown in the right side of Figure 3. In addition to the
polygons mentioned above, polygons having all edges in the same line also admit abstract rotations,
but they are not relevant for this work.

Figure 3. Abstract rotations of polygons.

We say that a polyhedron is rotary whenever it admits all possible abstract rotations around all
its faces and around all its vertices. A rotary polyhedron is regular if in addition it admits an abstract
reflection, and chiral otherwise. The Platonic solids are the only convex polyhedra that are regular
under this definition. Furthermore, there are no convex chiral polyhedra.

The definitions of polyhedron, regular, and chiral in this section are equivalent to those
in [10,11,14], and differ mildly only on the condition on the vertex-figure with those in [7]. The above
use of the term “chiral” is widely accepted in the community studying abstract polytopes and related
topics; to avoid confusion, the reader should bear in mind that in chemistry this word is used to denote
a substantially different property.

All faces of a regular or chiral polyhedron have the same number p of edges, and all vertices
have the same degree q. The pair {p, q} is called the Schläfli type (or just type) of the polytope.
When studying rotary polyhedra, p is allowed to be ∞, but q must be finite to prevent the vertex set
from being non-discrete.

A Petrie polygon of a polyhedron P is a closed walk on the vertex and edge sets of P , where any
two consecutive edges—but not three—belong to the same face. The structure obtained from the vertex
and edge set of P , but considering the Petrie polygons as faces is often a polyhedron. When this occurs,
it is called the Petrial of P .

The Petrial of the cube is outlined in Figure 4. The four faces are the hexagonal Petrie polygons in
thick lines. Note that every edge belongs to precisely two such polygons.

Figure 4. Petrial of the cube.
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3.2. Regular Polyhedra

In [7], Grünbaum introduced the idea of polyhedron used in this and many other papers. There, he
also described 47 regular polyhedra. The classification of the 48 regular polyhedra was achieved
by Dress in [8,9]. A shorter proof of the completeness of the classification can be found in [14].
Throughout, we shall use the names of the polyhedra given in [14].

There are 18 finite regular polyhedra. They are the five Platonic solids, the four Kepler–Poinsot
polyhedra, and the Petrials of the previous nine (see [7,15] for further details).

Six of the infinite regular polyhedra are in fact planar. Three of them are the regular
tessellations of R2 by squares, equilateral triangles, and regular hexagons, denoted by {4, 4}, {3, 6},
and {6, 3}, respectively. The remaining three are the Petrials {∞, 4}4, {∞, 6}3, and {∞, 3}6 of
these tessellations. Figure 5 shows two Petrie polygons of {∞, 4}4, three of {∞, 6}3, and three of
{∞, 3}6; all other Petrie polygons are translates of these.

Figure 5. Petrie polygons of the planar polyhedra.

The remaining 24 infinite regular polyhedra live properly in R3, and can be evenly divided into
those that are blended (their automorphism groups permute the translates of some plane) and those
that are pure (not blended).

Each blended polyhedron P has a regular planar polyhedronQ as its image under the orthogonal
projection to some plane Π, with the property that edges are mapped to edges and faces to faces.
The orthogonal projection of P to the line Π⊥ perpendicular to Π is either a line segment {} (the only
regular polytope of rank 1) or a tessellation {∞} of Π⊥ by equal segments (the only regular polygon
on the line), and we shall denote it byR in either case. The polyhedron is then denoted by Q#R.

The vertices of the polyhedron P#{} are contained in two parallel planes, and every edge joins
a vertex in one plane to a vertex in the other. The polyhedron {4, 4}#{} is illustrated in Figure 6a;
the faces are skew quadrillaterals that project to the lower (or upper) plane into squares. The faces
of P#{∞} are helices over the faces of P . If two such faces share an edge, then one is obtained from
the other by the reflection about a wall of the helix. Figure 6c shows three faces of {4, 4}#{∞}, one in
solid lines, one in dotted lines and one in dashed lines. One zigzag of {∞, 4}4#{} and one zigzag of
{∞, 4}4#{∞} are shown in Figure 6b,d, respectively.

(a) (b) (c) (d)

Figure 6. Blended polyhedra {4, 4}#{} (a); {∞, 4}4#{} (b); {4, 4}#{∞} (c) and {∞, 4}4#{∞} (d).

To each of the 12 blended polyhedra, we may associate a real positive parameter β corresponding
to the ratio between the lengths of an edge of Q and a line segment ofR. The parameter β determines



Symmetry 2016, 8, 115 6 of 14

the angle α between consecutive edges of a face. Assuming that θ is the angle between two consecutive
edges of a face of the planar polyhedron Q, the parameter α satisfies that 0 < α < θ when P is Q#{},
whereas θ < α < π if P is Q#{∞}. The parameter α completely determines P up to similarity (see the
polyhedra in Class 6 of [7]).

Three of the pure polyhedra have finite planar faces and skew vertex-figures. Two of them were
discovered by Petrie, and the remaining by Coxeter (see [16]). The faces of {4, 6|4} are squares of the
cubic tessellation, while the faces of {6, 4|4} and of {6, 6|3} are hexagons in the lattice fcu. Partial views
of the polyhedra {4, 3|4} and {6, 4|4} are shown in Figure 7.

Figure 7. The polyhedra {4, 3|4} and {6, 4|4}. Squares and hexagons in the same shade of gray
represent polygons in parallel planes

Three infinite pure polyhedra have finite skew faces and planar vertex figures. The faces of the
polyhedron {6, 4}6 consist of one Petrie polygon of each cube in the cubic tessellation, suitably chosen;
this polyhedron is self-Petrial. The faces of the polyhedron {4, 6}6 are Petrie polygons of tetrahedra
of the tiling of tetrahedra and octahedra; the faces of the polyhedron {6, 6}4 are Petrie polygons of
octahedra of the same tiling. These two polyhedra are Petrials of each other.

The remaining six pure regular polyhedra have helical faces; three have skew vertex-figures and
three planar vertex-figures. The polyhedra {∞, 6}4,4, {∞, 4}6,4, and {∞, 3}6,3 are the Petrials of {4, 6|4},
{6, 4|4}, and {6, 6|3}, respectively, and therefore have skew vertex-figures. The faces of {∞, 6}4,4 and
{∞, 4}6,4 are helices over triangles, whereas those of {∞, 3}6,3 are helices over squares. The polyhedra
{∞, 3}(a) and {∞, 3}(b) are Petrials of each other; the faces of the former are helices over triangles, and
those of the latter are helices over squares. The polyhedron {∞, 4}·,∗3 is self-Petrial, and its facets are
helices over triangles.

In contrast to the blended polyhedra, the pure polyhedra are unique up to similarity. More details
on their geometry can be found in [7].

3.3. Chiral Polyhedra

In 2005, all chiral polyhedra in R3 were described by Schulte in [10,11]. Here, we briefly summarise
that description. They are all infinite and pure, and can be classified into six infinite families.

The chiral polyhedra in the families P(a, b), Q(c, d), and Q(c, d)∗ have finite skew faces and
skew vertex-figures, whereas those in families P1(a, b), P2(c, d), and P3(c, d) have helical faces and
planar vertex-figures. The parameters take real values, not both 0, and a polyhedron with parameters
(a, b) or (c, d) is similar to that with parameters (ka, kb) or (kc, kd), respectively, for any k 6= 0.
This makes it possible to consider the polyhedra in each family to be parametrised by only one
real parameter a/b or c/d.

The parameters for polyhedra in the families P(a, b), Q(c, d), and Q(c, d)∗ must be rational
multiples of each other (or one of them 0), since otherwise the vertex set is not discrete. There is no
such restriction for the parameters of polyhedra in the remaining three families. Each of the six families
has two distinguished parameters for which the corresponding polyhedra are regular; the polyhedra
determined by the remaining parameters are chiral.
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The polyhedra in the family P(a, b) have type {6, 6}. Two of them, P(a, b) and P(a′, b′) (say),
are combinatorially isomorphic if and only if (a, b) ∈ {(ka′, kb′), (kb′, ka′)} for some k 6= 0, and they
are congruent if and only if (a, b) ∈ {±(a′, b′),±(b′, a′)}. The polyhedra P(1, 1) and P(1,−1) are the
regular polyhedra {6, 6|3} and {6, 6}4, respectively.

The polyhedra in the family Q(c, d) have type {4, 6}. Two of them, Q(c, d) and Q(c′, d′), are
combinatorially isomorphic if and only if (c, d) ∈ {(kc′, kd′), (−kc′, kd′)} for some k 6= 0, and they
are congruent if and only if (c, d) ∈ {±(c′, d′),±(−c′, d′)}. The polyhedra Q(0, 1) and Q(1, 0) are the
regular polyhedra {4, 6|4} and {4, 6}6, respectively. When c and d are relatively prime, with c odd and
d ≡ 2 modulo 4, then the vertex-figure at every vertex is the union of two cycles, and thus in that case,
Q(c, d) is not a polyhedron.

The polyhedron Q(c, d)∗ is the dual of Q(c, d), meaning that its vertices are at the centres
of the faces of Q(c, d), and each of its faces can be constructed around some vertex of Q(c, d).
Hence, Q(c, d)∗ has type {6, 4}. Furthermore, Q(c, d)∗ and Q(c′, d′)∗ are combinatorially isomorphic if
(c, d) ∈ {(kc′, kd′), (−kc′, kd′)} for some k 6= 0, and they are congruent if and only if (c, d) ∈
{±(c′, d′),±(−c′, d′)}. The polyhedra Q(0, 1)∗ and Q(1, 0)∗ are the regular polyhedra {6, 4|4} and
{6, 4}6, respectively.

If a polyhedron in one of the families P(a, b), Q(c, d), and Q∗(c, d) described above is not
combinatorially isomorphic to any of the two regular members of the family, it is geometrically
chiral and also chiral as a combinatorial structure.

The polyhedra in the family P1(a, b) have type {∞, 3}, and their faces are helices over triangles
with the exception of P1(1, 1). The regular instances of this family are P1(1, 1) = {3, 3} (the tetrahedron)
and P1(1,−1) = {∞, 3}(a). Any other member of the family is geometrically chiral but combinatorially
isomorphic to {∞, 3}(a). Two polyhedra P1(a, b) and P1(a′, b′) are similar when (a, b) = k(a′, b′)
or (a, b) = k(b′, a′) for some k 6= 0; and they are congruent if and only if (a, b) = ±(a′, b′) or
(a, b) = ±(b′, a′).

The polyhedra in the family P2(c, d) also have type {∞, 3}, but their faces are helices over squares
with the exception of P2(0, 1). The regular instances of this family are P2(0, 1) = {4, 3} (the cube)
and P2(1, 0) = {∞, 3}(b). Any other member of the family is geometrically chiral but combinatorially
isomorphic to {∞, 3}(b). Two polyhedra P2(c, d) and P2(c′, d′) are similar when (c, d) = k(c′, d′) or
(c, d) = k(−c′, d′) for some k 6= 0; and they are congruent if and only if (c, d) = (±c,±d).

The two regular members of the family P3(c, d) are P3(1, 0) = {3, 4} (the octahedron) and
P3(0, 1) = {∞, 4}·,∗3. The remaining polyhedra of the family have type {∞, 4}, and their faces
are helices over triangles; they are all geometrically chiral but combinatorially isomorphic to the
regular double cover {∞, 4}·,∗6 of {∞, 4}·,∗3. Two polyhedra P3(c, d) and P3(c′, d′) are similar when
(c, d) = k(c′, d′) or (c, d) = k(−c′, d′) for some k 6= 0; and they are congruent if and only if
(c, d) = (±c,±d).

The continuous movement of the parameters of the polyhedra in the last three families can
be understood as a continuous movement of the polyhedra {∞, 3}(a), {∞, 3}(b), and {∞, 4}·,∗6 that
preserves at all times the index 2 subgroup of the symmetry group generated by the abstract rotations.

More details about the chiral polyhedra described here can be found in [10,11,17].

4. Polyhedra in Euclidean Lattices

In this section, we prove Theorem 1 by listing the regular and chiral polyhedra whose underlying
graph is contained in one of the three lattices defined in Section 2. In other words, we want to find all
possible sets S of polygons (faces) in pcu, fcu, and bcu such that

• the union of the polygons yields a connected graph,
• every edge of the lattice belongs to precisely two polygons, or to none of them,
• every vertex-figure is a finite polygon,
• there are abstract rotations preserving S along every face,
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• there are abstract rotations preserving S around every vertex.

A large part of this work was done in [18] in a slightly different context, where the nets of the
regular infinite polyhedra are studied. Here, we also study polyhedra whose vertex and edge sets
are proper subsets of the nets pcu, fcu, and bcu, including the finite polyhedra; we still mention all
regular polyhedra for the sake of completeness. The main contribution of this paper, then, is the study
of the chiral polyhedra that admit an embedding into the nets pcu, fcu, and bcu.

The vertex and edge sets of the cube and of its Petrial can be easily seen as subsets of pcu.
As explained in Section 2, fcu contains subsets of vertices and edges isometric to those of tetrahedra,
octahedra, and hence also of their Petrials.

Among the finite regular polyhedra, only the six mentioned above have no 5-fold rotation in their
symmetry groups. The underlying graphs of the remaining twelve cannot be embedded in any of the
three nets while preserving their symmetries.

The vertex and edge sets of the polyhedra {4, 4} and {∞, 4}4 can be found as subsets of pcu in
the obvious way. They can also be found in fcu, for example, by considering only the vertices and
edges of the net whose third coordinates equal to 0. As mentioned in Section 2, the vertices and edges
of each of the remaining four planar polyhedra—{3, 6}, {6, 3}, {∞, 3}6, and {∞, 6}3—can be seen as
subsets of those of fcu.

In Table 1, we summarise the lattices containing finite and planar regular polyhedra.

Table 1. Finite and planar polyhedra and the nets where they can be embedded.

Polyhedra Net Remarks Polyhedra Net Remarks

{3, 3}, {4, 3}3 fcu finite {3, 6}, {∞, 6}3 fcu planar

{3, 4}, {6, 4}3 fcu finite {6, 3}, {∞, 3}6 fcu planar

{4, 3}, {6, 3}4 pcu finite {4, 4}, {∞, 4}4 pcu, fcu planar

A blended polyhedron may be embedded in different nets for different values of its parameter α.
Several possibilities can be discarded by noting the angles between two edges incident to the same
vertex in pcu, fcu, and bcu (see Lemma 1).

The angle between two consecutive edges in a face of {4, 4}#{} or {∞, 4}4#{} is strictly less than
π/2, and so these polyhedra cannot be found as a subset of pcu. A sample square of one embedding
of {4, 4}#{} in fcu has vertices

(0, 0, 0), (1, 0, 1), (1, 1, 0), (0, 1, 1),

and one in bcu has vertices
(0, 0, 0), (1, 1, 1), (2, 0, 0), (1,−1, 1).

In both cases, the polyhedron can be embedded in such a way that the vertices all have third
coordinates equal to 0 or to 1.

Consecutive edges on a face of {3, 6}#{}make an angle smaller than π/3, and hence the vertex
and edge sets of this polyhedron (and of its Petrial) are not subsets of any of the lattices pcu, fcu,
and bcu.

The vertex and edge sets of {6, 3}#{} and of {∞, 3}6#{} can be found as subsets of any of pcu,
fcu, and bcu. A sample hexagon of {6, 3}#{} in each of these lattices has vertex set

(0, 0, 0), (1, 0, 0), (1,−1, 0), (1,−1, 1), (0,−1, 1), (0, 0, 1),

(0, 0, 0), (1, 1, 0), (1, 0,−1), (2, 0, 0), (1,−1, 0), (1, 0, 1),

(0, 0, 0), (1, 1,−1), (2, 0,−2), (3,−1,−1), (2,−2, 0), (1,−1, 1),
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respectively. When extending these hexagons to the entire polyhedron, half of the vertices are in
the plane x + y + z = 0, and half in the plane x + y + z = a, where a = 2 for fcu and a = 1 for the
remaining two nets.

The angle between two consecutive edges in a face of {4, 4}#{∞} or {∞, 4}4#{∞} is strictly
greater than π/2 but less than π, and so these polyhedra cannot be found as a subset of pcu. A sample
helix of one embedding of {4, 4}#{∞} in fcu has vertices

. . . , (1, 1,−2), (0, 1,−1), (0, 0, 0), (1, 0, 1), (1, 1, 2), (0, 1, 3), . . .

and one in bcu has vertices

. . . , (2, 0,−2), (1,−1,−1), (0, 0, 0), (1, 1, 1), (2, 0, 2), (1,−1, 3), . . .

In both nets, the axes of the helices are parallel to a coordinate axis (the z-axis in the case of the
embeddings containing the two helices above).

The vertex and edge sets of the polyhedron {3, 6}#{∞} and of {∞, 6}3#{∞} can be found as
subsets of any of pcu, fcu, and bcu. A sample hexagonal helix of {3, 6}#{∞} in each of these lattices
has vertex set

. . . , (0, 0, 0), (1, 0, 0), (1, 1, 0), (1, 1, 1), (2, 1, 1), (2, 2, 1), . . .

. . . , (0, 0, 0), (1, 1, 0), (1, 2, 1), (2, 2, 2), (3, 3, 2), (3, 4, 3), . . .

. . . , (0, 0, 0), (1, 1,−1), (2, 0, 0), (1, 1, 1), (2, 2, 0), (3, 1, 1), . . .

respectively. In all these helices, the axis has direction vector (1, 1, 1). In general, the direction axes of
all helices are parallel to exactly one diagonal of a cube of the cubic tessellation.

Consecutive edges on a face of {6, 3}#{∞}make an angle greater than 2π/3, and hence the vertex
and edge sets of this polyhedron (and of its Petrial) are not subsets of any of the lattices pcu, fcu,
or bcu.

The nets containing blended regular polyhedra are summarised in Table 2. The polyhedra blended
with {} are combinatorially isomorphic to the planar polyhedra, and their nets are intrinsically planar;
the name of these planar nets according to the Reticular Chemistry Structure Resource database appear
in the column “Net”. The nets of the polyhedra blended with {∞} admit several embeddings in
Euclidean space. In the column “Net”, we indicate the name of the most symmetric such embedding
according to Reticular Chemistry Structure Resource database. The nets pcu and dia have more
symmetries than the blended poyhedra they carry.

Table 2. Blended polyhedra and the nets where they can be embedded.

Polyhedra Ambient Net Net

{3, 6}#{}, {∞, 6}3#{} none hxl

{6, 3}#{}, {∞, 3}6#{} pcu, fcu, bcu hcb

{4, 4}#{}, {∞, 4}4#{} fcu, bcu sql

{3, 6}#{∞}, {∞, 6}3#{∞} pcu, fcu, bcu pcu

{6, 3}#{∞}, {∞, 3}6#{∞} none acs

{4, 4}#{∞}, {∞, 4}4#{∞} fcu, bcu dia

In Table 3, we list the nets where the pure polyhedra can be embedded. In the column “Net”,
we indicate the name of the net consisting of the vertex and edge sets of each polyhedron. This table
has a large intersection with Table 1 in [18].
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We now turn our attention to the chiral polyhedra. The procedure we will follow consists of first
determining two consecutive edges at a face of the polyhedra in each family. For simplicity, we choose
the common vertex to be the origin, except for the polyhedra Q(c, d)∗, where we consider them as the
duals of the polyhedra Q(c, d). To determine whether these two edges at the origin can be embedded
in pcu, fcu, or bcu, we use the standard inner product to take the cosine of the angle between them
and compare with the cosine of the angles described in Lemma 1. That is, the cosine must equal 0
or −1 if the edges are in pcu; 1/2, 0, −1/2, or −1 if the edges are in fcu; and 1/3, −1/3, or −1 if the
edges are in bcu. It will then remain to determine if the parameters yield a polyhedron; in particular,
if the polyhedron in question has finite faces, we still have to verify if the obtained parameters are
rational multiples of each other, or if one of them is 0.

Table 3. Pure polyhedra and the nets where they can be embedded.

Polyhedra Ambient Net Net

{4, 6|4}, {∞, 6}4,4 pcu pcu

{6, 4|4}, {∞, 4}6,4 fcu sod

{6, 6|3}, {∞, 6}6,3 fcu crs

{4, 6}6, {6, 6}4 fcu hxg

{6, 4}6, {∞, 4}·,∗3 pcu nbo

{∞, 3}(a), {∞, 3}(b) fcu srs

4.1. Polyhedra P(a, b)

According to Section 5 of [10], the neighbours of the origin in the base face of P(a, b) are (a, 0, b)
and (0,−b,−a); that is, the image of the origin under S1 and S−1

1 , where S1 is given by

(x, y, z) 7→ (−y, z− b, x− a).

They form an angle α with the origin, given by

cos(α) =
(a, 0, b) · (0,−b,−a)
|(a, 0, b)||(0,−b,−a)| =

−ab
a2 + b2 .

We use the fact that the polyhedra P(ka, kb) and P(kb, ka) are congruent for any k 6= 0 to assume
without loss of generality that a = 1. Then, cos(α) = −b/(1 + b2). This equals 0 if and only if b = 0
and the polyhedron is P(1, 0). This polyhedron has the same vertex and edge sets as pcu; the faces are
some Petrie polygons of the cubes in the cubic tiling. The six faces around the origin are illustrated in
the left of Figure 8. Two of the six faces are in solid lines, two in dotted lines and two in dashed lines.

On the other hand, cos(α) = 1/z if and only if b2 + bz + 1 = 0. When z ∈ {2,−2}, then the
polyhedra are P(1, 1) and P(1,−1), which are regular. If z ∈ {3,−3}, then b is not rational, and so
P(1, b) is not a (discrete) polyhedron. The equation has no solution when z = −1, and hence P(1, 0) is
the only chiral polyhedron in the family whose vertex and edge sets are subsets of pcu, fcu, or bcu.
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Figure 8. The polyhedra P(1, 0) and Q(1, 1).

4.2. Polyhedra Q(c, d)

The neighbours of the origin in the base face of Q(c, d) are its images of S1 and S−1
1 , where S1

maps (x, y, z) to (−x + c, z− d,−y− c), as in Section 6 of [10]. Thus, these neighbours are (c,−c, d)
and (c,−d,−c), while the fourth vertex of the base face is (0,−c− d, d− c). The neighbours form an
angle α with the origin whose cosine is equal to c2/(2c2 + d2).

Recall that Q(0, 1) is regular, and by similarity of the polyhedra Q(c, d) and Q(kc, kd), we may
assume that c = 1. Then, cos(α) = 1/(2 + d2). This number is always strictly greater than 0, and it
equals 1/z if and only if d2 − z + 2 = 0. If z = 2, then the polyhedron is Q(1, 0), which is also regular.
Finally, if z = 3, then we may assume that the polyhedron is Q(1, 1), since Q(1,−1) is congruent
to Q(1, 1).

To describe the polyhedron Q(1, 1), we first observe that the vertices of bcu are the union
of 8 disjoint copies of the vertices of 2bcu, the net similar to bcu whose edges are twice as long.
The following list contains a representative in each of these copies:

{(0, 0, 0), (1, 1, 1), (1, 1,−1), (1,−1, 1), (−1, 1, 1), (2, 0, 0), (0, 2, 0), (0, 0, 2)}.

The vertices of Q(1, 1) are those of bcu; the edges are those of bcu after removing:

• all edges with direction vector (1, 1, 1) at vertices in 2bcu;
• all edges with direction vector (1,−1, 1) at vertices in (−1, 1, 1) + 2bcu;
• all edges with direction vector (1, 1,−1) at vertices in (1,−1, 1) + 2bcu;
• all edges with direction vector (−1, 1, 1) at vertices in (1, 1,−1) + 2bcu.

This removes two edges from every vertex of bcu, and hence the vertices of Q(1, 1) are 6-valent.
The faces are skew quadrilaterals congruent to the base quadrilateral with vertices (0, 0, 0), (1,−1,−1),
(0,−2, 0), and (1,−1, 1). The corresponding net then has only one kind of vertex and one kind of edge
under G(Q(1, 1)), it is bipartite (as a subnet of bcu), and its smallest rings have 4-edges. The author
does not know if this net already has a name. The six faces of this polyhedron at the origin are shown
in Figure 8. Two of the six faces are in solid lines, two in dotted lines and two in dashed lines.

4.3. Polyhedra Q(c, d)∗

The polyhedron Q(c, d)∗ is the geometric dual of Q(c, d), and so the vertices are in the geometric
centres of the faces of Q(c, d). The centre of the base face of Q(c, d), and hence the base vertex of Q(c, d)∗

is v0 = 1/2(c,−d− c, d− c). The base face of Q(c, d) shares consecutive edges with its images under
the isometries S2 and S−1

2 , where S2 maps (x, y, z) to (−z,−x,−y). Therefore, the two neighbours
of v0 in the base face of Q(c, d)∗ are v0S2 = 1/2(c− d,−c, c + d) and v0S−1

2 = 1/2(c + d, c− d,−c).
By translating by −v0, we get that the cosine of the angle α formed by the two neighbours of v0 with
v0 is −d2/(2d2 + 4c2).
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The polyhedron Q(0, 1)∗ is regular, and therefore we may assume that c = 1.
Then, cos(α) = −d2/(4 + 2d2). This number is in the interval (−1/2, 0], and it is 0 only when
d = 0. Since Q(1, 0)∗ is regular, we only need to explore the possibility of cos(α) = −1/3.

If cos(α) = −1/3, then d = ±2. As for the polyhedra Q(c, d) with c odd and d ≡ 2 modulo 4, the
structure Q(1, 2)∗ is not a polyhedron. Here, every edge belongs to more than one hexagon. Hence,
none of the polyhedra Q(c, d)∗ live in pcu, fcu, or bcu.

4.4. Polyhedra P1(a, b)

According to Section 4 of [11], the neighbours of (0, 0, 0) in the base helix of the polyhedron
P1(a, b) are (b, a, 0) and (a, 0, b); that is, the images of (0, 0, 0) under S1 and S−1

1 , where S1 maps
(x, y, z) to (−z + b,−x + a, y). The cosine of the angle α formed by these two neighbours with (0, 0, 0)
equals ab/(a2 + b2).

Since P1(a, b) is similar to P1(b, a) and to P(ka, kb) for every k 6= 0, we may assume that a = 1.
Hence, cos(α) = b/(1 + b2). If b 6= 0 and cos(α) = 1/z, then b2 − bz + 1 = 0. If z = −1, then
the equation has no solution. If z ∈ {2,−2}, then we obtain one of the regular polyhedra P(1, 1)
or P(1,−1). On the other hand, if z ∈ {3,−3}, then b /∈ {0, 1,−1}. We claim that these choices of
b do not yield polyhedra having their vertex and edge sets on bcu, although the angles between
consecutive edges of a face suggest that they could. To see this, we recall that the three neighbours
of (0, 0, 0) in P1(1, b) are (b, 1, 0), (1, 0, b), and (0, b, 1), and note that the neighbours of (b, 1, 0) are
(0, 0, 0), (b− 1, 1, b), and (b, 1− b, 1) (see ([11], Page 198)). This implies that the directions of the edges
at (0, 0, 0) are (b, 1, 0), (1, 0, b), and (0, b, 1); and that at (b, 1, 0), there are edges in the directions of
(−1, 0, b) and (0,−b, 1). Therefore P1(1, b) has edges with at least five different directions. Since bcu
has edges in only four different directions (the main diagonals of a cube of the cubic tiling), there is no
chiral polyhedron P1(a, b) with a, b 6= 0 whose vertex and edge sets are subsets of pcu, fcu, or bcu.

The polyhedron P1(1, 0) is described in detail in [19]. Its faces are helices over triangles embedded
in pcu. The three edges at every vertex in P1(1, 0) are in the directions of the canonical axes. The axes
of the helices are in the directions of the diagonals of a cube of the cubic tiling. The 1-skeleton of
P1(1, 0) is illustrated in the left of Figure 9. The three helical faces at some point are shown in the right
part of the same figure.

Figure 9. The polyhedron P1(1, 0).
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4.5. Polyhedra P2(c, d)

The neighbours of (0, 0, 0) in the base helix of the polyhedron P2(c, d) are (d, c,−c) and (c,−c, d);
that is, the images of (0, 0, 0) under S1 and S−1

1 , where S1 maps (x, y, z) to (−z + d, y + c, x − c)
as in Section 5 of [11]. The cosine of the angle α formed by these two neighbours with (0, 0, 0)
equals −c2/(d2 + 2c2).

Taking on account that P2(0, 1) and P2(1, 0) are regular, and that cos(α) ∈ (−1/2, 0) if c, d 6= 0,
we only need to consider the possibility of cos(α) = −1/3. This gives the parameters c = d = 1
(recall here that P2(c, d) is isomeric to P2(c,−d)). The vertex and edge sets of this polyhedron are
indeed subsets of bcu. This can be seen by noting that the direction of the three edges at (0, 0, 0) of this
polyhedron are (1,−1,−1), (−1, 1,−1), and (−1,−1, 1); and that the isometries S1 and S2 (the latter
mapping (x, y, z) to (y, z, x)) that generate the symmetry group of the polyhedron preserve the set of
directions {(1,−1,−1), (−1, 1,−1), (−1,−1, 1), (1, 1, 1)}, all directions of edges of bcu. In fact, this
polyhedron has its vertices and edges in the diamond net dia, which is contained in bcu. In the left of
Figure 10, we show a portion of the 1-skeleton of P2(1, 1); the three helices at a point are illustrated in
the right of the same figure.

Figure 10. The polyhedron P2(1, 1).

4.6. Polyhedra P3(c, d)

According to Section 6 of [11], the neighbours of (0, 0, 0) in the base helix of the polyhedron
P3(c, d) are (−d,−c, c) and (c,−c, d); that is, the images of (0, 0, 0) under S1 and S−1

1 , where S1 maps
(x, y, z) to (z− d, x− c, y + c). The cosine of the angle α formed by these two neighbours with (0, 0, 0)
equals c2/(d2 + 2c2).

If c = 0 or d = 0, then P3(c, d) is regular, so we may assume that c = 1 and d 6= 0. In this situation,
cos(α) ∈ (0, 1/2), and it equals 1/3 whenever d ∈ {1,−1}. However, Lemma 6.3 of [11] states that if
c/d is a non-zero integer, then P(c, d) is not a geometric polyhedron. In fact, every edge of P3(1,±1)
belongs to three helical faces.

With this, we conclude the proof of Theorem 1. The previous discussion in summarised in the
following table.
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Table 4. Pure polyhedra and the nets where they can be embedded.

Polyhedra Ambient Net Net

P(1, 0) pcu pcu

Q(1, 1) bcu unknown

P1(1, 0) pcu srs

P2(1,−1) bcu srs
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