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Abstract: Fluctuating asymmetry (FA), random deviation from perfect bilateral symmetry, is an
indicator of developmental stability. Examining the ontogeny of FA can illustrate whether symmetry
is actively maintained as the organism grows or breaks down as perturbations accumulate with
age. Previous studies of changes in human FA with age have been cross-sectional studies and give
conflicting results. We analyzed data from a longitudinal study of bodily FA in Jamaicans, using a
composite index of seven paired traits. In addition, 288 children (ages 5–12) were first measured in
1996, and many were re-measured in 2002 and 2006 (maximum age = 22 years). Both within-individual
longitudinal comparisons and between-individual comparisons across age groups demonstrate
changes in FA with age. In males and females, FA increased until around age 13, but the pattern
of change differed between the sexes. In males, FA increased rapidly approaching adolescence and
then slightly declined into early adulthood. The increase in female FA was more gradual and then
leveled off. The patterns observed likely reflect accumulation of developmental errors over time,
rapid physical changes during puberty (especially in boys), and then regulation of symmetry when
transitioning into adulthood. Although most changes in symmetry over time probably reflect random
processes, the magnitude and direction of asymmetry in an individual at one point in time tended to
be positively (though weakly) related to asymmetry in later years, pointing to underlying differences
among individuals in developmental stability.
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1. Introduction

Interest in fluctuating asymmetry (FA), small, non-directional deviation from perfect bilateral
symmetry, arises from the relationship between FA and developmental stability [1–3]. High levels of FA
may indicate high levels of stress during development or an inability to buffer the phenotype against
stress, and therefore may be correlated with environmental or genetic quality (or both). However,
despite the large literature on FA and developmental stability, relatively few authors have examined
changes in FA as the organism develops.

The pattern of change in FA with age can help to determine how asymmetry arises during
development and to interpret the underlying relationship between FA and developmental stability [4–7].
For example, as an individual grows, do random developmental accidents accumulate over time or
does the organism correct deviations from symmetry via compensatory growth? Does an individual’s
current level of symmetry best reflect early developmental events or recent growth? Most previous
studies of developmental changes in FA have been conducted on traits that are molted and re-grown,
such as feathers [5,8–10] or components of an exoskeleton [4,11]. For traits like bones and stems that
instead grow by adding to what is already present, developmental errors may accumulate because
asymmetry at one point in time directly affects the degree of asymmetry at time t + 1 [3,12].
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Measurement and analysis of FA is more difficult than it at first appears. Subtle differences
between sides that are symmetrically distributed around a mean of zero must be separated from
measurement error, which has a similar distribution [13]. FA also must be separated from other
forms of asymmetry: directional asymmetry is a relatively consistent bias toward one side, while
antisymmetry consists of large differences between sides in a random direction [1–3,13]. Another
difficulty is that correlations between developmental stability and FA in any one trait are likely to be
weak [14–16], and therefore composite indices of FA are often used that combine measurements across
several traits [3,13–15].

Previous studies of changes in human FA with age have given conflicting results and compare
individuals of different ages or age groups, rather than tracking within-individual changes in FA.
Some studies show a decrease in FA with age. Wilson and Manning [17] found that English children
became more symmetrical in a variety of traits from ages 2 through 18. This decrease in FA was
interrupted by a temporary increase in FA at about ages 12–14, perhaps reflecting hormonal changes
and rapid growth during adolescence. Hope et al. [18] also found a decrease in FA among Scottish
children (fingers, ages 4 to 8), but a leveling off from about ages 8–13 and perhaps a further decrease
from ages 13 to 15. In a rural Caribbean population (in Dominica), FA appears to decrease from ages
0–10 to ages 10–20 [19]. However, an early analysis of our sample of rural Jamaican children instead
suggested a possible increase in bodily FA from ages 5 through 12 (see below) [20]. Hallgrímsson [6]
also found evidence suggesting an increase in FA of skeletal traits with age in a heterogeneous sample,
with cranial traits continuing to become more asymmetrical throughout the lifespan and post-cranial
traits showing a non-significant increase up to about age 20. Others have found that FA is highest
at the extremes of the age distribution. FA is higher among Israeli newborns than 26 to 42 year-old
adults and is highest among the elderly (age 80–85), but otherwise varies little with age, showing no
difference between age groups 5–13 and 14–18 [21,22]. A comparison of facial symmetry in young
German adults with an elderly Scottish cohort also demonstrated elevated FA in the elderly [23].

In the present study, we analyze data from the Jamaican Symmetry Project, a long-term study
of FA [20] and digit ratios [24] in Southfield, Jamaica. The project began in 1996 with a sample of
288 children, aged 5 to 12 years old. Bodily FA of many of the same individuals was measured again in
2002 and 2006. Although designed as a longitudinal study, longitudinal changes in FA have not been
analyzed before, as previous studies from the Jamaican Symmetry Project have focused on FA in a
particular year or an average across years [25,26]. Trivers et al. [20], using the 1996 sample, reported an
increase in FA from age 5 through age 12, but the age-FA relationship disappeared when height and
weight were included as covariates in a multiple regression model. Relative composite FA (sum of
FA corrected for trait size) was correlated with age, height and weight, and height and weight also
increased with age. This and the prior studies of changes in human FA with age reviewed above have
all been cross-sectional studies (although Flinn et al. [19] measured FA longitudinally in a subsample
of their subjects, they averaged measures across years). We know of no previous longitudinal analyses
of human FA.

2. Results

Fluctuating asymmetry varied with age (Figure 1). Composite standardized FA in males increases
gradually through age 9 and levels off briefly. Male FA then increases markedly with adolescence,
peaking around ages 12–15, and then slightly declines but remains above the values recorded during
childhood. For females, FA increases gradually to about 13 years of age, and then levels off. Note that
before about age 11, males tend to be more symmetrical than females (as reported in [20]), but because
of the sharp increase in male FA around age 12, the direction of the sex difference reverses for a few
years. By adulthood, no sex difference is apparent. The pattern of change in males best fits a steep
linear increase until age 13 (r2 = 0.41, b = 0.85; one selected measurement year per individual, see
Materials and Methods) and then a shallower linear decline thereafter (r2 = 0.12, b = −0.44), while,
for females, there is a more gradual linear increase until age 13 (r2 = 0.11, b = 0.30) and no increase or



Symmetry 2016, 8, 123 3 of 11

decrease thereafter (r2 = 0.001, b = 0.036). Height in females also increases linearly to age 13 (r2 = 0.75,
b = 0.87) and then levels off or increases slightly thereafter (r2 = 0.02, b = 0.13). Males continue to grow
to age 16 (r2 = 0.87, b = 0.93), and height then levels off (r2 ~0, b = −0.02).
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Figure 1. Mean (±95% Confidence Invervals) composite standardized FA across ages is shown for
males (A) and females (B). Because of smaller numbers of subjects at the extremes of the age distribution,
ages 5 and 6 are combined, as are ages 20, 21 and 22 years.

Tables 1 and 2 summarize means of both composite standardized and composite relative FA for
both sexes across three age groups: 5–10, 11–15, 16–22. Results for relative FA are similar to those for
standardized FA when averaged across the sexes. When split by sex, there is a more noticeable decline
in male relative FA after age 15, while female relative FA changes little with age. Formal statistical tests
for changes in FA with age were performed in two kinds of analyses, using composite standardized
FA values: (1) a within-subjects (repeated measures) longitudinal approach; and (2) between-subjects
comparisons across age groups.
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Table 1. Means (standard deviations in parentheses) of composite standardized FA (Fluctuating
asymmetry) and composite relative FA are shown for all subjects, divided into age groups and by sex.

Age Sex Composite Standardized FA Composite Relative FA n

5–10
Male 5.15 (1.65) 0.121 (0.039) 126

Female 5.68 (1.95) 0.137 (0.046) 98
Total 5.38 (1.80) 0.128 (0.043) 224

11–15
Male 8.49 (2.76) 0.154 (0.048) 89

Female 7.39 (2.45) 0.141 (0.044) 84
Total 7.96 (2.67) 0.148 (0.047) 173

16–22
Male 8.07 (2.82) 0.132 (0.047) 116

Female 7.97 (2.81) 0.145 (0.049) 87
Total 8.03 (2.81) 0.137 (0.048) 203

Table 2. Means (standard deviations in parentheses) of composite standardized FA and composite
relative FA are shown for selected subjects, divided into age groups and by sex.

Age Sex Composite Standardized FA Composite Relative FA n

5–10
Male 5.28 (1.78) 0.123 (0.041) 43

Female 5.93 (2.03) 0.141 (0.050) 36
Total 5.57 (1.91) 0.131 (0.046) 79

11–15
Male 8.99 (3.00) 0.162 (0.052) 46

Female 7.19 (2.29) 0.137 (0.042) 45
Total 8.10 (2.81) 0.150 (0.048) 91

16–22
Male 7.88 (2.96) 0.129 (0.049) 58

Female 7.78 (3.18) 0.142 (0.052) 41
Total 7.84 (3.04) 0.135 (0.050) 99

A Repeated Measures General Linear Model (GLM) analysis was conducted among all individuals
who had complete measurements at all three sampling times (1996, 2002, 2006, n = 135). The repeated
measure (year) effect was highly significant (F2, 266 = 81.61, p < 0.001, partial eta2 = 0.38), demonstrating
within-individual changes in FA with age. There was no overall sex difference in FA (F1 ,133 = 0.007,
p = 0.93, partial eta2~0), but a significant interaction between year and sex (F2, 266 = 3.36, p = 0.036,
partial eta2 = 0.03), confirming that the pattern of variation in FA across years varies with sex.
If we include height and weight in the Repeated-Measures analysis, the year effect on composite
standardized FA remains significant (F2, 240 = 77.05, p < 0.001, partial eta2 = 0.39), but the sex X year
interaction does not (F2, 240 = 2.22, p = 0.11, partial eta2 = 0.02). Of course, height and weight also
increase across years as children grow toward adulthood (both p < 0.001). Males tend to be taller than
females (p < 0.001) and perhaps heavier (p = 0.078), but the sexes do not differ in FA (p = 0.92).

Between-subjects approach: subjects were divided into three age groups (5–10, 11–15, 16–22), and
only one measurement year per individual was selected to avoid pseudoreplication (see Materials and
Methods). A GLM with age group and sex as independent variables and composite standardized FA as
the dependent variable demonstrated a significant effect of age group (F2, 263 = 22.38, p < 0.001, partial
eta2 = 0.15) and a significant sex X age group interaction (F2, 263 = 4.96, p = 0.008, partial eta2 = 0.04),
but no sex difference in FA (F1, 263 = 1.64, p = 0.20, partial eta2 = 0.01). Post hoc tests revealed that the 5
to 10 year-olds were significantly more symmetrical than subjects in each of the two older age groups
(Tukey’s Honest Significant Difference Test, both p < 0.001), which did not significantly differ from each
other (p = 0.78; see Table 2 for descriptive statistics). If height and weight are included as covariates in
the between-subjects GLM, both the age group and sex X age group interactions remain significant,
although age group explains a smaller proportion of the variance in FA than previously (age group:
F2, 248 = 3.14, p = 0.045, partial eta2 = 0.03; sex X age group: F2, 248 = 6.19, p = 0.002, partial eta2 = 0.05).
There is also a significant positive relationship between height and FA (F1, 248 = 4.62, p = 0.033, partial
eta2 = 0.02), but no relationship between FA and weight (F1, 248 = 0.86, p = 0.35, partial eta2 = 0.003) or
sex (F1, 248 = 0.13, p = 0.72, partial eta2 = 0.001).
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Most individual traits follow the trends shown above for composite FA. The most obvious
increases in FA with age were for ankles and feet (Tables S1–S6). The one exception to the general
pattern is the elbow, which became more symmetrical with age. In females, the decrease in elbow FA
was apparent across all three age groups, while for males, FA changed little from ages 5–10 to ages 11–15,
and then decreased in ages 16–22. Although most traits showed a similar pattern of increase in FA with
age, correlations among traits within an individual were weak (as is typical for studies of FA [14,15]).
Even without any correction for multiple comparisons, there would be few significant correlations in
unsigned FA among traits (1996: knee–foot r = 0.20, ankle–foot r = 0.18, knee–ankle r = 0.16, digit 3–wrist
r = 0.13; 2002: digit 3–digit 4 r = 0.22; 2006: ankle–foot r = 0.17, knee–foot r = 0.16, wrist–elbow r = 0.15).

Because of within-individual changes in FA with age, FA of individuals measured in 1996 was only
weakly positively correlated with their FA in later years. We calculated bivariate Pearson Correlation
Coefficients between composite standardized FA of subjects at each of the three sampling periods
(p-values adjusted for three comparisons using the Sequential Bonferroni Correction). Correlations
between 1996 and 2002 and between 2002 and 2006 were marginal, while that between 1996 and 2006
was highly significant (1996 and 2002, r = 0.17, n = 167, p = 0.056; 2002 and 2006, r = 0.16, n = 138,
p = 0.070; 1996 and 2006, r = 0.24, n = 163, p = 0.006).

The traits studied show fluctuating, rather than directional, asymmetry with no consistent bias
in the population toward one side [20,25]. Within individuals, as the degree of asymmetry in a trait
changes with age, does the direction of asymmetry also change, or is it consistent? With only one
exception (elbows from 1996 to 2002), the direction of asymmetry stayed the same from one sampling
period to the next in >50% of subjects (Table 3). It is very unlikely that the pattern observed in Table 3
could have occurred by chance. Because 18 comparisons were made, one would expect nine to be
above 50% and nine below. Instead 17 of 18 are above 50%, or 16 of 17 if those that round to 50%
are excluded (kneecaps, 50.3%). In a simple two-tailed Sign Test, the observed results clearly differ
from random expectation (17 vs. 1, p = 0.0001; 16 vs. 1, p = 0.0003). However, for several traits, the
percentage was just slightly above 50% and therefore similar to chance when examining particular
traits (Table 3). Traits that appeared to be the most consistent in the direction of asymmetry were the
three digits (3rd, 4th, 5th) and perhaps ear height. Because of problems of multiple comparisons due
to the large number of traits and non-independence of traits within individuals, separate significance
tests for each trait were not performed.

Table 3. For each trait, the direction of asymmetry was compared within individuals across years (1996,
2002, 2006). The percentage of individuals in which the sign of right–left stayed the same is shown.

Trait Year Interval Same Direction (Percent) n

3rd Digit 96–02 64.9 174
02–06 72.5 138

4th Digit 96–02 65.3 176
02–06 60.6 137

5th Digit 96–02 70.9 175
02–06 68.1 138

Ankle
96–02 51.7 174
02–06 53.4 146

Elbow
96–02 40.0 175
02–06 52.4 145

Foot
96–02 54.7 172
02–06 56.8 146

Wrist
96–02 61.4 176
02–06 52.1 142

Knee 96–06 51.8 168

Kneecap 02–06 50.3 145

Ear height 96–06 65.5 171

Ear width 02–06 56.3 144
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3. Discussion

In a longitudinal study of Jamaican youth, we demonstrated that bodily FA increases as children
grow. Although FA of males and females in our sample did not differ overall, the pattern of change in
FA differed between the sexes. FA of boys increased rapidly in early adolescence and then slightly
declined into early adulthood. In females, there was a more continuous gradual increase in FA until
about age 13 and then a leveling off. This sex X age interaction may reflect sex differences in life history
tradeoffs [23,27], and is likely mediated by the increasing hormonal and physical sex differences that
arise during puberty. We used a composite measure of FA combined across seven traits, which gives a
better indication of developmental stability than analysis of a single trait [3,13–15]. This composite
variable was designed so that no individual trait contributed more to the index than the others [15],
and it is noteworthy that (other than elbows) the individual traits generally followed the same trends
as composite FA. We also find similar results using both longitudinal and cross-sectional analyses.

The increase in FA with adolescence fits Wilson and Manning’s [17] suggestion that humans may
become less symmetrical during this period of rapid growth and changes in hormones and metabolic
rate. The decrease in FA in males from adolescence to adulthood may also fit with their prediction
that symmetry should be optimized when approaching adulthood. However, we found an increase
in FA with age in young children, while they found a decrease. Other human studies of age and FA
also give conflicting results (see the Introduction). Some authors lumped males and females together,
which would obscure sex differences in patterns of change with age, but should not produce opposite
patterns among studies. Why these studies of human FA give seemingly contradictory patterns is
unclear, but it is probably a combination of many factors such as population differences, socioeconomic
differences, different kinds of traits, changes in confounding variables with age, and methodological
differences [3,20,27]. It is possible that some authors have transformed data inappropriately, which can
give the appearance of a decrease in FA with body size [12,13]. Although not statistically significant,
variation in measurement error with trait size and across years suggests that measurement error may
have been higher for the youngest children in our sample (see Materials and Methods), but such a
trend cannot explain the consistent patterns of change in FA that we observed.

In an attempt to resolve the conflict with the results of Wilson and Manning [17], Trivers et al. [20],
using our 1996 sample, showed that the increase in FA with age in young children disappears (perhaps
even becoming a decrease in boys, though not significant) when height and weight are included as
covariates in a multiple regression. Doing so is somewhat misleading, however, because it is expected
that changes in FA with age in children would be due to growth and that body size would increase
with age more strongly than would FA. This study also used relative FA, which had already been
size-corrected before body size was included as a variable. We find that the increase in FA in Jamaican
youth is real, not a statistical artefact. Our results, therefore, suggest that there may be underlying
differences between human populations in growth patterns and the development of FA [20,26].

That FA increases during periods of rapid growth is expected because it is more difficult to
maintain symmetry in structures that are changing in size, there can be trade-offs between growth
rate and developmental stability, and rapid growth increases energetic demands which may increase
stress [17,28–30]. Of the various models of changes in FA with growth [4–7], our data best fit with
random accumulation of developmental accidents (“morphogenetic drift”) up until about 13 years of
age. After that, processes of compensatory growth or bone remodeling and changes in the distribution
of soft tissue may make the individual more symmetrical or maintain the current level of symmetry.
Such active maintenance of symmetry would be most important for males in our sample because rapid
growth continued to age 16, past age 13 when FA stopped increasing, and began to slowly decrease.
In females, FA leveled off at the same age at which the growth rate slowed down. It is possible that
asymmetries are not corrected for until a threshold level of asymmetry is reached [4,7], and therefore FA
continues to increase with age and growth until this point. Active processes for producing symmetry
may also be an adaptive component of the maturation process, as individuals would transition to
adulthood with the best possible phenotype given their developmental history [17,18]. Tradeoffs
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between growth and the maintenance of symmetry [29,30] would also disappear once an individual
reaches adult body size. How FA changes throughout adulthood is not known from our data because
the oldest individuals in our sample were 22 years old, although we predict an increase in FA with
senescence [21,23]. Measurements taken at smaller time intervals than in our study are also needed to
fully characterize the relationship between growth and FA.

Because FA changes with age, within-individual correlations in FA across years were weak,
although it is notable that FA in 1996 is more strongly correlated with FA 10 years later in 2006 than
six years later in 2002. The 2002 sample ranged in age from 11 to 18, and was therefore the year
that overlapped the most with adolescence. Although the pattern of change we observed suggests
that current FA reflects recent growth more closely than early developmental events [7,11], FA can
indicate long-lasting aspects of developmental stability. For example, we previously demonstrated
that lower-body (especially knee) FA in 1996 was related to sprinting speed in 2010 [26]. In other
human populations, relationships have been demonstrated between socioeconomic status early in life
and facial FA in the elderly [27] and between the growth rate of infants and bodily FA at age 9 [29].
In addition to within-individual correlations in the magnitude of asymmetry, there may also be
consistency in the direction of asymmetry within individuals despite the lack of directionality in the
population overall [4,8,9]. We found that the sign of right minus left stayed the same in more than 50%
of subjects for nearly all traits studied. For those traits in which the percentage is only slightly above
50%, the direction of change is most likely random because the starting point is not zero. In other
words, if an individual’s right ankle is already larger than the left, then the right may remain larger
than the left if there is a small shift in the magnitude of asymmetry in either direction. However, for
traits where a more consistent within-individual side-bias was observed, it is likely that the direction
of asymmetry is nonrandom because we observed an overall increasing trend in the magnitude of
asymmetry over time.

Although most changes in symmetry over time probably reflect random processes, that the
magnitude and direction of asymmetry in an individual at one point in time tends to be positively
(though weakly) related to asymmetry in later years likely reflects differences among individuals in
developmental stability. These individual differences may lead to differences in fitness. FA is often
associated with important variables such as health status and attractiveness [2], although effect sizes
tend to be small [31]. Relationships between symmetry and both sprinting speed and willingness
to participate in sprints [26] point to differences in athletic ability and possibly health among rural
Jamaican youth. Developmental stability also affects their social interactions. More symmetrical males
tend to be less cooperative, as tested in an economic game, and may be more aggressive, as reported
by their teachers [25].

This study of changes in human FA with age has implications for the links between developmental
stability, growth and symmetry. There are also methodological implications. If FA changes as organisms
grow, then it may be best for investigators to either conduct a longitudinal study (if practical) or
to remove heterogeneity due to growth by selecting a very specific age, developmental stage, or
size-range of individuals to study [4,32]. At the very least, age (or nonlinear effects of age) should be
included as a covariate or otherwise controlled for in any study of FA that includes a heterogeneous
sample [27], and the sexes should be analyzed separately. Some of the contradictory or weak results
in the FA literature [16,31] may have resulted from different authors mixing together individuals of
different ages.

4. Materials and Methods

4.1. Subjects and Measurements

The data analyzed here were collected as part of a longitudinal study of fluctuating asymmetry in
Jamaica [20]. When FA was first measured in 1996, the subjects included 288 Afro-Caribbean children
(155 males, 131 females and 2 of unrecorded gender) from Southfield, St. Elizabeth parish, mostly from



Symmetry 2016, 8, 123 8 of 11

the same elementary school (Top Hill Primary School, a nearly complete sample) In 1996, the children
ranged in age from 5 to 12 years (mean age ±SD = 8.18 ± 1.73). The subjects were then measured again
for FA in 2002 (n = 179, mean age = 14.12 ± 1.74) and 2006 (n = 174, mean age = 17.98 ± 1.72). Across
the time course of the study, ages ranged from 5 to 22. Sample sizes for analysis are typically large, but
smaller than those reported here (see Results) because not all subjects had complete measurements of
all traits in all years.

Research protocols for the symmetry measurements and other projects involving this cohort were
approved annually by the Institutional Review Board for the Protection of Human Subjects in Research
of Rutgers, the State University of New Jersey (most recently Protocol #10-378M, approved 18 February
2010). Participation of subjects included written parental consent for minors and written informed
consent for those who had reached age 18.

The measurement protocol is described in Trivers et al. [20] and included the following bilateral
traits in 1996: length of the 3rd, 4th and 5th digits, ear height, elbow width, wrist width, knee width,
ankle width, foot length, and hand width. As is standard in FA studies, we measured the traits twice per
side for each individual to quantify measurement error and ensure that differences between sides are
greater than measurement error. Furthermore, by averaging the replicate measurements, measurement
error is reduced [3,13]. Other than hand width, which showed directional asymmetry, asymmetry
in these traits reflects true FA and the between-sides variation was much greater than measurement
error (20, 25 and below). Height and weight were also measured in each year and are included as
covariates in some of the analyses. The same traits were measured in 2002 and 2006 following the same
procedures as in 1996, with the following exceptions: (1) hand width was eliminated, because of the
presence of directional asymmetry [20]; (2) in 2002, diameter of the kneecap was measured rather than
width of the knee. In 2006, both kneecap and knee measurements were performed; (3) in 2002, width
of the ear was measured rather than ear height. In 2006 both ear height and width were measured; and
(4) digit lengths were measured directly in 1996, but from photocopies of the hands in 2002 [24] and
electronic scans in 2006.

Repeatabilities of measurements for all traits were very high in both 1996 (all r > 0.96) and 2002
(all r > 0.99) and for most traits in 2006 (all r > 0.93 except ear width (0.86 left, 0.90 right) and kneecap
(0.90 left, 0.93 right)). There was no significant relationship between trait size and measurement error
(ME) in any year and the direction of the trend varied across years (1996, r = −0.49, p = 0.18; 2002,
r = 0.08, p = 0.84; 2006, r = 0.25, p = 0.46). As the repeatabilities above suggest, there was also no clear
pattern of variation in ME with age: ME was higher in 1996 than 2002, but varied among traits in
2006. FA was significantly greater than ME for all traits in all years (Sides X Individuals interaction in
mixed-model ANOVA [13], all p < 0.0001).

Because not all traits were measured in all years, when constructing a composite variable
for overall bodily FA (see below), hand width, ear height and width, knee width and kneecap
width were excluded. Except for hand width, we do consider these traits when presenting data
for single traits rather than composite FA. Manning et al. [33] advise against using indirect finger
measurements in studies of symmetry. However, several lines of evidence suggest that the reliability
of finger measurements was not decreased by switching to indirect measurements in later years.
Repeatabilities for all finger measurements were above 0.98 in 1996 and above 0.99 in 2002 and 2006,
and measurement error as a percent of between-sides variation [13] was much lower for the indirect
measurements in 2002 and 2006 (1.8% to 3.4%) than for the direct measurements in 1996 (14.9% to
19.9%). Correlations between 1996 FA and FA in other years were higher for digits (r values range from
0.23 to 0.54, all p < 0.005; p < 0.05 after adjustment for 18 comparisons) than for other traits (compare
with between-year correlations for composite FA in the Results). In addition, the direction of finger
asymmetry is relatively consistent within-individuals between years (Table 3), and we observed similar
patterns of change with age among traits, including digits (see Tables S1–S6).
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4.2. Statistical Analysis

Composite measures that combine FA from multiple traits typically better reflect overall
developmental stability than any single trait [3,14,15]. Before creating a composite index, unsigned
FA (absolute value of right−left) was calculated for each trait in each year for every subject. Simply
adding these values across traits can create bias, as more asymmetrical traits would add more to
the composite FA index [3,15]. The traits we studied differ in FA; for example, in our 1996 sample,
lower-body traits were more symmetrical than upper-body traits [20,26]. We used composite FA 2 of
Leung et al. [15]: unsigned FA was first divided by mean FA for that trait, and these standardized
values were added across traits within an individual. This sum provides an unbiased and powerful
composite index of FA, which we refer to as “composite standardized FA”. Many previous authors
(ourselves included) have analyzed relative FA (unsigned FA divided by trait size) and composite
relative FA (relative FA summed across traits), but several authors have warned against “correcting”
FA for trait size, which can lead to spurious relationships between variables especially if size-scaling is
absent, weak, or non-isometric [3,13,15]. We found very weak evidence for size-scaling in our dataset.
Of 29 possible unsigned FA-trait size correlations, with no correction for multiple comparisons, only
6 were significant positive correlations, 1 was a significant negative correlation, and none had an
absolute value of r > 0.20. Our statistical analyses are based on composite standardized FA, but we also
show summary data for composite relative FA to allow easier comparison with previous publications.

Statistical analysis was performed with IBM SPSS Statistics 21 (IBM Analytics, Armonk, NY, USA).
Parametric tests are used, as recommended by Gangestad and Thornhill [34], all with a two-tailed
α-level of 0.05. We used a combination of repeated measures tests (within-individual comparisons
across years) and between-subjects tests (comparisons of different age groups). Age groups (5–10,
11–15, 16–22) were selected following Wilson and Manning [17] and to keep sample sizes among
groups similar. To avoid pseudoreplication, a single observation year was selected for each individual
in the between-subjects design [10]. We did so semi-randomly to achieve a more even spread of ages
because more individuals were measured in 1996 than in 2002 or 2006, in the following manner: (1) if a
subject was measured in only 1 year, we used that year; (2) if a subject was measured in only 2 years,
a coin flip determined the year to use; and (3) if a subject was measured in all three years, 1996 was
eliminated and a coin flip determined whether to use 2002 or 2006 data.

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-8994/8/11/123/s1.
Tables S1–S6 Standardized FA for individual traits across age groups: S1 All subjects, both sexes; S2 Selected
subjects, both sexes; S3 All males; S4 Selected males; S5 All females; S6 Selected females.
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