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Abstract:



It is generally known that classical point and potential Lie symmetries of differential equations (the latter calculated as point symmetries of an equivalent system) can be different. We question whether this is true when the symmetries are extended to nonclassical symmetries. In this paper, we consider two classes of nonlinear partial differential equations; the first one is a diffusion–convection equation, the second one a wave, where we will show that the majority of the nonclassical point symmetries are included in the nonclassical potential symmetries. We highlight a special case were the opposite is true.
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1. Introduction


Symmetry analysis plays a fundamental role in the construction of exact solutions to nonlinear partial differential equations. Based on the original work of Lie [1] on continuous groups, symmetry analysis provides a unified explanation for the seemingly diverse and ad hoc integration methods used to solve ordinary differential equations. At the present time, there is extensive literature on the subject, and we refer the reader to the books by Arrigo [2], Bluman and Kumei [3], and Olver [4].



A particular class of equation that has benefited from this type of analysis is the nonlinear diffusion equation


[image: there is no content]



(1)







From a symmetry point of view, this equation was first considered by Ovsjannikov [5] (see also [3] and [6]), where it was found that (1) admits nontrivial symmetries for a variety of different diffusivities. In particular, power law diffusion, where


[image: there is no content]



(2)




admits the symmetry generator


[image: there is no content]



(3)




where [image: there is no content], and U are


[image: there is no content]



(4)




(where [image: there is no content] are arbitrary constants) for general powers m ([image: there is no content]), and in the special case [image: there is no content], where (2) admits an additional symmetry with generator


[image: there is no content]











In 1988, Bluman, Reid, and Kumei [7] considered the equivalent system


vt=K(u)ux,vx=u



(5)




and found that this system possesses a rather rich symmetry structure and identified new forms of [image: there is no content] that admitted new nontrivial symmetries. Of particular interest are again power law diffusivities [image: there is no content], where (5) admits the symmetry generator


[image: there is no content]



(6)




where [image: there is no content], and V are given by, in the case of [image: there is no content],


T=c1+c2tX=c3+c2+mc4m+2xU=2c4−c2m+2uV=c5+c4v



(7)




and in the case of [image: there is no content],


[image: there is no content]



(8)




where F satisfies [image: there is no content]. Clearly, the powers [image: there is no content] and [image: there is no content] show themselves as special, and—as this example demonstrates—the symmetries of equations and equivalent systems can be different. A natural question to ask is whether this holds true for nonclassical symmetries; that the nonclassical symmetries of a particular equation and a equivalent system (nonclassical potential symmetries) are different.



The nonclassical method, first introduced by Bluman and Cole [8] (see, for example, [2] or [3]), seeks invariance of a given partial differential equation (PDE) augmented with the invariant surface condition. As the determining equations for these nonclassical symmetries are nonlinear, there seemed to be little hope for this new method; however, with the development of computer algebra systems, the nineties saw a huge explosion of interest as several authors took interest in the nonclassical method and continues today to be an active area of interest (e.g., [9,10,11,12,13,14,15,16,17,18,19,20,21,22,23] and references within).



Of particular interest here is the paper by Bluman and Yan [24]. They consider two algorithms that extend the nonclassical method to potential systems and potential equations. They consider the nonlinear diffusion Equation (1), an equivalent potential system (Algorithm 1)


vx=u,vt=K(u)ux



(9)




and potential equation (Algorithm 2)


[image: there is no content]



(10)







In the case where [image: there is no content], they were able to show that (10) admits nonclassical symmetries that the original Equation (1) does not. So, there is some evidence that the nonclassical symmetries of a PDE and a potential equation/equivalent system can be different (see also [25] and references within). Although we will not address this question in general here, we will use Algorithm 1 to consider a large class of nonlinear diffusion–convection and wave equations to show that—in the majority of cases—the nonclassical potential system symmetries contain the nonclassical symmetries of the original equation. We also highlight a special case where the opposite is true.




2. Nonclassical Symmetries


In this section, we consider the nonclassical symmetries of the following nonlinear partial differential equations


(i)ut=F(u)ux+G(u)x



(11a)






(ii)utt=F(u)ux+G(u)x



(11b)







These equations are of considerable interest because of their applications. For example, (11a), sometimes known as Richard’s equation, has been used to model the one-dimensional, nonhysteretic infiltration in uniform nonswelling soil (Broadbridge and White [26]) and to model two phase filtration under gravity (Rogers, Stallybrass, and Clement [27]). Furthermore, (11b)—sometimes known as the nonlinear telegraph equation—has been used to model the telegraphy of a two-conductor transmission line (Katayev [28]) and the motion of a hyperelastic homogeneous rod whose cross-sectional area varies exponentially along the rod (Jeffery [29]).



In what follows, we omit the cases where (11) are linear or linearizable via a point transformation, as it is known that all solutions of linear PDEs can be obtained via classical Lie symmetries [30]. Each equation will be considered separately.



2.1. Nonlinear Diffusion–Convection Equation


We first consider the nonclassical symmetries of (11a). These are calculated by appending to (11a) the invariant surface condition


[image: there is no content]



(12)







As usual, if [image: there is no content], we set [image: there is no content] in (12) without loss of generality. This gives rise to the following determining equations for the infinitesimals [image: there is no content] and [image: there is no content]:


[image: there is no content]



(13a)






[image: there is no content]



(13b)






[image: there is no content]



(13c)






[image: there is no content]



(13d)







A variation of these determining equations are given in Cherniha and Serov [31], and in the case of [image: there is no content], appear in Arrigo and Hill [32]. To calculate the nonclassical potential symmetries, we calculate the nonclassical symmetries for the associated system


vt=F(u)ux+G(u),vx=u



(14)




augmented with the two associated invariant surface conditions


Tut+Xux=U,Tvt+Xvx=V



(15)




again noting that we will set [image: there is no content], as we are assuming that [image: there is no content]. Our approach to obtaining the determining equations is through compatibility. Several authors have shown that this is equivalent to the nonclassical method (see [33,34,35,36]). Solving (14) and (15) for the first order derivatives [image: there is no content] and [image: there is no content] gives


ut=XG+UF−XV+uX2F,ux=V−uX−GF,vt=V−uX,vx=u



(16)







Requiring compatibility by eliminating partial derivatives by cross-differentiation gives


[image: there is no content]



(17a)






[image: there is no content]



(17b)







In the case of [image: there is no content], these determining equations are equivalent to those that appear in Bluman and Shtelen [37]. It is interesting to note that at first appearance, (17) seems to be underdetermined—two equations for the three unknowns [image: there is no content] and V. However, if we let [image: there is no content], where [image: there is no content], then (16) becomes


ut=U−XW,ux=W,vt=FW+G,vx=u



(18)




and compatibility of (18) again, by cross-differentiation gives rise to the determining equations


[image: there is no content]



(19a)






[image: there is no content]



(19b)







To show that the nonclassical symmetries of (11a) are included in the nonclassical symmetries of (14) is to show that V exists satisfying (17) if X and U satisfy (13). As we have defined V in terms of W, it suffices to have [image: there is no content], and W functions of [image: there is no content], and u only. Doing so and requiring that (19) be compatible via cross-differentiation gives rise to


FFXuu−FuXuW3−F2Uuu−2F2Xxu+FFuUu+2FGu+2FXXu+UFFuu−UFu2W2−2F2Uxu+FXt−F2Xxx+2FFuUx−2FUXu+F2X+GuXx+FGuu−FuGu−XFuUW+FUt−F2Uxx−FGuUx+2FUXx−U2Fu=0



(20)







By virtue of (13), this is identically satisfied given that a W exists satisfying (19), which in turn gives that a V exists satisfying (17), thus proving our claim.




2.2. Nonlinear Wave Equation


We now consider the nonclassical symmetries of (11b). Again, we set [image: there is no content]. For this particular class of equations, it is necessary to consider two cases: (i) [image: there is no content] and (ii) [image: there is no content]. Each will be considered separately.



Case (i) [image: there is no content]


In this case, we have the following determining equations for the infinitesimals [image: there is no content] and [image: there is no content]:


[image: there is no content]



(21a)






X2−F2XUXuu+2FXxu+2XXtu−(Fu+2XXu)Uu−2GuXu−FuuU+X2−F2Uuu−22X2Xt+2FXXx−2XUFu+4X2UXuXu+2XFuXt+XXx−Fu2U=0



(21b)






X2−F2XUUuu+2XUtu+2FUxu+U2Xuu+2UXtu−FXxx+Xtt−X2−F2XuUt−2FuUx+2XtUu+GuXx−Guu−2XXt2−FXx2+U2Xu2−2(2FXt+2FXXx+2X2UXu−XUFu)Uu+U(FuU−2GuX)Xu−4XUXu+2GuX−FuUXt−FuXU+2FGuXx+FuGuU=0



(21c)






X2−FU2Uuu+2UUtu+Utt−FUxx−FuUx−Ut+UUx2XXt+2FXx+2XUXu−FuU+2FXt+2FXx+2FUXu−FuXUUx=0



(21d)







In the case of [image: there is no content], these determining equations appear in Näslund [38]. To calculate the nonclassical potential symmetries, we calculate the nonclassical symmetries for the associated system


vt=F(u)ux+G(u),vx=ut



(22)




augmented with the two associated invariant surface conditions


Tut+Xux=U,Tvt+Xvx=V



(23)




with [image: there is no content]. This gives rise to two determining equations that have 43 and 44 terms, respectively. As we did in the previous section, we can simplify these determining equations. Solving (22) and (23) for [image: there is no content], and [image: there is no content] gives


ut=XG+UF−XVF−X2,ux=V−XU+GF−X2,vt=V−uXF−X2,vx=uF−X2



(24)







Letting [image: there is no content], where [image: there is no content] gives (24) as


ut=U−XW,ux=W,vt=FW+G,vx=U−XW



(25)







Requiring compatibility through cross-differentiation gives rise to the following determining equations:


Wt+XWx+UWu+XU+F−X2W+GWv+Xu−XXvW2+Xx+UXv−Uu+XUvW−Ux−UUv=0



(26a)






[image: there is no content]



(26b)







To show that the nonclassical symmetries of (11b) are included in the nonclassical symmetries of (22) is to show that W exists satisfying (26) if X and U satisfy (21). Eliminating derivatives of W in (26) through cross-differentiation shows that (26) is compatible, provided that


[image: there is no content]



(27)




where [image: there is no content], and D are precisely the expressions given in (21a)–(21d), thus showing that (27) is identically satisfied, again proving our claim.




Case (ii) [image: there is no content]


For this special case, we will show the opposite is true. The nonclassical symmetries of the system are contained within the nonclassical symmetries of the single equation. For the system (22), we find determining equations give rise to [image: there is no content], and that U satisfies


[image: there is no content]



(28a)






[image: there is no content]



(28b)







Compatibility of (28) by eliminating [image: there is no content] gives rise to the third equation


[image: there is no content]



(29)







Further compatibility between (28a) and (29) by eliminating all derivatives of U gives rise to


[image: there is no content]



(30)







If either [image: there is no content], [image: there is no content], or [image: there is no content], then from (30) [image: there is no content] and (22) is linearizable via a hodograph transformation. Thus, the only case to consider is when [image: there is no content]. In this case, (28) can be solved, giving


U=−c1,G=c1X+c2



(31)




where [image: there is no content] and [image: there is no content] are arbitrary constants, and [image: there is no content] is arbitrary.



We now turn our attention to the single Equation (11b). In the special case where [image: there is no content], we are restricted in the number of differential consequences of our invariant surface condition to be combined with our original PDE. Differential consequences of (12) (with [image: there is no content] and [image: there is no content]) are


[image: there is no content]



(32a)






[image: there is no content]



(32b)







In the case where [image: there is no content], we can solve the original PDE (11b) along with differential consequence of the invariant surface condition (12) for [image: there is no content], and [image: there is no content]. In this special case where [image: there is no content], we can only solve for two second order derivatives of u. If we solve (11b) and (32b) for [image: there is no content] and [image: there is no content], the second determining equation in (32) becomes


[image: there is no content]



(33)




and using the invariant surface condition (12), we obtain


[image: there is no content]



(34)







From (34) we see two cases emerge. If [image: there is no content], then [image: there is no content], and comparing with (28) shows they are identical if [image: there is no content]. However, our analysis there showed the only solution is (31), and so the two results coincide. If [image: there is no content], then we obtain the single determining equation


[image: there is no content]



(35)







We make no effort to solve (35) in general; however, if [image: there is no content], then (35) can be solved giving


[image: there is no content]



(36)




where [image: there is no content] and [image: there is no content] are arbitrary constants showing that the nonclassical symmetries of the single Equation (11b) contain the nonclassical symmetries of the equivalent system (22), and are in fact more general.






3. [image: there is no content]


In applying the nonclassical method in the previous section, we assumed that [image: there is no content], letting us set [image: there is no content] without loss of generality. We now consider the case when [image: there is no content] Without loss of generality, we can set [image: there is no content]. Again, we will consider the nonlinear diffusion–convection and wave equations separately.



3.1. Nonlinear Diffusion Equation


In the case of the nonlinear heat Equation (11a), the nonclassical method gives rise to the following single equation for U:


[image: there is no content]



(37)







Applying the nonclassical method to the system (14) gives the single equation


[image: there is no content]



(38)







At this point, we set the coefficients of the derivatives to zero. This gives


ut=0,FUx+UUu+uUv+FuU2+GuU=0



(39)




showing that the only solutions to (14) are of the form [image: there is no content]. This was also noted in Bluman and Yan [24] in the case of [image: there is no content]. However, we could continue to refine the nonclassical method and solve (38) for [image: there is no content] and impose compatibility with [image: there is no content]. This would give


[image: there is no content]



(40)







Setting [image: there is no content] in (40) recovers (37), showing that a refinement in nonclassical method applied to the system (14) includes the nonclassical symmetries of the original Equation (11a).




3.2. Nonlinear Wave Equation


In the case of the nonlinear wave Equation (11b), the determining equations are:


[image: there is no content]



(41)







For the system (22), they are


[image: there is no content]



(42)







Setting [image: there is no content] and requiring that (42) be compatible gives


[image: there is no content]



(43)




which by virtue of (41) shows that this is identically satisfied, proving that nonclassical symmetries of (11a) are included to those of (22).





4. Conclusions


In this paper, we have considered the symmetries of a nonlinear diffusion–convection and wave equation and equivalent systems. It is well known that classical Lie symmetries of differential equations and equivalent systems can be different. We question whether this is true if we extend the symmetries to include nonclassical symmetries. We have shown that in the majority of cases, the nonclassical symmetries of equivalent systems (sometimes termed potential symmetries) contain the nonclassical symmetries of the single equation counterpart. However, we have found a special case where the opposite is true, for the nonlinear wave equation when [image: there is no content], where we have found that the nonclassical symmetries of the single equation contain the nonclassical symmetries of a system equivalent. A natural question is whether this is true for more general equations


(i)ut=F(t,x,u)ux+G(t,x,u)x(ii)utt=F(t,x,u)ux+G(t,x,u)x








There seems to be some indication that this is true, but further study is needed.
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