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Abstract: Several factors may influence children’s lifestyle. The main purpose of this study is to
introduce a children’s lifestyle index framework and model it based on structural equation modeling
(SEM) with Maximum likelihood (ML) and Bayesian predictors. This framework includes parental
socioeconomic status, household food security, parental lifestyle, and children’s lifestyle. The sample
for this study involves 452 volunteer Chinese families with children 7–12 years old. The experimental
results are compared in terms of root mean square error, coefficient of determination, mean absolute
error, and mean absolute percentage error metrics. An analysis of the proposed causal model suggests
there are multiple significant interconnections among the variables of interest. According to both
Bayesian and ML techniques, the proposed framework illustrates that parental socioeconomic status
and parental lifestyle strongly impact children’s lifestyle. The impact of household food security on
children’s lifestyle is rejected. However, there is a strong relationship between household food security
and both parental socioeconomic status and parental lifestyle. Moreover, the outputs illustrate that
the Bayesian prediction model has a good fit with the data, unlike the ML approach. The reasons
for this discrepancy between ML and Bayesian prediction are debated and potential advantages and
caveats with the application of the Bayesian approach in future studies are discussed.

Keywords: Bayesian structural equation modeling; public health; maximum likelihood structural
equation modeling; Gibbs sampler algorithm

1. Introduction

Children’s lifestyle behaviors, such as technology usage time, home studying, physical activity,
and sleep duration tend to change in non-favorable directions. Some studies indicate that the family
environment is an important determinant of children’s lifestyle [1]. Therefore, information on children’s
lifestyle is often gathered based on household environment surveys. Decision-makers can use such
data to allocate resources prudently when planning activities aimed at improving the overall lifestyle of
children in a particular community. For ease of interpretation, this type of information is summarized
in a single value called the children’s lifestyle index. It is also important to identify factors potentially
affecting this index. Various studies have indicated that many factors are related to the lifestyle index
of children, including parental socioeconomic status [2–4] and parental lifestyle [5]. However, there are
insufficient studies on the impact of household food security on children’s lifestyle. Moreover, there are
links between parental socioeconomic situation and household food security [6]. Nevertheless, research
on the simultaneous integration of the interrelationships among the four well-known concepts into
one model remains scarce. These influential factors are interrelated and latent because they cannot be
measured directly, and it is thus quite complicated to determine the lifestyle index.
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Figure 1 shows the hypothesized model involving measurement and structural components used
to illustrate the children’s lifestyle index. Six important relationships are examined in the current
research framework. The influence of socioeconomic status as an independent variable of behavior
further complicates our understanding of children’s lifestyle and related behaviors.
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Figure 1. Research framework.

First, the direct relationships between parental socioeconomic status and children’s lifestyle,
as well between parental socioeconomic status and both parental lifestyle and household food security,
are considered. Second, as Ishida [7] confirmed, there is an interconnection between household food
security and lifestyle behavior. Therefore, these two latent variables with their relationships are
included in the research model as mediators. The third relationship considers the direct impact of both
household food security and parental lifestyle on children’s lifestyle. The goal is to distinguish how
these two family environment indicators influence children’s lifestyle.

Since it is also reasonable to hypothesize that parental socioeconomic status, household food
security, and parental lifestyle are correlated, the interrelationships among these three latent variables
are indicated in Figure 1 by dashed lines with double-headed arrows connecting the latent variables.

The six hypotheses considered in the research model are:

H1: Parental socioeconomic status has a significant impact on children’s lifestyle.
H2: Household food security has a significant impact on children’s lifestyle.
H3: Parental lifestyle has a significant impact on children’s lifestyle.
H4: There is a significant relationship between parental socioeconomic status and parental lifestyle in
the research model.
H5: There is a significant relationship between parental socioeconomic status and household food
security in the research model.
H6: There is a significant relationship between household food security and parental lifestyle in the
research model.

Linear and nonlinear regression analyses have become bases of modeling techniques in statistics.
However, individual regression analysis for each dependent variable is hardly challenged as a realistic
approach in situations where the outcomes are naturally related. Additionally, it is difficult to
analyze some research frameworks using regression models when an outcome is determined not
only by the direct impacts of the predictor variables but also by their unobserved common causes.
Structural equation modeling (SEM) is a suitable technique that can address the above limitations by
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providing a robust means of studying interdependencies among a set of correlated variables. Maximum
likelihood SEM (ML-SEM) has been used by many researchers to analyze a complex phenomenon
involving hypothesized relationships between independent and dependent latent variables. Classical
methods based on the covariance structure approach encounter serious difficulties when dealing with
complicated models and/or data structures. ML-SEM is applied to analyze the proper amount of
hidden indicators (constructs or latent variable) to determine the observed indicators. ML-SEM is
capable of performing concurrent analysis to illustrate the connections among observed indicators and
corresponding latent variables as well as the connection among latent variables (Ullman [8]).

A computational algorithm in ML-SEM is developed based on the sample covariance matrix.
ML-SEM employs the assumption that the observations are independent and identically distributed
according to multivariate normal distribution [9]. If this assumption is not fulfilled, the sample
covariance matrix cannot be determined in the usual way and is difficult to obtain [10]. Therefore,
a number of researchers, such as Bashir and Schilizzi [11], Radzi and Jenatabadi [12], and Scheines
and Hoijtink [13] have proposed using the Bayesian approach in SEM to overcome these problems.
The Bayesian approach is attractive as users are able to employ prior information to update current
information pertaining to the parameters of interest.

In his book Structural Equation Modeling: A Bayesian Approach, Lee [9] presents some advantages
of Bayesian SEM (B-SEM) prediction:

• First moment properties of raw individual observations are mainly used in statistical techniques,
thus making the techniques much simpler than second moment properties of the sample
covariance matrix. Hence, B-SEM is easier to apply in more complex states.

• Direct latent variable estimation is possible, which simplifies the process of obtaining factor score
estimates compared to classical regression methods.

• As manifest variables are directly modeled with their latent variables using familiar regression
functions, B-SEM provides a more direct interpretation. It can also use common methods of
regression modeling, such as residual and outlier analyses in conducting statistical analysis.

As pointed out by Scheines and Hoijtink [13], Lee and Song [14], and Dunson [15], the Bayesian
predictor technique allows researchers to use prior experts’ theories in addition to the sample
information to produce better outputs and deliver valuable statistics and indices, including the
mean and percentiles of the posterior distribution of unknown parameters. In conclusion, more
reliable results can be achieved for small samples. In contrast, the Bayesian approach has much more
flexibility in handling complex situations. Even though many studies have been done on determining
the lifestyle index, not much has been done on modeling this index using SEM, particularly when
considering information on parental socioeconomic status, household food security, and parental
lifestyle. Therefore, the main purpose of this study is to illustrate the worth of ML-SEM and Bayesian
SEM (B-SEM) in developing a model that describes the lifestyle index of children.

2. Theoretical Background of Maximum Likelihood-Structural Equation Modeling (ML-SEM)
and Bayesian-SEM (B-SEM)

In the field of SEM, new techniques and statistical prediction analyses have been developed to
better evaluate more complex data structures. These contain but are not limited to: linear/nonlinear
SEM with covariates [16,17], SEM with multilevel dimensions [18,19], SEM with multi-samples [20,21],
SEM analysis with categorical data [22,23], SEM with exponential indicators [24], and SEM with
nonlinear correlations [25,26]. The above research works endeavor not only to prepare theoretical
results but also to produce significant practical values. Indeed, the B-SEM technique is developed
based on a Bayesian approach as the second generation of ML-SEM, which involves a much wider
class of models [9].
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2.1. ML-SEM

SEM is strongly capable of hypothesizing any types of relations and interactions among research
variables in a single causal framework. This technique is helpful for researchers to better understand
the concept of latent variables and their action within the model. Based on Bollen ’s [27] study, “latent
variables provide a degree of abstraction that permits us to describe relations among a class of events
or variables that share something in common”. For instance, with this ability of latent variables of SEM,
we were able to combine indicators that are related to children’s behavior in a household environment
and named it the “children’s lifestyle” latent variable. Another capability of SEM is determining the
interconnection between three predictors (parental socioeconomic status, household food security, and
parental lifestyle) and the impact of them on children’s lifestyle (see Figure 2).
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For predicting and estimating the research parameters in ML-SEM, measurements and structural
models are the main procedures. The measurement model is defined by a p× 1 vector yi that is
given by:

yi = µΩi + εi; i = 1, 2, . . . , n (1)

where

Y =


y1
y2
...

yn

 ; Ω =


Ω1

Ω2
...

Ωn

 ; µ =


µ11 µ12 · · · µ1n

µ21 µ22 · · · µ2n
...

...
. . .

...
µm1 µm2 · · · µmn

 ; ε =


ε1

ε2
...

εn

 .

In the research model Y includes five indicators: technology use, hours of study at home, child’s
physical exercise, child’s sleep amount, and school grade (see Section 3.1).

In Equation (1):

(a) µ is a (m× n) matrix that represents factor loadings from modeling the regressions of yi on Ωi.
(b) Ωi is a (n× 1) vector with normal distribution N (0, Φ) and is representative of the constructs

(latent variables). Ωi i = 1, . . . , n, are identically independent, have no correlation with εi, and
have normal distribution N (0, Φ). To modify the exogenous and endogenous latent variables’
association, Ωi is partitioned into (λi, ωi), where λi and ωi are r× 1 and s× 1 vector variables,
respectively, with latent structures.

(c) εi is a (m× 1) random vector with N (0, ψε) distribution that represents the error measurement.

Equation (2) presents the structural function elements:

λi = Σλi + γωi + πi; i = 1, 2, . . . , n, (2)
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Σ =


Σ11 Σ12 · · · Σ1r

Σ21 Σ22 · · · Σ2r
...

...
. . .

...
Σr1 Σr2 · · · Σrr

 ; γ =


γ11 γ12 · · · γ1s

γ21 γ22 · · · γ2s
...

...
. . .

...
γr1 γr2 · · · γrs

 ,

where

(a) Σ is an r× r matrix of structural parameters representing the relationships among endogenous
latent variables. This matrix is assumed to have zeroes in the diagonal elements.

(b) γ is an r× s matrix of regression parameters relating both exogenous and endogenous latent
variables, and πi is a r× 1 vector of disturbances.

(c) πi is an error term presumed to have N (0, ψπ) distribution, where ψπ is a diagonal covariance
matrix and this vector is uncorrelated with ωi.

In this paper children’s lifestyle is the endogenous latent variable and parental socioeconomic
status, household food security, and parental lifestyle are exogenous latent variables for dependent
variable. However, parental lifestyle and household food security are endogenous latent variables for
parental socioeconomic status. Therefore, in the research model parental socioeconomic status acts as
exogenous, children’s lifestyle acts as endogenous, and household food security and parental lifestyle
act both endogenous and exogenous.

To estimate the research parameters with ML-SEM, the robust-weighted least-squares (RWLS)
procedure is used. RWLS incurs standard errors, estimates the research parameter coefficients,
calculates χ2 and fit indices created by applying the diagonal weight matrix components produced
based on the thresholds’ asymptotic variances, and estimates the latent correlation [28]. Model
evaluation is the next step in ML-SEM. In this respect, the model goodness-of-fit can be checked
through the related Chi-square statistic (CMIN), normed fit index (NFI), comparative fit index (CFI),
Tucker Lewis index (TLI), incremental fit index (IFI), relative fit index (RFI), goodness-of-fit index
(GFI), and root mean square error of approximation (RMSEA) [8].

2.2. B-SEM

The ML method finds estimates by maximizing the likelihood function, assuming observed data.
Specifically, if x = (x1, . . . , xn) is the observed value of a random sample X = (X1, . . . , Xn) from
distribution f (·), f ∈ F = { f (x|θ) : x ∈ χ, θ ∈ Ω}, then the likelihood function of θ has the form

L (θ) = f (x1, . . . , xn|θ) = ∏n
i=1 f (xi|θ). (3)

The ML estimate of θ is given by
θ̂ = argmin

θ
L (θ) (4)

Before observing the data in Bayesian analysis, the practitioner/expert has an idea/belief/
information about the unknown parameter θ ∈ Ω. This prior information is updated with information
obtained from the sample, forming the posterior distribution of θ, which will be used to estimate θ.
This procedure is shown in Figure 3, where the distributions for a prior and its respective posterior
for a given parameter, together with the likelihood, are illustrated. Note that the likelihood can be
considered the distribution of the data given the parameter values. Based on Figure 3, the major portion
of the prior distribution has lower parameter values than the likelihood distribution. The posterior is
obtained as a compromise between the prior and the likelihood.

From Figure 3, it is apparent that the prior does not allocate sufficient probability where the
likelihood is high, and there exists prior-data conflict. See Evans and Moshonov [29] for more details.
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Priors can be non-informative or informative. A non-informative prior, also named a diffuse
prior, can, for instance, have a normal or uniform distribution with large variance. In statistical
modeling, a large uncertainty in the parameter value is reflected by a large variance. Consequently,
with a large prior variance, the likelihood contributes relatively more information to the construction
of the posterior, and the estimate is closer to an ML estimate. Evans [31] cautioned that using a large
variance prior may lead to the Jeffreys-Lindley paradox.

Formally, the formation of a posterior draws on Bayes’s theorem. Consider the probabilities
of events C and D, Pr (C) and Pr (D). Based on probability theory, the joint event C and D can be
expressed in terms of conditional and marginal probabilities:

Pr (C, D) = Pr (C|D) Pr (D) = Pr (D|C) Pr (C) (5)

In Equation (5), if we divide every side by Pr (C) then we get:

Pr (D|C) = Pr (C|D) Pr (D)

Pr (C)
(6)

which is known as Bayes’s theorem. By applying this theorem in modeling, it lets the data x take
the role of C and the parameter value takes the role of D. Thus, the posterior can be symbolically
illustrated as

posterior = parameter given data = data | parameters ×parameters
data = likelihood ×prior

data ∝ likelihood × prior (7)

In the above formula “∝” means “proportional to”. More specifically, we have

P (θ|x) = L (θ)π (θ)

m (x)
(8)

where π (θ) is the prior distribution (probability) of θ ∈ Ω and m (x) is called the prior predictive
distribution of x obtained as (for a continuous case):

m (x) =
∫

Ω
L (θ)π (θ) dθ (9)

In this study, the variables gathered are in the form of ordered categories. Yanuar and Ibrahim [32]
believe that, before conducting Bayesian analysis, a threshold specification must be identified in order
to treat the ordered categorical data as manifestations of a hidden continuous normal distribution.
A brief explanation of the threshold specification is given below.
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Suppose X and Y are defined as:

X =


x1

x2
...

xn

 ; Y =


y1

y2
...

yn

,

which can be considered as the ordered categorical data matrix and latent continuous variables,
respectively. Moreover, the relationship between X and Y is described by applying the threshold
specification. The procedure for x1 is described as an instant. More precisely, let

x1 = c i f τc − 1 < y1 < τc (10)

• c is the number of categories for x1;
• τc − 1 and τc represent the threshold levels associated with y1.

For example, in the current study we assumed c = 3, which leads to τ0 = −∞ and τ3 = ∞.
Meanwhile, the values of τ1 and τ2 are calculated based on the proportion of cases in each category of
x1 using

τk = Φ−1

(
2

∑
r=1

Nr

N

)
, k = 1, 2, (11)

We assumed that Y is distributed as a multivariate normal. Therefore, in Equation (10) we have:

• Φ−1 (·) is the inverse standardized normal distribution;
• N is the total number of cases;
• Nr is the number of cases in the rth category.

Under the Bayesian SEM, X = (x1, x2, . . . , xn) and Y = (y1, y2, . . . , yn) are the ordered categorical
data matrix and latent continuous variables, respectively, and Ω = (ω1, ω2, . . . , ωn) is the matrix of
latent variables. The observed data X are augmented with the latent data (Y, Ω) in the posterior
analysis. The parameter space is denoted by Θ = (τ, θ, Ω), where θ = (Φ, Λ, Λω, Ψδ, Ψ ε) is the
structural parameter. In line with Lee (2007), the prior model is given by

π (Θ) = π (τ)π (θ)π(Ω|τ, θ) (12)

where, due to the ordinal nature of thresholds, a diffuse prior can be adopted. Specifically, for some
constant c,

π (τ) = c (13)

Further, to accommodate a subjective viewpoint, a natural conjugate prior can be adopted for θ

with the conditional representation π (θ) = π (Λ |Ψε )π (Ψε). More specifically, let

ψ−1
εk ∼ Γ (α0εk, β0εk) (14)(

Λk

∣∣∣ψ−1
εk

)
∼ N

(
Λ0k, ψεkH0yk

)
(15)

where ψεk is the kth diagonal element of ψε, Λk is the kth row of Λ, and Γ denotes the gamma
distribution. Finally, an inverse-Wishart distribution is adopted for Φ as follows:

Φ−1 ∼Wq (R0, ρ0) (16)

It is further supposed that all hyperparameters are known. Posterior distribution can be found by
normalizing the product L (Θ |X = x )π (Θ).
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In order to sample from the posterior distribution Θ|X = x , the Markov Chain Monte Carlo
(MCMC) technique is used to handle the computational complexity.

2.3. Modeling Description

The model hypothesized in this study consists of 16 indicator variables with one exogenous latent
variable and three endogenous latent variables. The following measurement model is then formulated:

yi = Λωi + εi, i = 1, 2, . . . , n (17)

where ωi = (ηi, ξi1, ξi2, ξi3)
T . The structural part of the current SEM model has the form

ηi = γ1 ξi1 + γ2ξi2 + γ3ξi3 + δi (18)

where (ξi1, ξi2, ξi3)
T is distributed as N (0, Φ) and independent of δi, which is distributed as N (0, ψδ).

In data analysis, we applied AMOS 18 to estimate research parameters for ML-SEM, while
WinBUGS 1.4 was used for B-SEM analysis. The hierarchical structure is employed by choosing the
prior information for parameters involved in the hypothesized model, as defined in Equations (14)–(16).

3. Materials and Methods

3.1. Data Structure

The information gathered in this survey includes information about parental socioeconomic status,
household food security, parental lifestyle, and children’s lifestyle of individuals living in Urumqi,
Xinjiang, China. The parental socioeconomic situation was measured as the initial independent
variable, including nine indicators. Eight of the indicators are the mother’s age, father’s age, mother’s
education level, father’s education level, mother’s income level, father’s income level, mother’s
work experience, and father’s work experience. The added question is “How long have the parents
been married? The parents’ ages were classified into four groups, namely “30 years old or below”,
“31 to 40 years old”, “41 to 50 years old” and “over 50 years old”, which were coded as 1, 2, 3,
and 4, respectively. With respect to education level, the responses obtained were coded as 1 for “Less
than High School”, 2 for “High school”, 3 for “Diploma”, 4 for “Bachelor’s”, and 5 for “Master’s
or PhD”. The respondents were asked about the parental income status, and the responses were
denoted by 1, 2, 3, 4, and 5 for “less than RMB2,000 per month”, “RMB2,001–RMB3,000 per month”,
“RMB3,001–RMB4,000 per month”, “RMB4,001–RMB5,000 per month”, and “more than RMB5,000
per month”, respectively. The respondents were asked about the parental work experience and the
responses were coded as 1, 2, 3, 4, and 5, denoting “less than 5 years”, “5–10 years”, “11–15 years”,
“16–20 years”, and “more than 20 years”, respectively. The last question in the socioeconomic part is
related to the duration of the parents’ marriage, and responses were labeled 1, 2, 3, 4, and 5 for “less
than 2 years”, “2–4 years”, “5–7 years”, “8–10 years”, and “more than 10 years”. Family food security
status was the first mediator, based on a study by Bickel, Nord [33], which included 18 standard
questions. We extracted nine questions that are representative of the food security indicators, which
were measured on a Likert scale from 1 to 9. The third variable is parental lifestyle and in the research
model it acts as the second mediator. Several authors have proposed lists of health-related behaviors
for measuring parental lifestyle. Nakayama and Yamaguchi [34] suggested a list of health-related
behaviors including physical exercise, smoking habits, average sleeping hours, and average working
hours per day. In our study, we added drinking alcohol to Nakayama’s list and measured all factors
for fathers and mothers separately. Therefore, parental lifestyle was measured based on 10 indicators,
namely alcohol drinking, smoking habits, physical exercise, working hours, and average sleeping
hours per day, for the mother and father. The respondents were asked about their alcohol drinking
habits and the responses were coded as 1, 2, 3, 4, 5, 6, and 7, denoting “less than 1 time per month”,
“1 time per month”, “2 to 3 times per month”, “1 time per week”, “2 to 3 times per week”, “4 to
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6 times per week”, and “every day”. The respondents were asked about their smoking habits and
the responses were coded as 1, 2, and 3, denoting “smoker”, “quit”, and “non-smoker”, respectively.
Regarding the frequency of physical exercise, respondents were asked “how many times a week on
average do you do physical exercise?” The responses for this question were placed into four categories
coded as 1, 2, 3, and 4, indicating “none”, “1 or 2 times per week”, “3 or 4 times per week”, and
“more than 4 times per week”, respectively. Working hours per day were coded as 1 for “more than
14 h”, 2 for “9–14 h”, and 3 for “less than 9 h”. The average sleeping hours per day were grouped
as 1 referring to “less than 7 h per day”, 2 for “more than 8 h per day”, and 3 for “between 7 and
8 h per day”. Children’s lifestyle was the fourth latent variable and acted as the dependent variable.
Five indicators were considered in measuring the children’s lifestyle index. These are hours of study at
home, child’s sleep amount, technology use, school grade, and child’s physical exercise. The average
hours of study at home per day were grouped into four categories: 1 referring to “less than 1 h per
day”, 2 for “1 to 2 h per day”, 3 for “3 to 4 h per day”, and 4 for “more than 4 h per day”. The child’s
average sleeping hours per day were grouped into 1 referring to “less than 7 h per day”, 2 for “between
7 and 8 h per day”, 3 for “between 8 and 9 h per day”, and 4 for “more than 9 h per day”. Respondents
were asked “how many hours on average does your child use technology per day?” The responses
for this question consist of four categories that were coded as 1, 2, 3, and 4, indicating “less than 1 h
per day”, “1 to 2 h per day”, “3 to 4 h per day”, and “more than 4 h per day”, respectively. Children’s
school levels were coded from 1 to 6, denoting grades 1 to 6. Children’s physical activity per week was
coded as 1 for “none”, 2 for “1 or 2 times per week”, 3 for “3 or 4 times per week”, and 4 for “more
than 4 times per week”.

3.2. Ethics Statement

For this research, the questionnaires were self-administered/reported. These surveys were
collected anonymously, with no way of identifying the participants. Therefore, based on the Health
Research Ethics Authority [35], the research does not require an ethics review “based solely on the
researcher’s personal reflections and self-observation”.

3.3. Sampling

Five primary schools were selected from Urumqi City, Xinjiang Province, China and
120 questionnaires were delivered to every school. Every primary school includes six grades, and
20 questionnaires were distributed to each grade. Therefore, 5 × 6 × 20 = 600 questionnaires were
distributed in 2014 to five schools. Every questionnaire was for one family including a father, a mother,
and a child between seven and 12 years old. The sample comprised parents who joined school parent
meetings that take place four times per year. For each of the six grades, 20 volunteers were selected
and trained on filling out the questionnaire. The survey was conducted with University of Malaya
funding. A parent was retained in the sample if they had a child between seven (grade 1) and 12
(grade 6) years of age.

Of 600 distributed questionnaires, 483 were returned. The rest of the families refused to continue
their cooperation. Among 483 questionnaires, 22 were eliminated based on missing data. Mahalanobis
distance is an extremely general measure that is utilized for the measurement of multivariate
outliers [36]. Based on Mahalanobis Distance testing, nine observations (observation number; 36, 88,
92, 134, 228, 256, 372, 411, and 444) were eliminated from the list because they were considered outliers
that could affect the model fit, R2, and the size and direction of parameter estimates (see Table 1).
Therefore, (483 − 22 − 9 = 452) 452 observations were considered as the final data of the study.



Symmetry 2016, 8, 141 10 of 18

Table 1. Mahalanobis distance.

Observation Number Mahalanobis D-Squared p1 p2

36 22.56 0.0016 0.0084
88 20.31 0.0067 0.0091
92 18.92 0.0092 0.0104

134 36.58 0.0116 0.0124
228 32.71 0.0231 0.0178
256 30.08 0.0854 0.0364
372 28.19 0.0932 0.0392
411 25.44 0.1589 0.0421
444 19.76 0.2876 0.0482

If p1 or p2 is less than 0.05 then the observation is an outlier.

4. Results

Tables 2 and 3 show a descriptive analysis of the child and parental characteristics.

Table 2. Descriptive analysis of child characteristics.

Characteristics Percentage Characteristics Percentage

Gender: Average hours per day of using technology:

Boy 45.60% Less than one hour per day 13.20%
Girl 54.40% 1 to 2 h per day 15.70%

School grades: 3 to 4 h per day 40.70%

Grade 1 14.20% More than 4 h per day 30.70%

Grade 2 16.80% Physical activities in a week:

Grade 3 16.60% None 44.20%
Grade 4 16.30% 1 or 2 times per week 28.40%
Grade 5 17.30% 3 or 4 times per week 19.70%
Grade 6 18.80% More than 4 times per week 7.70%

Study at home: Average sleeping hours in a day:

Less than one hour per day 21.10% Less than 7 h per day 5.80%
1 to 2 h per day 29.40% Between 7 and 8 h per day 22.20%
3 to 4 h per day 33.10% Between 8 and 9 h per day 56.30%

More than 4 h per day 16.40% More than 9 h per day 15.70%

Only the essential factors of each latent variable were sustained in the research model by applying
factor loading. Table 4 presents the indicators’ factor loadings on three latent variables. According to
Argyris and Schön [37], the standardized factor loading must be over 0.5. As illustrated in Table 4, some
factor loadings of four latent variables are below 0.5; therefore, these indicators must be excluded from
the measurement model. For the parental socioeconomic latent variable, six indicators were excluded
from the research model. These are the mother’s age, father’s age, father’s education, mother’s income,
mother’s work experience, and father’s work experience. For the parental lifestyle latent variable,
five indicators were excluded from the research model. These are the mother’s alcohol drinking
habit, mother’s smoking habit, father’s smoking habit, mother’s physical exercise habit, and father’s
physical exercise habit. Among nine indicators of household food security, four were excluded from
the research model. Finally, two indicators of children’s lifestyle were excluded from the research
model, the child’s physical exercise habit and school grade.
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Table 3. Descriptive analysis of parental characteristics

Characteristics Father (%) Mother (%) Characteristics Father (%) Mother (%)

Age: Smoking Habit:

Less than or equal 30 years old 18.5% 21.6% Smoker 66.6% 23.8%
Between 31and 40 years old 36.2% 25.1% Quitted 15.7% 13.7%
Between 41 and 50 years old 22.1% 28.4% Non-smoker 17.7% 62.5%

More than 50 years old 23.2% 24.9% Physical exercise:

Education: None 54.4% 33.6%

Less than High School 11.3% 9.5% 1 or 2 times in a week 27.7% 38.7%
High school 19.8% 6.7% 3 or 4 times per week 14.8% 11.2%
Diploma 37.7% 41.9% More than 4 times in a week 3.1% 16.5%

Bachelor 29.1% 33.1% Working hours in a day:

Master or PhD 2.1% 8.8% More than 14 hours per day 26.7% 8.2%

Income: 9–14 hours per day 62.8% 73.5%

Less than RMB2000 per month 11.7% 20.6% Less than 9 hours per day 10.5% 18.3%

RMB2001-RMB3000 per month 22.6% 24.5% Average sleeping hours in a day:

RMB3001-RMB4000 per month 33.9% 22.1% Less than 7 hours per day 55.4% 61.9%
RMB4001-RMB5000 per month 19.9% 17.3% Between 7 to 8 hours per day 27.9% 30.0%
More than RMB5000 per month 11.9% 15.5% More than 8 hours per day 16.7% 8.1%

Work experience: Drinking Alcohol Habit:

No work experience 0.00% 0.00% Less than one time per month 3.2% 10.6%
Less than 5 years 7.4% 19.2% 1 time per month 4.5% 22.7%
5-10 years 12.9% 21.7% 2 to 3 times per month 16.1% 32.1%
11-15 years 36.6% 26.6% 1 time per week 16.7% 28.2%
16-20 years 32.8% 23.6% 2 to 3 times per week 39.5% 6.4%
More than 20 years 10.3% 8.9% 4 to 6 times per week 18.7% 0.00%

Every day 1.3% 0.00%

Table 4. Factor loading analysis of research latent variables.

Parameter Description Factor Loading

Parental Socioeconomic

Mother’s age 0.43
Father’s age 0.38

Mother’s education 0.74
Father’s education 0.39
Mother’s income 0.43
Father’s income 0.68

Mother’s work experience 0.06
Father’s work experience 0.05
Parents’ marriage length 0.82

Parental Lifestyle

Mother’s drinking alcohol 0.36
Father’s drinking alcohol 0.73
Mother’s smoking habit 0.48
Father’s smoking habit 0.41

Mother’s physical exercises 0.21
Father’s physical exercises 0.09
Mother’s working hours 0.76
Father’s working hours 0.88

Mother’s average sleeping hours 0.83
Father’s average sleeping hours 0.71
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Table 4. Cont.

Parameter Description Factor Loading

Household Food Security

Worry about running out of food 0.73
Do not have money: household 0.82

Cannot afford to eat balanced meals: household 0.93
Cut down food portions: household 0.12

Do not eat the whole day: adults 0.98
Do not have money: children 0.04

Cannot afford to eat balanced meals: children 0.25
Cannot afford enough food: children 0.82

Skip a meal: children 0.24

Children’s Lifestyle

Technology use 0.92
Hours of study at home 0.73
Child’s physical exercise 0.49

Child’s sleep amount 0.68
School grade 0.46

Figure 4 represents the results of model fitting based on the SEM approach. In this respect,
the model’s goodness-of-fit can be checked with normed fit index (NFI), comparative fit index (CFI),
Tucker Lewis index (TLI), incremental fit index (IFI), relative fit index (RFI), and goodness-of-fit index
(GFI). The values of GFI, IFI, RFI, TLI, and NFI are within the acceptable range. Therefore, the current
model is fitted for our data at the 5% significance level.
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Figure 4. Model fitting analysis.

For some particular Bayesians, priors can come from any source, objective or otherwise [38].
The issue just described is referred to as the “elicitation problem” and has been discussed by
Van Wesel [39] and Rietbergen and Klugkist [40]. Moreover, elicitation procedure is a time-consuming
task, and even experts are often mistaken and prone to overstating their certainty [41]. Therefore,
instead of depending fully on expert decisions, research scholars engaging Bayesian analysis often
attempt to select the priors such that they are informative enough to yield B-SEM’s advantages,
while not being so informative as to bias the results [42]. By the end if one is unsure about the prior
distribution, a sensitivity analysis is suggested [43]. In such an analysis, the outcomes of different prior
specifications are compared to inspect the influence of the prior. To achieve this goal, models with
four types of prior inputs were compared. In assigning hyperparameter values, a small variance was
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taken for each parameter. Fixed values of α = 5 and β = 5 were evaluated for four inputs. Furthermore,
values corresponding to Φ were measured with ρ0 = 25 and R0

−1 = 6.5I.
Accordingly, the four prior inputs calculated are:

1. Prior I: Unknown loadings in Λ are all made equal to 0.35, and the measures corresponding to
{θ1, θ2, θ3} are {0.6, 0.5, 0.2}.

2. Prior II: The hyperparameter values are considered half of the values in prior I.
3. Prior III: The hyperparameter values are considered a quarter of the values in prior I.
4. Prior IV: The hyperparameter values are considered double the values in prior I.

Table 5 presents the outputs based on four types of prior inputs. This table indicates that the
parameter estimates and standard errors obtained for various prior inputs are reasonably close. It can
be concluded that the statistics found based on B-SEM are not sensitive to these four prior inputs.
Therefore, our approach is only valid with the adopted prior and B-SEM applied here is quite robust
against the different prior inputs. Accordingly, for the purpose of discussing the results obtained using
B-SEM, the results obtained using type I prior are used.

Table 5. Parameter estimation and standard error for four types of prior in B-SEM analysis.

Prior I Prior II Prior III Prior IV

Parameter Estimate STD Estimate STD Estimate STD Estimate STD

θ1 0.561 0.021 0.555 0.033 0.549 0.069 0.584 0.121
θ2 0.493 0.088 0.461 0.097 0.452 0.102 0.503 0.201
θ3 0.203 0.096 0.192 0.051 0.180 0.091 0.221 0.138
θ13 0.739 0.108 0.721 0.101 0.598 0.027 0.751 0.102
θ16 0.683 0.112 0.677 0.109 0.655 0.111 0.686 0.138
θ19 0.822 0.087 0.816 0.078 0.801 0.098 0.852 0.203
θ22 0.733 0.039 0.730 0.035 0.722 0.069 0.763 0.093
θ27 0.763 0.109 0.755 0.099 0.743 0.106 0.771 0.126
θ28 0.883 0.119 0.844 0.081 0.822 0.077 0.896 0.119
θ29 0.827 0.044 0.814 0.041 0.759 0.036 0.834 0.66
θ210 0.711 0.066 0.697 0.057 0.666 0.051 0.723 0.107
θ31 0.734 0.029 0.726 0.026 0.669 0.039 0.742 0.127
θ32 0.822 0.071 0.816 0.064 0.798 0.061 0.831 0.104
θ33 0.928 0.191 0.909 0.161 0.852 0.170 0.832 0.206
θ35 0.981 0.058 0.921 0.052 0.832 0.048 0.883 0.067
θ38 0.816 0.161 0.799 0.152 0.764 0.143 0.802 0.188

Based on Figures 5 and 6, the estimated structural equations that address the relationships
between the children’s lifestyle index and parental socioeconomic status, household food security, and
parental lifestyle for ML-SEM and B-SEM are given by:

ϕ̂ (ML− SEM) = 0.549θ1 + 0.198 θ2 + 0.488 θ3 (19)

and
ϕ̂ (B− SEM) = 0.561θ1 + 0.203 θ2 + 0.493 θ3 (20)

respectively, where

θ1 is the coefficient of parental socioeconomic status indicator;
θ2 is the coefficient of household food security indicator;
θ3 is the coefficient of parental lifestyle indicator.
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Figure 6. B-SEM output.

Table 6 presents the outputs of the research hypotheses regarding the relationships among
variables in this study. In both models, the impact of parental socioeconomic status and parental
lifestyle on children’s lifestyle is significant. However, the impact of household food security on
children’s lifestyle is not significant. Moreover, the relationships between parental socioeconomic
status and parental lifestyle, parental socioeconomic status and household food security, and household
food security and parental lifestyle are significant and positive.

Table 6. Estimated parameters estimation of SEM using ML and Bayesian predictors.

Relation
Estimated Coefficients

ML-SEM B-SEM

Parental socioeconomic→ Children’s life style 0.549 * 0.561 *
Household food security→ Children’s life style 0.198 0.203

Parental lifestyle→ Children’s life style 0.488 * 0.493 *
Parental socioeconomic↔ Parental lifestyle 0.508 * 0.513 *

Parental socioeconomic↔ Household food security 0.519 * 0.521 *
Household food security↔ Parental lifestyle 0.611 * 0.637 *

* Presents a significant relationship with 95% confidence.

This part of the study presents an analysis of the comparison between the ML-SEM and B-SEM
techniques in predicting the children’s lifestyle index. Two main stages were considered in the
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comparison. In the first stage, four indices were used to compare ML-SEM with B-SEM, which
are representative of the strength and correctness of the predictions. Among various prediction
techniques, the root mean square error (RMSE), coefficient of determination (R2), mean absolute
error (MSE), and mean absolute percentage error (MAPE) are the most familiar statistical indices
for comparison purposes. Table 7 presents the formulas of these indices and outputs of the ML and
Bayesian approaches.

Table 7. Comparative outputs of ML-SEM and B-SEM.

Name of Index Formula ML-SEM Value B-SEM Value

MAPE MAPE = 1
n ∑n

i=1

∣∣∣ y′i−yi
yi

∣∣∣ 0.094 0.088

RMSE RMSE =
2

√
∑n

i=1(y′i−yi)
2

n
0.091 0.051

MSE MSE = ∑n
i=1|y′i−yi |

n
0.128 0.105

R2 R2 =
[∑n

i=1(y′i− y′i). (yi− yi)]
2

∑n
i=1(y′i− y′i). ∑n

i=1(yi− yi)
0.601 0.761

In the above indices, yi is the ith actual value of the dependent variable and y′i is the ith predicted
value. The R2 value for the B-SEM model was greater than for the ML-SEM model, and the RMSE,
MSE, and MAPE values for the B-SEM model were lower than for ML-SEM. Therefore, according
to the performance indices, B-SEM predicted children’s lifestyle better than the ML-SEM model.
The main reason B-SEM performed better is the ML framework defined, which permits simultaneous
self-adjustment of parameters and effective learning of the association between inputs and outputs in
causal and complex models.

The present comparative analysis illustrates that the B-SEM has superior evaluation capability
over ML-SEM in children’s lifestyle index prediction. This conclusion is only made for this empirical
analysis and it does not prove that B-SEM is always superior to ML-SEM.

5. Discussion

The main purpose of the present study was to demonstrate the potential of the maximum
likelihood SEM and Bayesian SEM approaches in modeling the children’s lifestyle index. The strength
of SEM is its ability to perform a simultaneous test to describe the relationship between the observed
variables and the respective unobserved variables as well as the connection among the unobserved
variables. AMOS version 18 was used to analyze the data in this study, which is a flexible tool that
enables researchers to examine relationships that violate the normal assumption of the variables
considered in a model. Additionally, the outputs were compared by applying Bayesian SEM using
winBUGS version 1.4.

In the current study, ML-SEM served as a representative parametric analysis method and B-SEM
as a representative semi-parametric technique for predicting the children’s lifestyle index. Based on the
R2, RMSE, MSE, and MPEA indices, SEM with the Bayesian approach was more effective at predicting
children’s lifestyle with the dataset obtained from Urumqi, Xinjiang, China.

Although much work has focused on determining the children’s lifestyle index, not much has been
done on modeling this index using SEM, particularly with Bayesian approaches. This is especially true
when information on parental socioeconomic status, household food security, and parental lifestyle is
concerned. The indicators that were found to be significant in explaining the latent factors considered
in this study are as follows. The socioeconomic indicators are age, income, work experience, education
level, and length of parents’ marriage. Parental lifestyle is explained by smoking habit, frequency
of engaging in physical exercise, alcohol drinking habit, number of working hours, and number of
sleeping hours per day. Worry about running out of food, not having money (household), inability
to afford eating balanced meals (household), cutting down food portions (household), not eating the
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whole day (adults), not having money (children), inability to afford to eat balanced meals (children),
inability to afford enough food (children), and skipping a meal (children) served as indicators to
measure household food security.

Therefore, the research model includes three predictors, which are parental socioeconomic status,
parental lifestyle, and household food security. Among these, parental socioeconomic status and
parental lifestyle have a significant impact on predicting children’s lifestyle. However, household
food security does not have a direct impact on children’s lifestyle. Parental socioeconomic status was
the main and first predictor in the study, as it has the highest impact on children’s lifestyle. Parental
socioeconomic status is a combination of nine indicators (Table 4), only three of which have acceptable
factor loadings in the research model. These are the mother’s education, father’s income, and parents’
marriage length. This means that helping a family with a longer marriage by improving the mother’s
education and father’s income can provide better children’s lifestyle quality. The second predictor
was parental lifestyle, which was measured based on 10 indicators. Among these indicators, five had
significant factor loadings and remained in the final research model. The five indicators are father’s
alcohol drinking habit, mother’s working hours, father’s working hours, mother’s average sleeping
hours, and father’s average sleeping hours. This means that, in Urumqi, Xinjiang, China, controlling
the father’s alcohol drinking habit and optimizing both parents’ working hours and average sleeping
hours can lead to higher children’s lifestyle quality. The third predictor was household food security,
which was measured with nine indicators. Among these, five indicators had significant factor loadings
(Table 4) and were considered in the final research model. Household food security does not have
a direct impact on children’s lifestyle. However, it has a strong significant relationship with parental
socioeconomic status and parental lifestyle. Therefore, this predictor cannot be eliminated from the
research model. In other words, household food security has an indirect impact on children’s lifestyle
with relations to parental socioeconomic status and parental lifestyle.

We proposed a Bayesian approach to analyze useful structural equations for children’s lifestyle
index modeling. In formulating ML-SEM and developing the Bayesian method, emphasis was placed
on raw individual random observations rather than on the sample covariance matrix.

Through this study it was found that parental socioeconomic status and parental lifestyle have
a significant effect on the children’s lifestyle index, but household food security does not. The concept
of modeling the children’s lifestyle index by considering various indicators that describe latent factors
can be explored further by incorporating new survey data. This idea is particularly suitable with
the sequential Bayesian approach by considering the results from this study as prior input for future
studies. The research framework introduced (Figure 1) can be used in any area. Hence, another
suggestion for future studies is a comparison analysis modeling children’s lifestyle in China and
Malaysia. It is worth noting that there is a lack of evidence to indicate a connection between children’s
calorie intake and energy expenditure and overall lifestyle. Clinical causes and effects were not
examined in the present research, so it is recommended to study them in future investigations.
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