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Abstract:



The discovery of new nanomaterials adds new dimensions to industry, electronics, and pharmaceutical and biological therapeutics. In this article, we first find closed forms of M-polynomials of polyhex nanotubes. We also compute closed forms of various degree-based topological indices of these tubes. These indices are numerical tendencies that often depict quantitative structural activity/property/toxicity relationships and correlate certain physico-chemical properties, such as boiling point, stability, and strain energy, of respective nanomaterial. To conclude, we plot surfaces associated to M-polynomials and characterize some facts about these tubes.
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1. Introduction


Nanoscience has attracted research interest because of its increasing applications and uses. Nanocrystals, nanowires, and nanotubes are three major categories of nanomaterials. Since the discovery of the carbon nanotubes in 1991, interest in one-dimensional nanomaterials has grown remarkable, and a phenomenal number of research articles are being published on nanotubes as well as on nanowires.



Material properties depend on molecular structure. In the context of chemical graph theory, this structure can be represented by a graph whose vertices represent atoms of nanomaterials and edges correspond to chemical bonds. Chemical graph theory contributes the lion’s share of efforts to predict the chemical properties of a nanomaterial without involving a wet lab. A graph G(V,E) with vertex set V(G) and edge set E(G) is connected if there is a path between any pair of vertices in G. A network is simply a connected graph having no multiple edges and loops. In a chemical graph, the degree of any vertex is at most 4. The distance between two vertices u and v is denoted as [image: there is no content] and is the length of the shortest path between u and v in graph G. The number of vertices of G adjacent to a given vertex v is the “degree” of this vertex and will be denoted by [image: there is no content]. The concept of degree in graph theory is closely related (but not identical) to the concept of valence in chemistry. For details on the basics of graph theory, any standard text such as [1] can be of great help.



Several algebraic polynomials have useful applications in chemistry. The Hosoya polynomial is perhaps the best well-known example [2], and it plays a vital role in determining distance-based topological indices. Among other algebraic polynomials, M-polynomial [3] was introduced in 2015 and plays the same role in determining closed forms of many degree-based topological indices. These indices are actually score functions that capture a variety of physico-chemical properties of chemical compounds such as boiling point, heat of evaporation, heat of formation, chromatographic retention times, surface tension, and vapor pressure [4,5,6,7,8,9].



Definition 1.

Let G be a simple connected graph. The M-polynomial of G is defined as


[image: there is no content]








where [image: there is no content][image: there is no content]and [image: there is no content]is the number of edges [image: there is no content]such that [image: there is no content]





In 1947, Wiener approximated the boiling point of alkanes as [image: there is no content] where [image: there is no content][image: there is no content], and [image: there is no content] are empirical constants, [image: there is no content] is the Wiener index, and [image: there is no content] is the number of paths of length 3 in G [10]. The Wiener index was the first and is the most studied topological index, defined as [image: there is no content]. In [11], Gutman and Trinajstic introduced Zagreb indices.



Let G be the simple connected graph. The first Zagreb index is defined as


[image: there is no content]








and the second Zagreb index is defined as


[image: there is no content]











For detail about these indices, see [12,13].



The second modified Zagreb index is defined as


M2m(G)=∑uv∈E(G)1dudv.











The general Randic index is defined as


[image: there is no content]








where α is an arbitrary real number (see [14]).



Symmetric division index is defined as


[image: there is no content]











Recently, Munir et al. computed M-polynomials and related topological indices for Nanostar dendrimers [15], titania nanotubes [16], and circulant graphs [17]. The structures of Nanostar dendrimers and titania nanotubes are different from polyhex nanotubes from a geometrical point of view. Basic structural units of titania nanotubes are rectangles arranged differently for different types [16], whereas basic units of polyhex nanotubes are hexagons concatenated in different ways for different types. Nanostar dendrimers are macromolecules built on a tree-like structure [15]. Polyhex nanotubes have many applications in electronics, chemical processing, optics, and energy management [18,19] and are used in flat panel display screens [20], hydrogen storage, robotics and artificial muscles, chemical sensors, and photography. We refer the readers to [21,22,23] for further details about these nanomaterials.



In this report, we are interested in the geometry of two well-known polyhex nanotubes, namely zigzag polyhex [image: there is no content] and armchair polyhex [image: there is no content]. These are single-walled carbon nanotubes made from a layer of graphenes and are cylindrical in shape. We computed the general closed forms of M-polynomials for these nanotubes and recovered many topological indices from it. We also plot the graphs of these M-polynomials here. The author in [24], using the definitions, computed closed forms of the first and second Zagreb indices and the Zagreb polynomials for these tubes. We also re-obtained the first and the second Zagreb indices by the use of the M-polynomial.



The following Table 1 relates some degree-based topological indices with the M-polynomial [3].



Table 1. Derivation of some degree-based topological indices from M-polynomial.







	
Topological Index

	
[image: there is no content]

	
Derivation from [image: there is no content]




	
First Zagreb

	
[image: there is no content]

	
[image: there is no content]




	
Second Zagreb
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[image: there is no content]




	
Second Modified Zagreb

	
[image: there is no content]

	
[image: there is no content]




	
General Randi[image: there is no content]

	
[image: there is no content]

	
[image: there is no content]




	
General Randi[image: there is no content]

	
[image: there is no content]

	
[image: there is no content]




	
Symmetric Division Index

	
[image: there is no content]

	
[image: there is no content]








where [image: there is no content].








.




2. Results and Discussion


In this section, we provide our main computational results. We divide this section into two subsections.



2.1. Zigzag Polyhex Nanotubes


If you roll graphene up into a seamless tube in such a way that carbon–carbon bonds are parallel to the axis of the tube, then we obtain zigzag polyhex nanotubes (Figure 1) represented as [image: there is no content], where m is the number of hexagons in a row, and n is the number of hexagons in a column. The following figures illustrate this.


Figure 1. The image of zigzag polyhex [image: there is no content].



[image: Symmetry 08 00149 g001]






In the following theorem, we compute the M-polynomial of zigzag polyhex nanotube.



Theorem 1.

Let [image: there is no content]be the zigzag structure of Polyhex nanotube. Then,


[image: there is no content]













Proof. 

From the 2D lattice of [image: there is no content], we can see that there are two partitions of vertices [25] [image: there is no content] and [image: there is no content] with [image: there is no content]. By handshaking lemma, we obtain [image: there is no content].





The edge set of [image: there is no content] can be partitioned as [image: there is no content][image: there is no content] and [image: there is no content]. In Figure 2, [image: there is no content] is marked red, and [image: there is no content] is marked black.


Figure 2. The 2-D lattice of [image: there is no content].



[image: Symmetry 08 00149 g002]






Thus, the M-polynomial of [image: there is no content] is


[image: there is no content]











Figure 3 is a graph for the M-polynomial of zigzag polyhex nanotube. This graph is a saddle surface.


Figure 3. M-polynomial of the zigzag polyhex nanotube.



[image: Symmetry 08 00149 g003]






Theorem 2.

Let [image: there is no content] be the zigzag structure of Polyhex nanotube. Then,


[image: there is no content]










[image: there is no content]










M2m(HC6[m,n])=m9{4+3n}.










[image: there is no content]










[image: there is no content]










[image: there is no content]













Proof. 

We leave the proof for the reader.






2.2. Armchair Polyhex Nanotubes


Now we turn our attention towards the armchair structure of the polyhex nanotube, [image: there is no content]. If we roll graphene up into a seamless tube in such a way that carbon–carbon bonds are perpendicular to the axis of the tube, then we obtain armchair polyhex nanotube [image: there is no content] (Figure 4), where m is the number of hexagons in a row, and n is the number of hexagons in a column. Figure 4 and Figure 5 illustrate this.


Figure 4. Armchair polyhex nanotube [image: there is no content].



[image: Symmetry 08 00149 g004]





Figure 5. The 2-D lattice of [image: there is no content].



[image: Symmetry 08 00149 g005]






Theorem 3.

Let [image: there is no content]be the Armchair structure of Polyhex nanotube. Then,


[image: there is no content]













Proof. 

The 2-D lattice of [image: there is no content] has [image: there is no content] vertices, with two partitions of vertices [image: there is no content] and [image: there is no content]. This shows that [image: there is no content] has 3mn + 2m edges. The edge set of [image: there is no content] has partitions as follows:



[image: there is no content]



[image: there is no content]



[image: there is no content].





In Figure 5, [image: there is no content] is marked yellow, [image: there is no content] is marked red, and [image: there is no content] is marked black. Hence,


[image: there is no content]











Figure 6 is the graph for the M-polynomial of the armchair polyhex nanotube.


Figure 6. M-polynomial of the armchair polyhex nanotube.



[image: Symmetry 08 00149 g006]






Theorem 4.

Let [image: there is no content]be the Armchair structure of Polyhex nanotube. Then,


[image: there is no content]










[image: there is no content]










M2m(VC6[m,n])=m36(17+12n).










[image: there is no content]










[image: there is no content]










[image: there is no content]















3. Conclusions


In this article, closed forms of the M-polynomials for the armchair and the zigzag polyhex nanotubes are obtained. We also provide degree-based topological indices of Polyhex nanotubes. Topological indices thus calculated can help us to understand their physical features, chemical reactivity, and biological activities. From this point of view, topological indices can be regarded as score functions that map each molecular structure to a real number and are used as descriptors. These results can also play a vital role in the determination of the significance of Polyhex nanotubes in industry [18,19]. We invite other researchers to investigate topological indices of recently developed aluminosilicate/alumino-germanate nanotubes [26].
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