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Abstract: Recently, a novel hesitant fuzzy set (HFS) ranking technique based on the idea of
lexicographical ordering is proposed and an example is presented to demonstrate that the proposed
ranking method is invariant with multiple occurrences of any element of a hesitant fuzzy element
(HFE). In this paper, we show by examples that the HFS lexicographical ordering method is sometimes
invalid, and a modified ranking method is presented. In comparison with the HFS lexicographical
ordering method, the modified ranking method is more reasonable in more general cases.
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1. Lexicographical Ordering of HFSs

As a generalization of fuzzy set [1], hesitant fuzzy set [2] is very useful in handling a situation
where people have hesitancy to make a decision. It permits the membership degree of an element to
a set to be several possible values between 0 and 1[3]. Since its appearance, it has attracted a lot of
research attention, and a large amount of literature has been published on hesitant fuzzy set theory and
applications [4–19]. Up to now, some researchers have proposed the HFE ranking methods [3,5,7,20–23].
Farhadinia [24] gave a brief study of the existing HFS ranking methods, and then proposed a novel
one based on the idea of lexicographical ordering. The purpose of this paper is to point out an error
in Farhadinia’s method [24] and present a modified ranking method for HFEs. In what follows,
we introduce some basic concepts related to hesitant fuzzy sets.

Definition 1 [2,3]. Let X be a fixed set, then a hesitant fuzzy set on X is defined in terms of a function that
when applied to X returns a subset of [0, 1].

To be understood easily, Xia and Xu [3] utilized the following mathematical symbol to express
a hesitant fuzzy set:

E = { 〈x, hE(x)〉|x ∈ X} (1)

where hE(x) is a set of several values in [0, 1], denoting the possible membership degree of x ∈ X to
the set. For convenience, h = hE(x) is called a hesitant fuzzy element (HFE) [3].

In order to compare the HFEs, Xia and Xu [3] gave the following comparison rule:

Definition 2 [3]. For a HFE h, the score function of h is defined as

s(h) =
1
lh

∑
γ∈h

γ (2)
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where lh denotes the number of the elements in h. For any two HFEs h1 and h2, if s(h1) > s(h2),
then h1 > h2; if s(h1) = s(h2), then h1 = h2.

However, in some cases, the comparison rule does not work. In order to address this issue,
some researchers have proposed many HFS ranking methods, which have characters of higher
discrimination [3,5,7,20–23]. Farhadinia [24] pointed out the shortcomings of the existing HFS ranking
techniques by counterexamples and proposed a novel method based on the idea of lexicographical
ordering. Before presenting the main results, the following assumption is required.

Assumption 1 [24]. The arrangement of elements in a HFE h is in an increasing order.

Definition 3 [24]. For X, Y ∈ Rn, the lexicographical ordering on the Euclidean space Rn, denoted by <lex,
is defined as follows:

X = (x1, x2, · · · , xn) <lex Y = (y1, y2, · · · , yn)

if and only if there is i ∈ {1, 2, · · · , n} such that
xj = yj holds for j < i, and xi < yi.
Furthermore, ≤lex means that X <lex Y or X = Y.

Definition 4 [24]. Let h be a HFE, denoted by h = {γ(1), γ(2), · · · , γ(l)}, and l stands for the number of the
elements in h. The ranking vector associated with HFE h can be denoted by

R(h) = (S(h), Vφ(h)) (3)

where S(h) = 1
l ∑l

i=1 γ(i) and Vφ(h) =
l−1
∑

i=1
φ(γ(i+1) − γ(i)). Here, Vφ(h) is the successive deviation

function of HFE h where φ: [0, 1]→ [0, 1] is an increasing real function with φ(0) = 0.
Then, a comparison rule based on the HFE lexicographical ordering can be derived. For two

HFEs h1 = {γ(1)
1 , γ

(2)
1 , · · · , γ

(l1)
1 } and h2 = {γ(1)

2 , γ
(2)
2 , · · · , γ

(l2)
2 }, where l1 and l2 denote the number

of values in h1 and h2, respectively,

(i) h1 > h2 if and only if R(h1) >lex R(h2),
(ii) h1 ≥ h2 if and only if R(h1) ≥lex R(h2), and
(iii) if h1 = h2, then R(h1) =lex R(h2).

Hereafter, we take the increasing real function φ = t2 into consideration, which is also used in [24].

2. Modified Lexicographical Ordering of HFSs

Farhadinia [24] presented an example to illustrate that multiple occurrences of any element of
a HFE should not affect its ranking result.

Example 1 [24]. A situation is considered, where a group of five decision-makers discuss the membership
degree of an element h to a given set. They are hesitant among some possible values, such as 0.1, 0.3, 0.3, 0.3,
and 0.5, and they cannot persuade each other. For such cases, a HFE h1 = {0.1, 0.3, 0.3, 0.3, 0.5} can be used to
model the hesitance experienced by the five decision-makers. Following from the set theory, the HFE h1 may be
represented as h2 = {0.1, 0.3, 0.3, 0.5} and h3 = {0.1, 0.3, 0.5}, where multiple occurrences of any element of
a HFE are permitted and should not affect the ranking result. In this situation, all identical HFEs h1, h2 and h3

should have the same ranking value.

By the HFE lexicographical ranking method and Equation (3), where

Vφ(h) =
l−1

∑
i=1

(γ(i+1) − γ(i))
2
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we obtain
R(h1) = R(h2) = R(h3) = (0.3, 0.08)

which implies that
h1 = h2 = h3.

This is what is expected of the theory of sets. However, we find that the HFE lexicographical
ranking method proposed by Farhadinia [24] is not invariant with multiple occurrences of any element
of a HFE.

Example 2. Consider the situation which is discussed in Example 1. If the five decision-makers are
hesitant among some possible values, such as 0.1, 0.1, 0.1, 0.3, and 0.5, then the hesitance can be modeled
by a HFE h4 = {0.1, 0.1, 0.1, 0.3, 0.5}. Following from the set theory, the HFE h4 may be represented as
h5 = {0.1, 0.1, 0.3, 0.5} and h3 = {0.1, 0.3, 0.5}.

According to Farhadinia [24], multiple occurrences of any element of a HFE should not affect the
ranking result, and all identical HFEs h4, h5, and h3 should have the same ranking value. By the HFE
lexicographical ranking method and Equation (3), where

Vφ(h) =
l−1

∑
i=1

(γ(i+1) − γ(i))
2

We obtain

R(h4) = (0.22, 0.08), R(h5) = (0.25, 0.08), and R(h3) = (0.3, 0.08).

Therefore,
h4 < h5 < h3

which is contradictory.

Example 3. Consider the situation which is discussed in Example 1. If the five decision-makers are
hesitant among some possible values, such as 0.1, 0.3, 0.5, 0.5, and 0.5, then the hesitance can be modeled
by a HFE h7 = {0.1, 0.3, 0.5, 0.5, 0.5}. Following from the set theory, the HFE h7 may be represented as
h8 = {0.1, 0.3, 0.5, 0.5} and h3 = {0.1, 0.3, 0.5}.

According to Farhadinia [24], multiple occurrences of any element of a HFE should not affect the
ranking result, and all identical HFEs h7, h8 and h3 should have the same ranking value. By the HFE
lexicographical ranking method and Equation (3), where

Vφ(h) =
l−1

∑
i=1

(γ(i+1) − γ(i))
2

We obtain
R(h7) = (0.38, 0.08), R(h8) = (0.35, 0.08), and R(h3) = (0.3, 0.08).

Therefore,
h7 > h8 > h3

which is contradictory.
From the above examples, we can draw a conclusion that the HFE lexicographical ranking method

proposed by Farhadinia [24] is not invariant with respect to multiple occurrences of any element of
a HFE. In order to overcome the drawbacks of the HFE lexicographical ranking method, we propose
a modified one, which is invariant with respect to multiple occurrences of any element of a HFE.
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Definition 5. Let h be a HFE, denoted by h = {γ(1), γ(2), · · · , γ(l)}, and l stands for the number of the
elements in h. The ranking vector associated with HFE h can be denoted by

RM(h) = (SM(h), Vφ(h)) (4)

where SM(h) =
∑l

i=1
γ(i)

count(γ(i))

∑l
i=1

1
count(γ(i))

and Vφ(h) =
l−1
∑

i=1
φ(γ(i+1) − γ(i)). Here, count(·) denotes the counting

function, which provides us with the number of times a value occurs in a HFE, and Vφ(h) is the
successive deviation function of HFE h where φ: [0, 1] → [0, 1] is an increasing real function with
φ(0) = 0.

Then, a comparison rule based on the modified HFE lexicographical ranking method can be
derived. For two HFEs, h1 = {γ(1)

1 , γ
(2)
1 , · · · , γ

(l1)
1 } and h2 = {γ(1)

2 , γ
(2)
2 , · · · , γ

(l2)
2 }, where l1 and l2

denote the number of values in h1 and h2, respectively,

(i) h1 > h2 if and only if RM(h1) >lex RM(h2),
(ii) h1 ≥ h2 if and only if RM(h1) ≥lex RM(h2), and
(iii) if h1 = h2, then RM(h1) =lex RM(h2).

Example 4. See Example 1. Let h1 = {0.1, 0.3, 0.3, 0.3, 0.5}, h2 = {0.1, 0.3, 0.3, 0.5} and h3 = {0.1, 0.3, 0.5}
be three HFEs, which are discussed in Example 1.

By the modified HFE lexicographical ranking method and Equation (4), we obtain

RM(h1) = RM(h2) = RM(h3) = (0.3, 0.08)

which implies that
h1 = h2 = h3.

Example 5. See Example 2. Let h4 = {0.1, 0.1, 0.1, 0.3, 0.5}, h5 = {0.1, 0.1, 0.3, 0.5} and h3 = {0.1, 0.3, 0.5}
be three HFEs, which are discussed in Example 2.

By the modified HFE lexicographical ranking method and Equation (4), we obtain

RM(h4) = RM(h5) = RM(h3) = (0.3, 0.08)

which implies that
h4 = h5 = h3.

Example 6. See Example 3. Let h7 = {0.1, 0.3, 0.5, 0.5, 0.5}, h8 = {0.1, 0.3, 0.5, 0.5} and h3 = {0.1, 0.3, 0.5}
be three HFEs, which are discussed in Example 3.

By the modified HFE lexicographical ranking method and Equation (4), we obtain

RM(h7) = RM(h8) = RM(h3) = (0.3, 0.08)

which implies that
h7 = h8 = h3.

It is noteworthy that the modified HFE lexicographical ranking method is robust to multiple
occurrences of any element of a HFE. As a matter of fact, the HFE lexicographical ranking
method proposed by Farhadinia [24] is only invariant with respect to multiple occurrences of the
arithmetic-mean S(h) of a HFE h.
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Proposition 1. If a HFE h contains an element S(h), which is the arithmetic-mean of HFE h, then the HFE
lexicographical ranking method proposed by Farhadinia [24] is invariant with respect to multiple occurrences of
the arithmetic-mean S(h) of HFE h, where h = {γ(1), γ(2), · · · , γ(l)} and S(h) = 1

l ∑l
i=1 γ(i).

Proof. Assume that the arithmetic-mean S(h) of a HFE h appears m times. Then a novel HFE h can be
obtained, i.e.,

h = {γ(1), γ(2), · · · S(h), · · · S(h),
m times

· · · γ(l)}.

By the HFE lexicographical ranking method proposed by Farhadinia [24] and Equation (3), where

S(h) =
1
l

l

∑
i=1

γ(i)

and

Vφ(h) =
l−1

∑
i=1

(γ(i+1) − γ(i))
2

we obtain

S(h) = ∑l
i=1 γ(i) + (m− 1) · S(h)

l + m− 1

=
l · S(h) + (m− 1) · S(h)

l + m− 1

= S(h).

Since
Vφ(h) = Vφ(h)

we obtain
R(h) = R(h).

Therefore,
h = h

which completes the proof. �

Proposition 2. The modified HFE lexicographical ranking method is robust to multiple occurrences of any
element of a HFE.

Proof. Let h = {γ(1), γ(2), · · · , γ(l)} be a HFE. Assume that the first element γ(1) appears m1 times,
the second γ(2) appears m2 times,· · · · · · , and the last γ(l) appears ml times. Then a novel HFE h̃ can
be obtained, i.e.,

h̃ = {γ(1) · · · γ(1)

m1 times
, γ(2) · · · γ(2)

m2 times
, · · · , γ(l) · · · γ(l)

ml times
}.

By the modified HFE lexicographical ranking method and Equation (4), where

SM(h) =
∑l

i=1
γ(i)

count(γ(i))

∑l
i=1

1
count(γ(i))

and

Vφ(h) =
l−1

∑
i=1

φ(γ(i+1) − γ(i))
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we obtain

SM(h̃) =
( γ(1)

m1
+ γ(1)

m1
+ · · ·+ γ(1)

m1
) + ( γ(2)

m2
+ γ(2)

m2
+ · · ·+ γ(2)

m2
) + · · ·+ ( γ(l)

ml
+ γ(l)

ml
+ · · ·+ γ(l)

ml
)

( 1
m1

+ 1
m1

+ · · ·+ 1
m1

) + ( 1
m2

+ 1
m2

+ · · ·+ 1
m2

) + · · ·+ ( 1
ml

+ 1
ml

+ · · ·+ 1
ml
)

= γ(1)+γ(2)+···+γ(l)

l
= S(h).

Since
Vφ(h) = Vφ(h̃)

we obtain
RM(h) = RM(h̃).

It implies that
h = h̃

which completes the proof. �

In fact, if the values appear only once in a HFE, then Equation (4) is reduced to Equation (3).
In other words, this paper provides an extended form of lexicographical ordering of HFS’s proposed
by Farhadinia [24]. Furthermore, with this modified approach, the shortcomings in the lexicographical
ordering of HFS’s are overcome. People can adopt the proposed method to rank HFEs, especially when
the values appear more than once in a HFE. Of course, the lexicographical ordering of HFS’s proposed
by Farhadinia [24] can also be used to avoid unnecessary calculations when the values appear only
once in a HFE.

3. Conclusions

Farhadinia [24] proposed a novel HFS ranking technique based on the idea of lexicographical
ordering method and pointed out that it is invariant with respect to multiple occurrences of any
element of a HFE. In this paper, we presented several counterexamples to explain the error in his
method. Moreover, a modified HFE lexicographical ranking method has been put forward to correct
the error.
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