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Abstract: The method of linear determining equations is constructed to study conditional
Lie–Bäcklund symmetry and the differential constraint of a two-component second-order evolution
system, which generalize the determining equations used in the search for classical Lie symmetry.
As an application of the approach, the two-component reaction-diffusion system with power
diffusivities is considered. The conditional Lie–Bäcklund symmetries and differential constraints
admitted by the reaction-diffusion system are identified. Consequently, the reductions of the resulting
system are established due to the compatibility of the corresponding invariant surface conditions and
the original system.

Keywords: linear determining equation; conditional Lie–Bäcklund symmetry; differential constraint;
evolution system; reaction-diffusion system

1. Introduction

The method of differential constraint (DC) is pretty old, dating back at least to the time of Lagrange.
Lagrange used DC to find the total integral of a first-order nonlinear equation. Darboux applied DC to
integrate the partial differential equation (PDE) of second-order. Yanenko proposed the key idea of DC
in [1]. The survey of this method was presented by Sidorvo, Shapeev and Yanenko in [2], where the
method of DC was successfully introduced into practice on gas dynamics.

The general formulation of the method of DC requires that the original system of PDEs

F̃(1) = 0, F̃(2) = 0, · · · , F̃(m) = 0 (1)

be enlarged by appending additional equations

h1 = 0, h2 = 0, · · · , hp = 0 (2)

such that the over-determined system (1), (2) is compatible. The differential equations in (2) are called
DCs. The requirements for the compatibility of system (1), (2) are so general that the method of DC
does not allow us to find all the forms of DCs for the system of PDEs in question. A number of different
names for the parent notions of DC (2) leads to many methods for finding exact particular solutions of
PDEs can be unified within the general framework of the method of DC.

The “side condition” is proposed to unify different methods for constructing particular solutions
of PDEs by Olver and Rosenau in [3], where it is stated that appending of a suitable “side condition” is
responsible for different kinds of methods for obtaining explicit solutions, including Lie’s classical
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method [4,5], Bluman and Cole’s nonclassical method [6] and Ovsiannikov’s partial invariance
method [7]. “The invariant surface condition” is used as a unifying theme for finding special solutions
to PDEs by Pucci and Saccomandi in [8], where it is shown that “the invariant surface condition” and
“its general integral” are the key to understanding the link between the so-called direct method [9],
separation method [10,11], nonclassical symmetry [6] and weak symmetry [12,13]. The “additional
generating condition” first raised by Cherniha [14,15] is exactly the linear case of DC, which is very
effective to study reductions of variant forms of diffusion equations and diffusion systems [15–17].
The method of invariant subspace initially presented by Galaktionov and his collaborators [18] can
also be understood within the framework of DC due to certain linear DC. The DCs that are responsible
for Clarkson and Kruskal’s first-order direct reduction [9] and Galaktionov’s higher-order direct
reduction [11] are discussed by Olver in [19]. The equivalence relationship between weak symmetry
and DC is studied by Olver and Rosenau in [13].

The method of conditional Lie–Bäcklund symmetry (CLBS) provides an appropriate symmetry
background for the method of DC. The base of symmetry reduction for CLBS is the fact that the
corresponding invariant surface condition is formally compatible with the governing system, which
is extensively discussed in [20,21], where it is shown that the problem of discussing the DC of the
evolution system is equivalent to studying the CLBS of this system.

CLBS for the scalar evolution equation is introduced by Zhdanov [22], and another term for
CLBS is used by Fokas and Liu [23,24]. A family of physically important exact solutions including
the multi-shock solution and multi-soliton solution is constructed for a large class of non-integrable
evolution equations by using the method of CLBS [23–26]. The CLBS for the evolution system is
studied by Sergyeyev in [27] and independently by Qu et al. in [28].

The procedure for determining whether or not a given DC is compatible with the original
equations is straightforward. However, for a given system of differential equations, one can never
know in full detail the entire range of possible DCs since the associated determining equations are
an over-determined nonlinear system. Nevertheless, as is known, even finding particular DCs can
lead to new explicit solutions of the considered system. In practice, the principal direction of such
research is to content oneself with finding DCs in some classes, and these classes must be chosen using
additional considerations. From the symmetry point of view, CLBSs related to sign-invariants [29–33],
separation of variables [34] and invariant subspaces [35–37] are proved to be very effective to study
the classifications and reductions of second-order nonlinear diffusion equations. These particular
subclasses related to sign-invariants [29–33] and invariant subspaces [35–37] are also extended to
consider CLBSs of nonlinear diffusion systems in [21] and [28,38,39].

The purpose of this paper is to construct a practical way for finding the general form of DCs{
η1 = un + g (t, x, u, u1, u2, · · · , un−1) = 0,

η2 = vn + h (t, x, v, u1, v2, · · · , vn−1) = 0
(3)

compatible with a two-component second-order evolution system{
ut = F(t, x, u, v, u1, v1, u2, v2),

vt = G(t, x, u, v, u1, v1, u2, v2),
(4)

which is equivalent to presenting an effective method to find the general form of CLBS with the
characteristics {

η1 = un + g (t, x, u, u1, u2, · · · , un−1) ,

η2 = vn + h (t, x, v, u1, v2, · · · , vn−1)
(5)

admitted by evolution system (4). It is noted that uk = ∂ku/∂xk and vk = ∂kv/∂xk with k = 1, 2, · · · , n
in (3)–(5) and hereafter.
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The constructive method of the additional generating condition is presented by Cherniha in [14],
where exact solutions of the variant form of the system (4) are derived by appending an additional
condition in the form of a linear system of ordinary differential equations to the original system.
Here, we will present the linear determining equations to identify DC (3) and CLBS (5) in the general
form of second-order evolution system (4), which is exactly the extension of the results for the scalar
evolution equation in [40–42].

The method of linear determining equations is proposed for finding the general form of DC

η = un + g(t, x, u, u1, u2, · · · , un−1) = 0 (6)

to evolution equation

ut = F(t, x, u, u1, u2, · · · , uN) (7)

by Kaptsov in [40]. The linear determining equation

Dtη =
N

∑
i=0

i

∑
k=0

bikDi−k
x (FuN−k )DN−i

x (η) (8)

presented there generalizes the classical determining equations within the framework of Lie’s classical
symmetry. It is clear that it is workable to find the DC with the general form (6) of evolution Equation (7)
by solving linear determining equation (8) about η.

The principal direction of the research on applying the method to second-order nonlinear diffusion
equations [40–42] gains an appreciation of its usefulness. The two-component reaction-diffusion (RD)
system with power law diffusivities{

ut = (ukux)x + P(u, v),
vt = (vlvx)x + Q(u, v)

(9)

will be considered here to demonstrate the applicability of this method for a two-component
second-order evolution system.

The RD system (9) generalizes many well-known nonlinear second-order models and is used
to describe various processes in physics, chemistry and biology. A complete description of Lie
symmetries of the system is presented in [16]. The conditional symmetries for (9) are studied in [43–46].
The second-order CLBS (DC) admitted by the system (9) is discussed in [21]. Once the symmetries
of the considered system (9) have been identified, one can algorithmically implement the reduction
procedure and thereby determine all solutions that are invariant under the resulting symmetries.
In [16,21,43–46], a wide range of exact solutions has been established due to various symmetry
reductions therein.

The structure of this paper is organized as follows. The necessary definitions and notations about
CLBS and DC of evolution system are displayed in Section 2. In Section 3, the linear determining
equations to second-order evolution system (4) are constructed. The DCs (3) and CLBSs (5) of the
system (9) are identified by solving the linear determining equation for the RD system (9) in Section 4.
The exact solutions of the resulting RD system (9) are constructed due to the compatibility of the
DC (3) and the governing system (9) in Section 5. The last section is devoted to the final discussions
and conclusions.
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2. Preliminaries

Let us review some theoretical elements of the tools about CLBS method and DC method of
evolution system. Set

V =
m

∑
i=1

[
hi

(
t, x, u(1), u(2), · · · , u(m), u(1)

1 , u(2)
1 , · · · , u(m)

1 , · · ·
) ∂

∂u(i)

+ Dxhi

(
t, x, u(1), u(2), · · · , u(m), u(1)

1 , u(2)
1 , · · · , u(m)

1 , · · ·
) ∂

∂u(i)
1

+ Dthi

(
t, x, u(1), u(2), · · · , u(m), u(1)

1 , u(2)
1 , · · · , u(m)

1 , · · ·
) ∂

∂u(i)
t

+ D2
xhi

(
t, x, u(1), u(2), · · · , u(m), u(1)

1 , u(2)
1 , · · · , u(m)

1 , · · ·
) ∂

∂u(i)
2

+ · · ·
]

(10)

to be a certain smooth Lie–Bäcklund vector field (LBVF) and

u(i)
t = F(i)

(
t, x, u(1), u(2), · · · , u(m), u(1)

1 , u(2)
1 , · · · , u(m)

1 , · · ·
)

, i = 1, 2, · · · , m (11)

to be a nonlinear evolution system, where u(i)
k = ∂ku(i)/∂xk with i = 1, 2, · · · , m and k = 1, 2, · · · .

Definition 1. [4,5] The evolutionary vector field (10) is said to be a Lie–Bäcklund symmetry of the evolution
system (11) if

V
(

u(i)
t − F(i)

)
|S= 0, i = 1, 2, · · · , m,

where S denotes the set of all differential consequences of the system (11).

Definition 2. [27,28] The evolutionary vector field (10) is said to be a CLBS of (11) if

V
(

u(i)
t − F(i)

)
|S∩Hx = 0, i = 1, 2, · · · , m, (12)

where Hx denotes the set of all differential consequences of the invariant surface condition

hi

(
t, x, u(1), u(2), · · · , u(m), u(1)

1 , u(2)
1 , · · · , u(m)

1 , · · ·
)
= 0 (i = 1, 2, · · · , m) (13)

with respect to x.

A direct computation will yield that the conditional invariant criterion (12) can be reduced
to [27,28]

Dthi|S∩Hx = 0, i = 1, 2, · · · , m. (14)

The fact that LBVF (10) is a CLBS of system (11) leads to the compatibility of the invariant surface
condition (13) and the governing system (11).

Definition 3. [47] The differential constraints (13) and the evolution system (11) satisfy the compatibility
condition if

Dthi|Sx∩Hx = 0, i = 1, 2, · · · , m, (15)
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where Sx denotes the set of all differential consequences of the system (11) with respect to x.

The compatibility condition (15) is nothing but the conditional invariance criterion (14).

3. Linear Determining Equations for the DC (3) and CLBS (5) of Two-Component Second-Order
Evolution System (4)

In this section, we discuss the method of linear determining equations to construct the DC (3) and
CLBS (5) for second-order evolution system (4). The compatibility condition (15) can be reformulated
as nonlinear equations. We now prove this result for DC (3) of the system (4), which is a natural
generalization of what was the case for scalar evolution equation (7) in [40,41]. Let Ex be the union of
all differential consequences of the second-order evolution system (4) with respect to x and Mx be the
union of all differential consequences of DC (3) with respect to x.

Theorem 1. The DC (3) with n ≥ 4 is compatible with two-component second-order evolution system (4) if
and only if η1 and η2 satisfy the following equations

Dtη1|Ex =Fu2 D2
xη1 + Fv2 D2

xη2 + (Fu1 + nDxFu2)Dxη1

+
[
Fv1 + nDxFv2 +

(
η1un−1 − η2vn−1

)
Fv2

]
Dxη2

+

[
Fu + nDxFu1 +

n(n− 1)
2

D2
xFu2 − η1un−1 DxFu2

−
(
2Dxη1un−1 − η1η1un−1un−1

)
Fu2

]
η1 +

[
Fv + nDxFv1

+
n(n− 1)

2
D2

xFv2 +
(
η1un−1 − η2vn−1

)
(Fv1 + nDxFv2)

− η1un−1 DxFv2 +
(
η1un−2 − η2vn−2

)
Fv2 − η2vn−1(η1un−1

− η2vn−1)Fv2 −
(
2Dxη2vn−1 − η2η2vn−1vn−1

)
Fv2

]
η2

(16)

and

Dtη2|Ex =Gv2 D2
xη2 + Gu2 D2

xη1 + (Gv1 + nDxGv2)Dxη2

+
[
Gu1 + nDxGu2 +

(
η2vn−1 − η1un−1

)
Gu2

]
Dxη1

+

[
Gv + nDxGv1 +

n(n− 1)
2

D2
xGv2 − η2vn−1 DxGv2

−
(
2Dxη2vn−1 − η2η2vn−1vn−1

)
Gv2

]
η2 +

[
Gu + nDxGu1

+
n(n− 1)

2
D2

xGu2 +
(
η2vn−1 − η1un−1

)
(Gu1 + nDxGu2)

− η2vn−1 DxGu2 +
(
η2vn−2 − η1un−2

)
Gu2 − η1un−1(η2vn−1

− η1un−1)Gu2 −
(
2Dxη1un−1 − η1η1un−1un−1

)
Gu2

]
η1.

(17)

Proof. Assume that η1 and η2 satisfy (16) and (17). It is easy to see that all terms on the right-hand
side of (16) and (17) vanish on Mx. Hence

Dtη1|Ex∩Mx = 0 (18)

and

Dtη2|Ex∩Mx = 0,
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that is, the DC (3) is compatible with the second-order evolution system (4). We now prove the converse
result. Let α ' β indicate that there are no terms containing un, vn, un+1, vn+1, un+2 and vn+2 in the
difference α− β. Then, we can derive that

Dtη1|Ex ' Dn
x F + η1un−1 Dn−1

x F + η1un−2 Dn−2
x F. (19)

Since

Dn−2
x F ' unFu2 + vnFv2 ,

Dn−1
x F ' un [Fu1 + (n− 1)DxFu2 ] + un+1Fu2

+ vn [Fv1 + (n− 1)DxFv2 ] + vn+1Fv2 ,

Dn
x F ' un

[
Fu + nDxFu1 +

n(n− 1)
2

D2
xFu2

]
+ un+1(Fu1 + nDxFu2) + un+2Fu2

+ vn

[
Fv + nDxFv1 +

n(n− 1)
2

D2
xFv2

]
+ vn+1(Fv1 + nDxFv2) + vn+2Fv2

(20)

holds naturally for n ≥ 4, (19) can be written as

Dtη1|Ex 'un+2Fu2 + un+1
(

Fu1 + nDxFu2 + η1un−1 Fu2

)
+ un

{
Fu + nDxFu1

+
n(n− 1)

2
D2

xFu2 + η1un−1 [Fu1 + (n− 1)DxFu2 ] + η1un−2 Fu2

}
+ vn+2Fv2 + vn+1

(
Fv1 + nDxFv2 + η1un−1 Fv2

)
+ vn

{
Fv + nDxFv1

+
n(n− 1)

2
D2

xFv2 + η1un−1 [Fv1 + (n− 1)DxFv2 ] + η1un−2 Fv2

}
.

It is easy to see that

Dxη1 ' un+1 + unη1un−1 ,

D2
xη1 ' un+2 + un+1η1un−1 + un

(
η1un−2 + 2Dxη1un−1 − unη1un−1un−1

)
,

Dxη2 ' vn+1 + vnη2vn−1 ,

D2
xη2 ' vn+2 + vn+1η2vn−1 + vn

(
η2vn−2 + 2Dxη2vn−1 − vnη2vn−1vn−1

)
.

Consequently, a direct calculation will yield

Dtη1|Ex − Fu2 D2
xη1 − Fv2 D2

xη2 − (Fu1 + nDxFu2)Dxη1

−
[
Fv1 + nDxFv2 +

(
η1un−1 − η2vn−1

)
Fv2

]
Dxη2

−
[

Fu + nDxFu1 +
n(n− 1)

2
D2

xFu2 − η1un−1 DxFu2

−
(
2Dxη1un−1 − η1η1un−1un−1

)
Fu2

]
η1 −

[
Fv + nDxFv1

+
(
η1un−1 − η2vn−1

)
(Fv1 + nDxFv2)− η1un−1 DxFv2

+
(
η1un−2 − η2vn−2

)
Fv2 − η2vn−1

(
η1un−1 − η2vn−1

)
Fv2

−
(
2Dxη2vn−1 − η2η2vn−1vn−1

)
Fv2

]
η2

' 0.

(21)



Symmetry 2016, 8, 157 7 of 21

Equation (18) holds since DC (3) is compatible with the system (4). Let γ denote the left-hand side
of (21); it is easy to see that

γ|Ex∩Mx = 0,

which is equivalent to

γ|Mx = 0 (22)

since γ is independent of ut, vt, utx, vtx, · · · . As shown above, γ depends only on un−1, vn−1,
un−2, vn−2 · · · . On the other hand, η1 depends on un, and η2 depends on vn. Hence, (22) holds only for
γ = 0, which yields nonlinear determining equation (16). In analogy with the discussion above, we can
derive another nonlinear determining equation (17) if DC (3) is compatible with the system (4).

In fact, the problem of solving nonlinear determining equations (16) and (17) is a very difficult, if
not an impossible, problem. A practical way to identify DC (3) of the system (4) is to keep the linear
part of (16) and (17). A general form of the corresponding linear determining equations will finally
lead to the following definition.

Definition 4. The linear determining equations for DCs (3) of the two-component second-order evolution
system (4) are the linear equations

Dtη1|Ex =Fu2 D2
xη1 +

(
b̃11Fu1 + b̃12DxFu2

)
Dxη1

+
(

b̃13Fu + b̃14DxFu1 + b̃15D2
xFu2

)
η1

+ Fv2 D2
xη2 +

(
b̃16Fv1 + b̃17DxFv2

)
Dxη2

+
(

b̃18Fv + b̃19DxFv1 + b̃10D2
xFv2

)
η2

(23)

and

Dtη2|Ex =Gv2 D2
xη2 +

(
b̃21Gv1 + b̃22DxGv2

)
Dxη2

+
(

b̃23Gv + b̃24DxGv1 + b̃25D2
xGv2

)
η2

+ Gu2 D2
xη1 +

(
b̃26Gu1 + b̃27DxGu2

)
Dxη1

+
(

b̃28Gu + b̃29DxGu1 + b̃20D2
xGu2

)
η1.

(24)

Linear determining equations (23) and (24) are the sufficient condition to justify whether DC (3) is
compatible with the second-order evolution system (4). This family of linear determining equations is
also effective to construct CLBS (5) of evolution system (4).

4. DCs (3) and CLBSs (5) of RD system (9)

Substituting F = uku2 + kuk−1u2
1 + P(u, v) and G = vlv2 + lvl−1v2

1 + Q(u, v) into linear
determining equations (23) and (24), we can derive the sufficient condition to identify DCs (3) and
CLBSs (5) of RD system (9)

Dtη1|Ex =ukD2
xη1 + k

(
2b̃11 + b̃12

)
uk−1u1Dxη1 +

[
k
(
b̃13 + 2b̃14 + b̃15

)
uk−1u2

+ k(k− 1)
(
b̃13 + 2b̃14 + b̃15

)
uk−2u2

1 + b̃13Pu

]
η1 + b̃18Pvη2

(25)
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and

Dtη2|Ex =vl D2
xη2 + l

(
2b̃21 + b̃22

)
vl−1v1Dxη2 +

[
l
(
b̃23 + 2b̃24 + b̃25

)
vl−1v2

+ l(l − 1)
(
b̃23 + 2b̃24 + b̃25

)
vl−2v2

1 + b̃23Qv

]
η2 + b̃28Quη1.

(26)

Here, we use the general form of (25) and (26)

Dtη1|Ex =ukD2
xη1 + b11uk−1u1Dxη1

+
(

b12uk−1u2 + b13uk−2u2
1 + b14Pu

)
η1 + b15Pvη2

(27)

and

Dtη2|Ex =vl D2
xη2 + b21vl−1v1Dxη2

+
(

b22vl−1v2 + b23vl−2v2
1 + b24Qv

)
η2 + b25Quη1

(28)

to construct DCs (3) and CLBSs (5) of the RD system (9).
It would be quite enlightening to give the order estimate for DCs (3) and CLBSs (5) admitted by

the considered system (4). However, this is another problem, which we leave to future research. Here,
we restrict our consideration to 2 ≤ n ≤ 5.

Firstly, we consider the case of n = 3. A direct computation will give

Dtη1|Ex =uku5 +
(

5kuk−1u1 + ukgu2

)
u4 +

[
4kuk−1u1gu2 + ukgu1 + Pu

+ 10kuk−1u2 + 10k(k− 1)uk−2u2
1

]
u3 + Pvv3 +

[
u2

1Puu + v2
1Pvv

+ 2u1v1Puv + u2Pu + v2Pv + 3kuk−1u2
2 + 6k(k− 1)uk−2u2u2

1

+ k(k− 1)(k− 2)uk−3u4
1

]
gu2 +

[
u1Pu + v1Pv + 3kuk−1u2u1

+ k(k− 1)uk−2u3
1
]
gu1 +

(
uku2 + kuk−1u2

1 + P
)

gu + u3
1Puuu

+ v3
1Pvvv + 3u2

1v1Puuv + 3u1v2
1Puvv + 3u1u2Puu + 3v1v2Pvv

+ 3(u1v2 + u2v1)Puv + k(k− 1)(k− 2)(k− 3)uk−4u5
1

+ 10k(k− 1)(k− 2)uk−3u2u3
1 + 15k(k− 1)uk−2u2

2u1 + gt

and

ukD2
xη1 + b11uk−1u1Dxη1 +

(
b12uk−1u2 + b13uk−2u2

1 + b14Pu

)
η1 + b15Pvη2

=uku5 +
(

b11uk−1u1 + ukgu2

)
u4 + ukgu2u2 u2

3 +
(
2uku2gu1u2 + 2uku1guu2

+ 2ukgxu2 + b11uk−1u1gu2 + ukgu1 + b14Pu + b12uk−1u2 + b13uk−2u2
1
)
u3

+ b15Pvv3 + uku2
2gu1u1 + uku2

1guu + 2uku1u2guu1 + 2uku1gxu + ukgxx

+ 2uku2gxu1 + b11uk−1u1u2gu1 + b11uk−1u2
1gu + uku2gu + b11uk−1u1gx

+
(

b12uk−1u2 + b13uk−2u2
1 + b14Pu

)
g + b15Pvh.
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Since the left-hand side and right-hand side of (27) are both polynomials about u5, u4, u3, v3,
equating the coefficients of similar terms will give b11 = 5k, b15 = 1 and

gu2u2 = 0,

2uku2gu1u2 + 2uku1guu2 + 2ukgxu2 + (b11 − 4k)uk−1u1gu2 + (b14 − 1)Pu

+ (b12 − 10k)uk−1u2 + [b13 − 10k(k− 1)]uk−2u2
1 = 0,

uku2
2gu1u1 + uku2

1guu + 2uku1u2guu1 + 2uku1gxu + ukgxx + 2uku2gxu1

−
[

u2
1Puu + v2

1Pvv + 2u1v1Puv + u2Pu + v2Pv + 6k(k− 1)uk−2u2u2
1

+ 3kuk−1u2
2 + k(k− 1)(k− 2)uk−3u4

1

]
gu2 −

[
(3k− b11)uk−1u2u1

+ k(k− 1)uk−2u3
1 + u1Pu + v1Pv

]
gu1 −

[
(k− b11)uk−1u2

1 + P
]
gu

+ b11uk−1u1gx − gt +
(

b12uk−1u2 + b13uk−2u2
1 + b14Pu

)
g + b15Pvh

−
[

u3
1Puuu + v3

1Pvvv + 3u2
1v1Puuv + 3u1v2

1Puvv + 3(u1v2 + u2v1)Puv

+ 3u1u2Puu + 3v1v2Pvv + k(k− 1)(k− 2)(k− 3)uk−4u5
1

+ 10k(k− 1)(k− 2)uk−3u2u3
1 + 15k(k− 1)uk−2u2

2u1

]
= 0.

(29)

Similar discussion about (28) will yield b21 = 5l, b25 = 1 and

hv2v2 = 0,

2vlv2hv1v2 + 2vlv1hvv2 + 2vlhxv2 + (b21 − 4l)vl−1v1hv2 + (b24 − 1)Qv

+ (b22 − 10l)vl−1v2 + [b23 − 10l(l − 1)]vl−2v2
1 = 0,

vlv2
2hv1v1 + vlv2

1hvv + 2vlv1v2hvv1 + 2vlv1hxv + vlhxx + 2vlv2hxv1

−
[

v2
1Qvv + u2

1Quu + 2u1v1Quv + u2Qu + v2Qv + 6l(l − 1)vl−2v2v2
1

+ 3lvl−1v2
2 + l(l − 1)(l − 2)vl−3v4

1

]
hv2 −

[
(3l − b21)vl−1v2v1

+ l(l − 1)vl−2v3
1 + u1Qu + v1Qv

]
hv1 −

[
(l − b21)vl−1v2

1 + Q
]
hv

+ b21vl−1v1hx − ht +
(

b22vl−1v2 + b23vl−2v2
1 + b24Qv

)
h + b25Qug

−
[

u3
1Quuu + v3

1Qvvv + 3u2
1v1Quuv + 3u1v2

1Quvv + 3(u1v2 + u2v1)Quv

+ 3u1u2Quu + 3v1v2Qvv + l(l − 1)(l − 2)(l − 3)vl−4v5
1

+ 10l(l − 1)(l − 2)vl−3v2v3
1 + 15l(l − 1)ul−2v2

2v1

]
= 0.

(30)

It is easy to know that g and h can be represented as

g(t, x, u, u1, u2) = g1(t, x, u, u1)u2 + g2(t, x, u, u1)

and

h(t, x, v, v1, v2) = h1(t, x, v, v1)v2 + h2(t, x, v, v1).
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Substituting g into the second one of (29), we will derive that[
2ug1u1 + (b12 − 10k)

]
uk−1u2 + [(2ug1u + kg1)u1 + 2ug1x] uk−1

+ [b13 − 10k(k− 1)] uk−2u2
1 + (b14 − 1)Pu = 0.

The vanishing of the coefficient of u2 will yield

g1(t, x, u, u1) =
10k− b12

2u
u1 + g3(t, x, u).

As a consequence, (29) can be simplified as(
b13 − 5k2 − 1

2
kb12 + b12

)
uk−2u2

1 + (2ug3u + kg3) uk−1u1 + 2ukg3x + (b14 − 1)Pu = 0,

which is a polynomial about u1. Thus, b13 = 5k2 + 1
2 kb12 − b12 and g3(t, x, u) = g4(t, x)u−

k
2 can be

derived by equating the coefficients of this polynomial to be zero. Subsequently, (29) finally becomes

2u
k
2 g4x + (b14 − 1)Pu = 0.

Since P(u, v) must depend on v, we will arrive at g4(t, x) = g5(t) and b14 = 1 or P(u, v) = P1(v) from
the above equality.

A similar computational procedure for the first one and second one of (30) will give

h(t, x, , v, v1, v2) = h1(t, x, v, v1)v2 + h2(t, x, v, v1),

h1(t, x, v, v1) =
10l − b22

2v
v1 + h3(t, x, v),

h3(t, x, v) = h4(t, x)v−
l
2 , h4(t, x) = h5(t),

b23 = 5l2 +
1
2

lb22 − b22

and

b24 = 1 or Q(u, v) = Q1(u).

We will consider four different cases, including

(i) b14 = 1, b24 = 1;

(ii) b14 = 1, Q(u, v) = Q1(u);

(iii) P(u, v) = P1(v), b24 = 1;

(iv) P(u, v) = P1(v), Q(u, v) = Q1(u)

to further study. Further research about the last ones of (29) and (30) will finally identify DCs (3) and
CLBSs (5) of RD system (9). The comprehensive computational procedure is omitted here, and the
obtained results are listed in Table 1. The procedure to identify DCs (3) and CLBSs (5) of RD system (4)
for n = 2, n = 4 and n = 5 is almost the same as that for the case of n = 3. We just list the obtained
results in Table 1. It is noted that the results for n = 2 are all presented in [21], so we will not list these
cases in Table 1.
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Table 1. conditional Lie–Bäcklund symmetry (CLBS) (5) of reaction-diffusion (RD) System (9).

No. RD System (9) CLBS (5)

1

 ut =
(

u−
3
2 ux

)
x
− s

r b1u + a1u
5
2 + b1u

5
2 v−

3
2 ,

vt =
(

v−
3
2 vx

)
x
− r

s b2v + a2v
5
2 + b2v

5
2 u−

3
2

{
η1 = u3 − 15

2u u1u2 +
35

4u2 u3
1 + ru

5
2 ,

η2 = v3 − 15
2v v1v2 +

35
4v2 v3

1 + sv
5
2

2

 ut =
(

u−
4
3 ux

)
x
+ a1u + b1u

5
3 − 3s

4 u−
1
3 + c1u

5
3 v−

2
3 ,

vt =
(

v−
4
3 vx

)
x
+ a2v + b2v

5
3 − 3s

4 v−
1
3 + c2v

5
3 u−

2
3

{
η1 = u3 − 5

u u1u2 +
40

9u2 u3
1 + su1,

η2 = v3 − 5
v v1v2 +

40
9v2 v3

1 + sv1

3

 ut =
(

u−
4
3 ux

)
x
+ a1u + b1u

5
3 − 3s

4 u−
1
3 + c1u

5
3 vl ,

vt =
(

vlvx

)
x
+ a2v + b2v1−l + (l+1)s

l2 v1+l + c2v1−lu−
2
3

{
η1 = u3 − 5

u u1u2 +
40

9u2 u3
1 + su1,

η2 = v3 +
3(l−1)

v v1v2 +
(l−1)(l−2)

v2 v3
1 + sv1

4

 ut =
(

ukux

)
x
+ a1u + b1u1−k + (k+1)s

k2 u1+k + c1u1−kvl ,

vt =
(

vlvx

)
x
+ a2v + b2v1−l + (l+1)s

l2 v1+l + c2v1−luk

{
η1 = u3 +

3(k−1)
u u1u2 +

(k−1)(k−2)
u2 u3

1 + su1,

η2 = v3 +
3(l−1)

v v1v2 +
(l−1)(l−2)

v2 v3
1 + sv1

5

 ut =
(

u−
3
2 ux

)
x
+ a1u + b1u

5
2 + c1u

5
2 v−

3
2 ,

vt =
(

v−
3
2 vx

)
x
+ a2v + b2v

5
2 + c2v

5
2 u−

3
2

{
η1 = u4 − 10

u u1u3 − 15
2u u2

2 +
105
2u2 u2

1u2 − 315
8u3 u4

1,
η2 = v4 − 10

v v1v3 − 15
2v v2

2 +
105
2v2 v2

1v2 − 315
8v3 v4

1

6

 ut =
(

u−
4
3 ux

)
x
+ a1u + b1u

7
3 − 3s

20 u−
1
3 + c1u

7
3 v−

4
3 ,

vt =
(

v−
4
3 vx

)
x
+ a2v + b2v

7
3 − 3s

20 v−
1
3 + c2v

7
3 u−

4
3



η1 = u5 − 35
3u u1u4 +

(
− 70

3u u2 +
700
9u2 u2

1 + s
)

u3

+ 350
3u2 u1u2

2 −
(

7s
u u1 +

9100
27u3 u3

1

)
u2 +

14560
81u4 u5

1

+ 70s
9u2 u3

1 +
4s2

25 u1,

η2 = v5 − 35
3v v1v4 +

(
− 70

3v v2 +
700
9v2 v2

1 + s
)

v3

+ 350
3v2 v1v2

2 −
(

7s
v v1 +

9100
27v3 v3

1

)
v2 +

14560
81v4 v5

1

+ 70s
9v2 v3

1 +
4s2

25 v1,
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5. Reductions of RD System (9)

The compatibility of the RD system (9) and the invariant surface condition (DC) (3) is the basic
reduction idea of CLBS. Therefore, the evolution system (9) and the admitted DC (3) share a common
manifold of solutions. We first solve the DC (3) to identify the form of u and v and then substitute the
obtained results into (9) to finally determine the solutions. Here, we will construct the reductions of
the resulting systems (9) in Table 1.

Example 1. RD system  ut =
(

u−
3
2 ux

)
x
− s

r b1u + a1u
5
2 + b1u

5
2 v−

3
2 ,

vt =
(

v−
3
2 vx

)
x
− r

s b2v + a2v
5
2 + b2v

5
2 u−

3
2

admits CLBS {
η1 = u3 − 15

2u u1u2 +
35

4u2 u3
1 + ru

5
2 ,

η2 = v3 − 15
2v v1v2 +

35
4v2 v3

1 + sv
5
2 .

The solutions of this system are listed as u(x, t) =
[

r
4 x3 + C(1)

1 (t)x2 + C(1)
2 (t)x + C(1)

3 (t)
]− 2

3 ,

v(x, t) =
[

s
4 x3 + C(2)

1 (t)x2 + C(2)
2 (t)x + C(2)

3 (t)
]− 2

3 ,

where C(1)
1 (t), C(1)

2 (t), C(1)
3 (t), C(2)

1 (t), C(2)
2 (t) and C(2)

3 (t) satisfy the six-dimensional dynamical system

C(1)
1

′
= − 2

3 C(1)
1

2
+ 3s

2r b1C(1)
1 + r

2 C(1)
2 −

3
2 b1C(2)

1 ,

C(1)
2

′
= − 2

3 C(1)
1 C(1)

2 + 3s
2r b1C(1)

2 + 3r
2 C(1)

3 −
3
2 b1C(2)

2 ,

C(1)
3

′
= 2C(1)

1 C(1)
3 −

2
3 C(1)

2

2
+ 3s

2r b1C(1)
3 −

3
2 b1C(2)

3 −
3
2 a1,

C(2)
1

′
= − 2

3 C(2)
1

2
+ 3r

2s b2C(2)
1 + s

2 C(2)
2 −

3
2 b2C(1)

1 ,

C(2)
2

′
= − 2

3 C(2)
1 C(2)

2 + 3r
2s b2C(2)

2 + 3s
2 C(2)

3 −
3
2 b2C(1)

2 ,

C(2)
3

′
= 2C(2)

1 C(2)
3 −

2
3 C(2)

2

2
+ 3r

2s b2C(2)
3 −

3
2 b2C(1)

3 −
3
2 a2.

Example 2. RD system ut =
(

u−
4
3 ux

)
x
+ a1u + b1u

5
3 − 3s

4 u−
1
3 + c1u

5
3 v−

2
3 ,

vt =
(

v−
4
3 vx

)
x
+ a2v + b2v

5
3 − 3s

4 v−
1
3 + c2v

5
3 u−

2
3

admits CLBS {
η1 = u3 − 5

u u1u2 +
40

9u2 u3
1 + su1,

η2 = v3 − 5
v v1v2 +

40
9v2 v3

1 + sv1.

The solutions of this system are given as below.
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• For s > 0,  u(x, t) =
[
C(1)

1 (t) + C(1)
2 (t) sin

(√
sx
)
+ C(1)

3 (t) cos
(√

sx
)]− 3

2 ,

v(x, t) =
[
C(2)

1 (t) + C(2)
2 (t) sin

(√
sx
)
+ C(2)

3 (t) cos
(√

sx
)]− 3

2 ,

where C(1)
1 (t), C(1)

2 (t), C(1)
3 (t), C(2)

1 (t), C(2)
2 (t) and C(2)

3 (t) satisfy the six-dimensional dynamical system

C(1)
1

′
= s

2 C(1)
1

(
C(1)

1

2
− C(1)

2

2
− C(1)

3

2
)
− 2

3 a1C(1)
1 −

2
3 c1C(2)

1 −
2
3 b1,

C(1)
2

′
= s

2 C(1)
2

(
C(1)

1

2
− C(1)

2

2
− C(1)

3

2
)
− 2

3 a1C(1)
2 −

2
3 c1C(2)

2 ,

C(1)
3

′
= s

2 C(1)
3

(
C(1)

1

2
− C(1)

2

2
− C(1)

3

2
)
− 2

3 a1C(1)
3 −

2
3 c1C(2)

3 ,

C(2)
1

′
= s

2 C(2)
1

(
C(2)

1

2
− C(2)

2

2
− C(2)

3

2
)
− 2

3 a2C(2)
1 −

2
3 c2C(1)

1 −
2
3 b2,

C(2)
2

′
= s

2 C(2)
2

(
C(2)

1

2
− C(2)

2

2
− C(2)

3

2
)
− 2

3 a2C(2)
2 −

2
3 c2C(1)

2 ,

C(2)
3

′
= s

2 C(2)
3

(
C(2)

1

2
− C(2)

2

2
− C(2)

3

2
)
− 2

3 a2C(2)
3 −

2
3 c2C(1)

3 .

• For s = 0,  u(x, t) =
[
C(1)

1 (t)x2 + C(1)
2 (t)x + C(1)

3 (t)
]− 3

2 ,

v(x, t) =
[
C(2)

1 (t)x2 + C(2)
2 (t)x + C(2)

3 (t)
]− 3

2 ,

where C(1)
1 (t), C(1)

2 (t), C(1)
3 (t), C(2)

1 (t), C(2)
2 (t) and C(2)

3 (t) satisfy the six-dimensional dynamical system

C(1)
1

′
= 2C(1)

1

2
C(1)

3 −
1
2 C(1)

1 C(1)
2

2
− 2

3 a1C(1)
1 −

2
3 c1C(2)

1 ,

C(1)
2

′
= 2C(1)

1 C(1)
2 C(1)

3 −
1
2 C(1)

2

3
− 2

3 a1C(1)
2 −

2
3 c1C(2)

2 ,

C(1)
3

′
= 2C(1)

1 C(1)
3

2
− 1

2 C(1)
2

2
C(1)

3 −
2
3 a1C(1)

3 −
2
3 c1C(2)

3 −
2
3 b1,

C(2)
1

′
= 2C(2)

1

2
C(2)

3 −
1
2 C(2)

1 C(2)
2

2
− 2

3 a2C(2)
1 −

2
3 c2C(1)

1 ,

C(2)
2

′
= 2C(2)

1 C(2)
2 C(2)

3 −
1
2 C(2)

2

3
− 2

3 a2C(2)
2 −

2
3 c2C(1)

2 ,

C(2)
3

′
= 2C(2)

1 C(2)
3

2
− 1

2 C(2)
2

2
C(2)

3 −
2
3 a2C(2)

3 −
2
3 c2C(1)

3 −
2
3 b2.

• For s < 0, u(x, t) =
[
C(1)

1 (t) + C(1)
2 (t) sinh

(√
−sx

)
+ C(1)

3 (t) cosh
(√
−sx

)]− 3
2 ,

v(x, t) =
[
C(2)

1 (t) + C(2)
2 (t) sinh

(√
−sx

)
+ C(2)

3 (t) cosh
(√
−sx

)]− 3
2 ,
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where C(1)
1 (t), C(1)

2 (t), C(1)
3 (t), C(2)

1 (t), C(2)
2 (t) and C(2)

3 (t) satisfy the six-dimensional dynamical system

C(1)
1

′
= s

2 C(1)
1

(
C(1)

1

2
+ C(1)

2

2
− C(1)

3

2
)
− 2

3 a1C(1)
1 −

2
3 c1C(2)

1 −
2
3 b1,

C(1)
2

′
= s

2 C(1)
2

(
C(1)

1

2
+ C(1)

2

2
− C(1)

3

2
)
− 2

3 a1C(1)
2 −

2
3 c1C(2)

2 ,

C(1)
3

′
= s

2 C(1)
3

(
C(1)

1

2
+ C(1)

2

2
− C(1)

3

2
)
− 2

3 a1C(1)
3 −

2
3 c1C(2)

3 ,

C(2)
1

′
= s

2 C(2)
1

(
C(2)

1

2
+ C(2)

2

2
− C(2)

3

2
)
− 2

3 a2C(2)
1 −

2
3 c2C(1)

1 −
2
3 b2,

C(2)
2

′
= s

2 C(2)
2

(
C(2)

1

2
+ C(2)

2

2
− C(2)

3

2
)
− 2

3 a2C(2)
2 −

2
3 c2C(1)

2 ,

C(2)
3

′
= s

2 C(2)
3

(
C(2)

1

2
+ C(2)

2

2
− C(2)

3

2
)
− 2

3 a2C(2)
3 −

2
3 c2C(1)

3 .

Example 3. RD system ut =
(

u−
4
3 ux

)
x
+ a1u + b1u

5
3 − 3s

4 u−
1
3 + c1u

5
3 vl ,

vt =
(

vlvx

)
x
+ a2v + b2v1−l + (l+1)s

l2 v1+l + c2v1−lu−
2
3

admits CLBS {
η1 = u3 − 5

u u1u2 +
40

9u2 u3
1 + su1,

η2 = v3 +
3(l−1)

v v1v2 +
(l−1)(l−2)

v2 v3
1 + sv1.

The solutions of this system are given as below.

• For s > 0,  u(x, t) =
[
C(1)

1 (t) + C(1)
2 (t) sin

(√
sx
)
+ C(1)

3 (t) cos
(√

sx
)]− 3

2 ,

v(x, t) =
[
C(2)

1 (t) + C(2)
2 (t) sin

(√
sx
)
+ C(2)

3 (t) cos
(√

sx
)] 1

l ,

where C(1)
1 (t), C(1)

2 (t), C(1)
3 (t), C(2)

1 (t), C(2)
2 (t) and C(2)

3 (t) satisfy the six-dimensional dynamical system

C(1)
1

′
= s

2 C(1)
1

(
C(1)

1

2
− C(1)

2

2
− C(1)

3

2
)
− 2

3 a1C(1)
1 −

2
3 c1C(2)

1 −
2
3 b1,

C(1)
2

′
= s

2 C(1)
2

(
C(1)

1

2
− C(1)

2

2
− C(1)

3

2
)
− 2

3 a1C(1)
2 −

2
3 c1C(2)

2 ,

C(1)
3

′
= s

2 C(1)
3

(
C(1)

1

2
− C(1)

2

2
− C(1)

3

2
)
− 2

3 a1C(1)
3 −

2
3 c1C(2)

3 ,

C(2)
1

′
= (l+1)s

l C(2)
1

2
+ s

l

(
C(2)

2

2
+ C(2)

3

2
)
+ la2C(2)

1 + lc2C(1)
1 + lb2,

C(2)
2

′
= (l+2)s

l C(2)
1 C(2)

2 + la2C(2)
2 + lc2C(1)

2 ,

C(2)
3

′
= (l+2)s

l C(2)
1 C(2)

3 + la2C(2)
3 + lc2C(1)

3 .

• For s = 0,  u(x, t) =
[
C(1)

1 (t)x2 + C(1)
2 (t)x + C(1)

3 (t)
]− 3

2 ,

v(x, t) =
[
C(2)

1 (t)x2 + C(2)
2 (t)x + C(2)

3 (t)
] 1

l ,



Symmetry 2016, 8, 157 15 of 21

where C(1)
1 (t), C(1)

2 (t), C(1)
3 (t), C(2)

1 (t), C(2)
2 (t) and C(2)

3 (t) satisfy the six-dimensional dynamical system

C(1)
1

′
= 2C(1)

1

2
C(1)

3 −
1
2 C(1)

1 C(1)
2

2
− 2

3 a1C(1)
1 −

2
3 c1C(2)

1 ,

C(1)
2

′
= 2C(1)

1 C(1)
2 C(1)

3 −
1
2 C(1)

2

3
− 2

3 a1C(1)
2 −

2
3 c1C(2)

2 ,

C(1)
3

′
= 2C(1)

1 C(1)
3

2
− 1

2 C(1)
2

2
C(1)

3 −
2
3 a1C(1)

3 −
2
3 c1C(2)

3 −
2
3 b1,

C(2)
1

′
= 2(l+2)

l C(2)
1

2
+ la2C(2)

1 + lc2C(1)
1 ,

C(2)
2

′
= 2(l+2)

l C(2)
1 C(2)

2 + la2C(2)
2 + lc2C(1)

2 ,

C(2)
3

′
= 1

l C(2)
2

2
+ 2C(2)

1 C(2)
3 + la2C(2)

3 + lc2C(1)
3 + lb2.

• For s < 0, u(x, t) =
[
C(1)

1 (t) + C(1)
2 (t) sinh

(√
−sx

)
+ C(1)

3 (t) cosh
(√
−sx

)] 3
2 ,

v(x, t) =
[
C(2)

1 (t) + C(2)
2 (t) sinh

(√
−sx

)
+ C(2)

3 (t) cosh
(√
−sx

)] 1
l ,

where C(1)
1 (t), C(1)

2 (t), C(1)
3 (t), C(2)

1 (t), C(2)
2 (t) and C(2)

3 (t) satisfy the six-dimensional dynamical system

C(1)
1

′
= s

2 C(1)
1

(
C(1)

1

2
+ C(1)

2

2
− C(1)

3

2
)
− 2

3 a1C(1)
1 −

2
3 c1C(2)

1 −
2
3 b1,

C(1)
2

′
= s

2 C(1)
2

(
C(1)

1

2
+ C(1)

2

2
− C(1)

3

2
)
− 2

3 a1C(1)
2 −

2
3 c1C(2)

2 ,

C(1)
3

′
= s

2 C(1)
3

(
C(1)

1

2
+ C(1)

2

2
− C(1)

3

2
)
− 2

3 a1C(1)
3 −

2
3 c1C(2)

3 ,

C(2)
1

′
= (l+1)s

l C(2)
1

2
+ s

l

(
C(2)

3

2
− C(2)

2

2
)
+ la2C(2)

1 + lc2C(1)
1 + lb2,

C(2)
2

′
= (l+2)s

l C(2)
1 C(2)

2 + la2C(2)
2 + lc2C(1)

2 ,

C(2)
3

′
= (l+2)s

l C(2)
1 C(2)

3 + la2C(2)
3 + lc2C(1)

3 .

Example 4. RD system ut =
(

ukux

)
x
+ a1u + b1u1−k + (k+1)s

k2 u1+k + c1u1−kvl ,

vt =
(

vlvx

)
x
+ a2v + b2v1−l + (l+1)s

l2 v1+l + c2v1−luk

admits CLBS {
η1 = u3 +

3(k−1)
u u1u2 +

(k−1)(k−2)
u2 u3

1 + su1,

η2 = v3 +
3(l−1)

v v1v2 +
(l−1)(l−2)

v2 v3
1 + sv1.

The solutions of this system are given as below.

• For s > 0,  u(x, t) =
[
C(1)

1 (t) + C(1)
2 (t) sin

(√
sx
)
+ C(1)

3 (t) cos
(√

sx
)] 1

k ,

v(x, t) =
[
C(2)

1 (t) + C(2)
2 (t) sin

(√
sx
)
+ C(2)

3 (t) cos
(√

sx
)] 1

l ,
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where C(1)
1 (t), C(1)

2 (t), C(1)
3 (t), C(2)

1 (t), C(2)
2 (t) and C(2)

3 (t) satisfy the six-dimensional dynamical system

C(1)
1

′
= (k+1)s

k C(1)
1

2
+ s

k

(
C(1)

2

2
+ C(1)

3

2
)
+ ka1C(1)

1 + kc1C(2)
1 + kb1,

C(1)
2

′
= (k+2)s

k C(1)
1 C(1)

2 + ka1C(1)
2 + kc1C(2)

2 ,

C(1)
3

′
= (k+2)s

k C(1)
1 C(1)

3 + ka1C(1)
3 + kc1C(2)

3 ,

C(2)
1

′
= (l+1)s

l C(2)
1

2
+ s

l

(
C(2)

2

2
+ C(2)

3

2
)
+ la2C(2)

1 + lc2C(1)
1 + lb2,

C(2)
2

′
= (l+2)s

l C(2)
1 C(2)

2 + la2C(2)
2 + lc2C(1)

2 ,

C(2)
3

′
= (l+2)s

l C(2)
1 C(2)

3 + la2C(2)
3 + lc2C(1)

3 .

• For s = 0,  u(x, t) =
[
C(1)

1 (t)x2 + C(1)
2 (t)x + C(1)

3 (t)
] 1

k ,

v(x, t) =
[
C(2)

1 (t)x2 + C(2)
2 (t)x + C(2)

3 (t)
] 1

l ,

where C(1)
1 (t), C(1)

2 (t), C(1)
3 (t), C(2)

1 (t), C(2)
2 (t) and C(2)

3 (t) satisfy the six-dimensional dynamical system

C(1)
1

′
= 2(k+2)

k C(1)
1

2
+ ka1C(1)

1 + kc1C(2)
1 ,

C(1)
2

′
= 2(k+2)

k C(1)
1 C(1)

2 + ka1C(1)
2 + kc1C(2)

2 ,

C(1)
3

′
= 1

k C(1)
2

2
+ 2C(1)

1 C(1)
3 + ka1C(1)

3 + kc1C(2)
3 + kb1,

C(2)
1

′
= 2(l+2)

l C(2)
1

2
+ la2C(2)

1 + lc2C(1)
1 ,

C(2)
2

′
= 2(l+2)

l C(2)
1 C(2)

2 + la2C(2)
2 + lc2C(1)

2 ,

C(2)
3

′
= 1

l C(2)
2

2
+ 2C(2)

1 C(2)
3 + la2C(2)

3 + lc2C(1)
3 + lb2.

• For s < 0, u(x, t) =
[
C(1)

1 (t) + C(1)
2 (t) sinh

(√
−sx

)
+ C(1)

3 (t) cosh
(√
−sx

)] 1
k ,

v(x, t) =
[
C(2)

1 (t) + C(2)
2 (t) sinh

(√
−sx

)
+ C(2)

3 (t) cosh
(√
−sx

)] 1
l ,

where C(1)
1 (t), C(1)

2 (t), C(1)
3 (t), C(2)

1 (t), C(2)
2 (t) and C(2)

3 (t) satisfy the six-dimensional dynamical system

C(1)
1

′
= (k+1)s

k C(1)
1

2
+ s

k

(
C(1)

3

2
− C(1)

2

2
)
+ ka1C(1)

1 + kc1C(2)
1 + kb1,

C(1)
2

′
= (k+2)s

k C(1)
1 C(1)

2 + ka1C(1)
2 + kc1C(2)

2 ,

C(1)
3

′
= (k+2)s

k C(1)
1 C(1)

3 + ka1C(1)
3 + kc1C(2)

3 ,

C(2)
1

′
= (l+1)s

l C(2)
1

2
+ s

l

(
C(2)

3

2
− C(2)

2

2
)
+ la2C(2)

1 + lc2C(1)
1 + lb2,

C(2)
2

′
= (l+2)s

l C(2)
1 C(2)

2 + la2C(2)
2 + lc2C(1)

2 ,

C(2)
3

′
= (l+2)s

l C(2)
1 C(2)

3 + la2C(2)
3 + lc2C(1)

3 .

Example 5. RD system  ut =
(

u−
3
2 ux

)
x
+ a1u + b1u

5
2 + c1u

5
2 v−

3
2 ,

vt =
(

v−
3
2 vx

)
x
+ a2v + b2v

5
2 + c2u−

3
2 v

5
2
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admits CLBS {
η1 = u4 − 10

u u1u3 − 15
2u u2

2 +
105
2u2 u2

1u2 − 315
8u3 u4

1,
η2 = v4 − 10

v v1v3 − 15
2v v2

2 +
105
2v2 v2

1v2 − 315
8v3 v4

1.

The solutions of this system are given by u(x, t) =
[
C(1)

1 (t)x3 + C(1)
2 (t)x2 + C(1)

3 (t)x + C(1)
4 (t)

]− 2
3 ,

v(x, t) =
[
C(2)

1 (t)x3 + C(2)
2 (t)x2 + C(2)

3 (t)x + C(2)
4 (t)

]− 2
3 ,

where C(1)
1 (t), C(1)

2 (t), C(1)
3 (t), C(1)

4 (t), C(2)
1 (t), C(2)

2 (t), C(2)
3 (t) and C(2)

4 (t) satisfy the eight-dimensional
dynamical system 

C(1)
1

′
= − 3

2 a1C(1)
1 −

3
2 c1C(2)

1 ,

C(1)
2

′
= − 2

3 C(1)
2

2
+ 2C(1)

1 C(1)
3 −

3
2 a1C(1)

2 −
3
2 c1C(2)

2 ,

C(1)
3

′
= − 2

3 C(1)
2 C(1)

3 + 6C(1)
1 C(1)

4 −
3
2 a1C(1)

3 −
3
2 c1C(2)

3 ,

C(1)
4

′
= − 2

3 C(1)
3

2
+ 2C(1)

2 C(1)
4 −

3
2 a1C(1)

4 −
3
2 c1C(2)

4 −
3
2 b1,

C(2)
1

′
= − 3

2 a2C(2)
1 −

3
2 c2C(1)

1 ,

C(2)
2

′
= − 2

3 C(2)
2

2
+ 2C(2)

1 C(2)
3 −

3
2 a2C(2)

2 −
3
2 c2C(1)

2 ,

C(2)
3

′
= − 2

3 C(2)
2 C(2)

3 + 6C(2)
1 C(2)

4 −
3
2 a2C(2)

3 −
3
2 c2C(1)

3 ,

C(2)
4

′
= − 2

3 C(2)
3

2
+ 2C(2)

2 C(2)
4 −

3
2 a2C(2)

4 −
3
2 c2C(1)

4 −
3
2 b2.

Example 6. RD system ut =
(

u−
4
3 ux

)
x
+ a1u + b1u

7
3 − 3s

20 u−
1
3 + c1u

7
3 v−

4
3 ,

vt =
(

v−
4
3 vx

)
x
+ a2v + b2v

7
3 − 3s

20 v−
1
3 + c2v

7
3 u−

4
3

admits CLBS 

η1 = u5 − 35
3u u1u4 +

(
− 70

3u u2 +
700
9u2 u2

1 + s
)

u3 +
350
3u2 u1u2

2

−
(

7s
u u1 +

9100
27u3 u3

1

)
u2 +

14560
81u4 u5

1 +
70s
9u2 u3

1 +
4s2

25 u1,

η2 = v5 − 35
3v v1v4 +

(
− 70

3v v2 +
700
9v2 v2

1 + s
)

v3 +
350
3v2 v1v2

2

−
(

7s
v v1 +

9100
27v3 v3

1

)
v2 +

14560
81v4 v5

1 +
70s
9v2 v3

1 +
4s2

25 v1.

The solutions of this system are given as below.

• For s > 0, 

u(x, t) =
[

C(1)
1 (t) + C(1)

2 (t) sin
(√

5s
5 x
)
+ C(1)

3 (t) cos
(√

5s
5 x
)

+C(1)
4 (t) sin

(
2
√

5s
5 x

)
+ C(1)

5 (t) cos
(

2
√

5s
5 x

)]− 3
4

,

v(x, t) =
[

C(2)
1 (t) + C(2)

2 (t) sin
(√

5s
5 x
)
+ C(2)

3 (t) cos
(√

5s
5 x
)

+C(2)
4 (t) sin

(
2
√

5s
5 x

)
+ C(2)

5 (t) cos
(

2
√

5s
5 x

)]− 3
4

,
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where C(1)
1 (t), C(1)

2 (t), C(1)
3 (t), C(1)

4 (t), C(1)
5 (t), C(2)

1 (t), C(2)
2 (t), C(2)

3 (t), C(2)
4 (t) and C(2)

5 (t) satisfy the
ten-dimensional dynamical system

C(1)
1

′
= s

5 C(1)
1

2
− 3s

40 C(1)
2

2
− 3s

40 C(1)
3

2
− 3s

5 C(1)
4

2
− 3s

5 C(1)
5

2
− 4

3 a1C(1)
1 −

4
3 c1C(2)

1 −
4
3 b1,

C(1)
2

′
= 3s

5 C(1)
2 C(1)

5 −
3s
5 C(1)

3 C(1)
4 + s

5 C(1)
1 C(1)

2 −
4
3 a1C(1)

2 −
4
3 c1C(2)

2 ,

C(1)
3

′
= − 3s

5 C(1)
2 C(1)

4 −
3s
5 C(1)

3 C(1)
5 + s

5 C(1)
1 C(1)

3 −
4
3 a1C(1)

3 −
4
3 c1C(2)

3 ,

C(1)
4

′
= 3s

20 C(1)
2 C(1)

3 −
2s
5 C(1)

1 C(1)
4 −

4
3 a1C(1)

4 −
4
3 c1C(2)

4 ,

C(1)
5

′
= − 3s

40 C(1)
2

2
+ 3s

40 C(1)
3

2
− 2s

5 C(1)
1 C(1)

5 −
4
3 a1C(1)

5 −
4
3 c1C(2)

5 ,

C(2)
1

′
= s

5 C(2)
1

2
− 3s

40 C(2)
2

2
− 3s

40 C(2)
3

2
− 3s

5 C(2)
4

2
− 3s

5 C(2)
5

2
− 4

3 a2C(2)
1 −

4
3 c2C(1)

1 −
4
3 b2,

C(2)
2

′
= 3s

5 C(2)
2 C(2)

5 −
3s
5 C(2)

3 C(2)
4 + s

5 C(2)
1 C(2)

2 −
4
3 a2C(2)

2 −
4
3 c2C(1)

2 ,

C(2)
3

′
= − 3s

5 C(2)
2 C(2)

4 −
3s
5 C(2)

3 C(2)
5 + s

5 C(2)
1 C(2)

3 −
4
3 a2C(2)

3 −
4
3 c2C(1)

3 ,

C(2)
4

′
= 3s

20 C(2)
2 C(2)

3 −
2s
5 C(2)

1 C(2)
4 −

4
3 a2C(2)

4 −
4
3 c2C(1)

4 ,

C(2)
5

′
= − 3s

40 C(2)
2

2
+ 3s

40 C(2)
3

2
− 2s

5 C(2)
1 C(2)

5 −
4
3 a2C(2)

5 −
4
3 c2C(1)

5 .

• For s = 0, u(x, t) =
[
C(1)

1 (t)x4 + C(1)
2 (t)x3 + C(1)

3 (t)x2 + C(1)
4 (t)x + C(1)

5 (t)
]− 3

4 ,

v(x, t) =
[
C(2)

1 (t)x4 + C(2)
2 (t)x3 + C(2)

3 (t)x2 + C(2)
4 (t)x + C(2)

5 (t)
]− 3

4 ,

where C(1)
1 (t), C(1)

2 (t), C(1)
3 (t), C(1)

4 (t), C(1)
5 (t), C(2)

1 (t), C(2)
2 (t), C(2)

3 (t), C(2)
4 (t) and C(2)

5 (t) satisfy the
ten-dimensional dynamical system

C(1)
1

′
= 2C(1)

1 C(1)
3 −

3
4 C(1)

2

2
− 4

3 a1C(1)
1 −

4
3 c1C(2)

1 ,

C(1)
2

′
= −C(1)

2 C(1)
3 + 6C(1)

1 C(1)
4 −

4
3 a1C(1)

2 −
4
3 c1C(2)

2 ,

C(1)
3

′
= 3

2 C(1)
2 C(1)

4 + 12C(1)
1 C(1)

5 − C(1)
3

2
− 4

3 a1C(1)
3 −

4
3 c1C(2)

3 ,

C(1)
4

′
= 6C(1)

2 C(1)
5 − C(1)

3 C(1)
4 −

4
3 a1C(1)

4 −
4
3 c1C(2)

4 ,

C(1)
5

′
= 2C(1)

3 C(1)
5 −

3
4 C(1)

4

2
− 4

3 a1C(1)
5 −

4
3 c1C(2)

5 −
4
3 b1,

C(2)
1

′
= 2C(2)

1 C(2)
3 −

3
4 C(2)

2

2
− 4

3 a2C(2)
1 −

4
3 c2C(1)

1 ,

C(2)
2

′
= −C(2)

2 C(2)
3 + 6C(2)

1 C(2)
4 −

4
3 a2C(2)

2 −
4
3 c2C(1)

2 ,

C(2)
3

′
= 3

2 C(2)
2 C(2)

4 + 12C(2)
1 C(2)

5 − C(2)
3

2
− 4

3 a2C(2)
3 −

4
3 c2C(1)

3 ,

C(2)
4

′
= 6C(2)

2 C(2)
5 − C(2)

3 C(2)
4 −

4
3 a2C(2)

4 −
4
3 c2C(1)

4 ,

C(2)
5

′
= 2C(2)

3 C(2)
5 −

3
4 C(2)

4

2
− 4

3 a2C(2)
5 −

4
3 c2C(1)

5 −
4
3 b2,

• For s < 0,

u(x, t) =
[

C(1)
1 (t) + C(1)

2 (t) sinh
(√
−5s
5 x

)
+ C(1)

3 (t) cosh
(√
−5s
5 x

)
+C(1)

4 (t) sinh
(

2
√
−5s
5 x

)
+ C(1)

5 (t) cosh
(

2
√
−5s
5 x

)]− 3
4

,

v(x, t) =
[

C(2)
1 (t) + C(2)

2 (t) sinh
(√
−5s
5 x

)
+ C(2)

3 (t) cosh
(√
−5s
5 x

)
+C(2)

4 (t) sinh
(

2
√
−5s
5 x

)
+ C(2)

5 (t) cosh
(

2
√
−5s
5 x

)]− 3
4

,
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where C(1)
1 (t), C(1)

2 (t), C(1)
3 (t), C(1)

4 (t), C(1)
5 (t), C(2)

1 (t), C(2)
2 (t), C(2)

3 (t), C(2)
4 (t) and C(2)

5 (t) satisfy the
ten-dimensional dynamical system

C(1)
1

′
= s

5 C(1)
1

2
+ 3s

40 C(1)
2

2
− 3s

40 C(1)
3

2
+ 3s

5 C(1)
4

2
− 3s

5 C(1)
5

2
− 4

3 a1C(1)
1 −

4
3 c1C(2)

1 −
4
3 b1,

C(1)
2

′
= 3s

5 C(1)
2 C(1)

5 −
3s
5 C(1)

3 C(1)
4 + s

5 C(1)
1 C(1)

2 −
4
3 a1C(1)

2 −
4
3 c1C(2)

2 ,

C(1)
3

′
= 3s

5 C(1)
2 C(1)

4 −
3s
5 C(1)

3 C(1)
5 + s

5 C(1)
1 C(1)

3 −
4
3 a1C(1)

3 −
4
3 c1C(2)

3 ,

C(1)
4

′
= 3s

20 C(1)
2 C(1)

3 −
2s
5 C(1)

1 C(1)
4 −

4
3 a1C(1)

4 −
4
3 c1C(2)

4 ,

C(1)
5

′
= 3s

40 C(1)
2

2
+ 3s

40 C(1)
3

2
− 2s

5 C(1)
1 C(1)

5 −
4
3 a1C(1)

5 −
4
3 c1C(2)

5 ,

C(2)
1

′
= s

5 C(2)
1

2
+ 3s

40 C(2)
2

2
− 3s

40 C(2)
3

2
+ 3s

5 C(2)
4

2
− 3s

5 C(2)
5

2
− 4

3 a2C(2)
1 −

4
3 c2C(1)

1 −
4
3 b2,

C(2)
2

′
= 3s

5 C(2)
2 C(2)

5 −
3s
5 C(2)

3 C(2)
4 + s

5 C(2)
1 C(2)

2 −
4
3 a2C(2)

2 −
4
3 c2C(1)

2 ,

C(2)
3

′
= 3s

5 C(2)
2 C(2)

4 −
3s
5 C(2)

3 C(2)
5 + s

5 C(2)
1 C(2)

3 −
4
3 a2C(2)

3 −
4
3 c2C(1)

3 ,

C(2)
4

′
= 3s

20 C(2)
2 C(2)

3 −
2s
5 C(2)

1 C(2)
4 −

4
3 a2C(2)

4 −
4
3 c2C(1)

4 ,

C(2)
5

′
= 3s

40 C(2)
2

2
+ 3s

40 C(2)
3

2
− 2s

5 C(2)
1 C(2)

5 −
4
3 a2C(2)

5 −
4
3 c2C(1)

5 .

6. Conclusions

The method of linear determining equations to construct DC (3) and CLBS (5) of two-component
second-order evolution system (4) is provided. The linear determining equations (23) and (24)
generalize the classical determining equations within the framework of Lie’s operator. The general
form of CLBS (5) and DC (3) admitted by the system (4) can be identified by solving the resulting linear
determining equations.

As an application of this approach, the general form of DC (3) and CLBS (5) with n = 3, 4, 5 of RD
system (9) is established in this paper. The reductions of the resulting equations are also constructed due
to the compatibility of the admitted DC (3) and the governing system (9). These reductions cannot be
obtained within the framework of Lie’s classical symmetry method and conditional symmetry method.

All examples except Example 4 in Section 5 involve the power diffusivities with the exponent
either −4/3 or −2/3. Exact solutions of the nonlinear diffusion equations ut = (u−4/3ux)x

and ut = (u−2/3ux)x are firstly studied by using local and non-local symmetries by King [48].
The polynomial solutions like the ones in the examples of Section 5 for scalar nonlinear diffusion
equations are also constructed by King [49,50]. Moreover, a range of more complicated exact solutions
for scalar nonlinear diffusion equations are derived by Cherniha [15] due to the method of the
additional generating condition. In addition, the results of Examples 4, 5 and the case of s = 0
for Example 6 in Section 5 have been given by Cherniha and King [16] by using the method of the
additional generating condition. All of the reductions of the obtained RD system (9) constructed in
Section 5, involving either a polynomial, trigonometric or hyperbolic function, are used in [14] for the
first time within the framework of the method of the additional generating condition.

The method of linear determining equations can be extended to consider DCs and CLBSs of other
types of evolution systems, including a multi-component diffusion system and a high-order evolution
system. The discussion about the linear determining equation for evolution system (4) to identify
CLBS and DC with η1 and η2 possessing different orders is another interesting problem. All of these
problems will be involved in our future research.
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