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Abstract: The degree-based network entropy which is inspired by Shannon’s entropy concept
becomes the information-theoretic quantity for measuring the structural information of graphs
and complex networks. In this paper, we study some properties of the degree-based network entropy.
Firstly we develop a refinement of Jensen’s inequality. Next we present the new and more accurate
upper bound and lower bound for the degree-based network entropy only using the order, the size,
the maximum degree and minimum degree of a network. The bounds have desirable performance
to restrict the entropy in different kinds of graphs. Finally, we show an application to structural
complexity analysis of a computer network modeled by a connected graph.

Keywords: Shannon’s entropy; degree-based network entropy; Jensen’s inequality; upper bound and
lower bound of entropy; network structure

1. Introduction

The entropy of a probability distribution is known as a measure of unpredictability of information
content, or a measure of uncertainty of a system. This concept was introduced first from the famous
Shannon’s paper [1]. Later, entropy was initiated to be applied to graphs and networks. The basic idea
was introduced in [2] as a measure of the information content for a graph and further developed as
a measure of structural complexity in [3]. Afterwards, entropies of graphs and networks have been
broadly used in various areas such as chemistry, biology, ecology, sociology [4–8].

Recently, networks (particularly the complex networks) attracted broad attention of numerous
scholars. In the real world, a number of systems can be modeled as complex networks. Many researches
on the networks were based on the structural information, such as the “Small-world network” [9],
the “Scale-free network” [10,11], and so on. Since the structural property of the complex networks
plays a very significant role, it has been heavily studied [12–15]. Dehmer [16–20] introduced graph
entropies based on information functionals which capture structural information and also studied
their properties. He assigned a probability value to each individual node in a graph or a network.
This procedure avoided the problem of determining node partitions associated with an equivalence
relation that may be often computationally complicated. After that, many applications of the complex
networks based on the entropy associated with structural information were published and various
algorithms to analyze the structural complexity were proposed [21–25]. In [26–28], the entropy and
information theory in graphs and networks were elaborated systematically. The entropy method is
one of the most important methods to describe the structural information of the complex networks,
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especially the degree-based network entropy [29–32]. In the degree-based network entropy, the basic
factor is the degrees of all nodes. The degrees of the nodes can be seen as the information functionals
of the nodes which capture the structural information and invariant to explore the networks [30].

We focus on the degree-based network entropy introduced by Dehmer all the time. In [33] we
present the earlier work that we have done. We prove the monotonicity of the entropy with respect to
the power index. This is an improvement of previous results. Moreover we also obtain some upper
and lower bounds for the entropy by generalizing the previous research papers [30,31]. However, these
bounds are not satisfactory for some circumstances. In this paper, we continue studying them under
certain conditions. We use the Jensen’s inequality to deal with the degree-based network entropy.
The new method derives new upper bound and lower bound. In the results of analyzing the graph
examples and the network extracted from the computer network, we find the new lower bound is
better than the earlier ones in [33] to monocentric homogeneous dendrimer graph and the new upper
bound performs better in the extracted computer network.

This paper is organized as follows: In Section 2, some notations in graph theory and the
degree-based network entropy we are going to study are introduced. In Section 3, we give the
new upper bound and lower bound of the degree-based network entropy under certain conditions.
In Section 4, graph examples and a practical network application are presented and the structural
information is demonstrated by using the entropy. Finally, a short summary and conclusion are drawn
in the last section.

2. Preliminaries to Degree-Based Graph Entropy

A graph (or network) G is a pair of sets (V, E), where V is a finite non-empty set of elements called
vertices, and E is a set of unordered pairs of distinct vertices called edges. The vertices in network
are often called nodes. If e = uv is an edge, then u and v are called adjacent or u is a neighbor of v.
The number of vertices in a graph G is called the order of G, and the number of edges in a graph G is
called the size of G. A graph of order n and size m is addressed as an (n, m)-graph. A simple graph
means that two vertices are connected by at most one edge. A walk in a graph is a sequence of vertices
and edges v0, e1, v1, · · · , ek, vk in which each edge ei = vi−1vi. A path is a walk in which no vertex is
repeated. A cycle is a walk in which vi 6= vj, 0 ≤ i < j ≤ k− 1 and v0 = vk. A graph is connected if there
is a path connecting each pair of vertices. Otherwise, the graph is disconnected. A tree is a connected
graph which has no cycles. If it has n vertices, it has n− 1 edges. So a tree is an (n, n− 1)-graph.

The set of neighbors of a vertex u is called its neighborhood N(u). The number of neighbors of a
vertex u is called its degree, denoted by d(u) or in short du. If all the degrees of G are equal, then G is
regular, or is d-regular if that common degree is d. The maximum and minimum degree in a graph
are often denoted by ∆(G) and δ(G). If V = {v1, v2, · · · , vn}, then D(G) = [d1, d2, · · · , dn] is a degree
sequence of G. We order the vertices in such a way that the degree sequence obtained is monotone
decreasing, for example ∆(G) = d1 ≥ d2 ≥ · · · ≥ dn = δ(G). Obviously in a simple connected graph,
1 ≤ di ≤ n− 1, i = 1, 2, · · · , n. To a given graph G, the vertex degree is an important graph invariant,
which is related to structural properties of the graph. In the following, we discuss a (n, m)-graph with
given n and m.

Next, we introduce the definition of Shannon’s entropy [34]. The notation “log” means that the
logarithm is base 2 logarithm. The notation “ln” means that the logarithm is base e logarithm.

Definition 1. Let p = (p1, p2, · · · , pn) be a probability vector, namely, 0 ≤ pi ≤ 1 and
n
∑

i=1
pi = 1.

The Shannon’s entropy of probability vector p is defined by

H(p) = −
n

∑
i=1

pi log pi (1)

In the above definition, we use convention based on continuity that 0 log 0 = 0.
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Definition 2. Let G = (V, E) be a connected graph. For vi ∈ V, we define

p(vi) =
di

∑n
j=1 dj

(2)

The p(vi) represents the importance of node i in terms of the degrees.

Owing to ∑n
i=1 p(vi) = 1, the quantities p(vi) can be seen as probability values. Then the

degree-based network entropy of G is defined as following.

Definition 3. Let G = (V, E) be a connected graph. The degree-based network entropy of graph G is
defined by

NE(G) = −
n

∑
i=1

p(vi) log p(vi) = −
n

∑
i=1

di

∑n
j=1 dj

log
di

∑n
j=1 dj

(3)

It is easy to obtain NEmax(G) = log n when G is a regular graph (or regular network).

3. New Upper Bound and Lower Bound for the Degree-Based Network Entropy

In this section, we introduce new upper bound and lower bound for the degree-based graph
entropy NE in (n, m)-graph G(n, m).

Let I = [a, b] be a closed interval in R and f : I → R a convex function on I. If x = (x1, x2, · · · , xn)

is an n-tuple in In, and p = (p1, p2, · · · , pn) is a positive n-tuple such that ∑n
i=1 pi = 1, then the

well-known Jensen’s inequality holds.

f

(
n

∑
i=1

pixi

)
≤

n

∑
i=1

pi f (xi) (4)

Obviously if a = b, then f
(

n
∑

i=1
pixi

)
=

n
∑

i=1
pi f (xi) = f (a) (or f (b)).

Theorem 1. If f , x, p are defined as above, then

n

∑
i=1

pi f (xi) ≥ (pµ + pν) f
(

pµxµ + pνxν

pµ + pν

)
+ (1− pµ − pν) f

(
∑n

i=1 pixi − pµxµ − pνxν

1− pµ − pν

)
(5)

Proof. We consider pµ, pν, xµ, xν as a part and other variables as another part. By using Jensen’s
inequality, the following expressions hold

n

∑
i=1

pi f (xi) =(pµ f (xµ) + pν f (xν)) +
n

∑
i=1,i 6=µ,i 6=ν

pi f (xi)

=(pµ + pν)

(
pµ

pµ + pν
f (xµ) +

pν

pµ + pν
f (xν)

)
+

(1− pµ − pν)
n

∑
i=1,i 6=µ,i 6=ν

pi
1− pµ − pν

f (xi)

≥(pµ + pν) f
(

pµ

pµ + pν
xµ +

pν

pµ + pν
xν

)
+

(1− pµ − pν) f

(
n

∑
i=1,i 6=µ,i 6=ν

pi
1− pµ − pν

xi

)

=(pµ + pν) f
(

pµxµ + pνxν

pµ + pν

)
+

(1− pµ − pν) f
(

∑n
i=1 pixi − pµxµ − pνxν

1− pµ − pν

)

(6)
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Theorem 2. If f , x, p are defined as above and a 6= b, xµ = a, xν = b, then

n

∑
i=1

pi f (xi) ≤ pµ f (xµ) + pν f (xν) + (1− pµ − pν)

[
f

(
n

∑
i=1,i 6=µ,i 6=ν

pixi
1− pµ − pν

)
+ Tf (a, b)

]
(7)

where Tf (a, b) := max
0≤p≤1

[p f (a) + (1− p) f (b)− f (pa + (1− p)b)].

Proof. Because xi ∈ [a, b], 1 ≤ i ≤ n and i 6= µ, i 6= ν, there is a λi ∈ [0, 1] such that xi = λia+(1−λi)b.
Hence,

n

∑
i=1

pi f (xi) =pµ f (xµ) + pν f (xν) +
n

∑
i=1,i 6=µ,i 6=ν

pi f (xi)

=pµ f (xµ) + pν f (xν) + (1− pµ − pν)
n

∑
i=1,i 6=µ,i 6=ν

pi
1− pµ − pν

f (xi)

(8)

Since the sequence { pi
1−pµ−pν

}1≤i≤n, i 6=µ,ν satisfies ∑n
i=1,i 6=µ,i 6=ν

pi
1−pµ−pν

= 1, by using Theorem C
in [35], we obtain the expression

n

∑
i=1,i 6=µ,i 6=ν

pi
1− pµ − pν

f (xi) ≤ f

(
n

∑
i=1,i 6=µ,i 6=ν

pixi
1− pµ − pν

)
+ Tf (a, b) (9)

Then the assertion in the theorem follows.

If the pµ, pν arrive at the maximum and minimum values of the probability vector {pi}1≤i≤n, then
we can obtain the new upper bound and lower bound of Shannon’s entropy.

Theorem 3. Define α := min1≤i≤n{pi}, β := max1≤i≤n{pi}. If n > 2, then

H(X) ≤ (α + β) log
2

α + β
+ (1− α− β) log

n− 2
1− α− β

(10)

Proof. Let f (x) = − log x, xi = 1/pi, i = 1, 2, · · · , n. Applying Theorem 1 with pµ = α, pν = β, the
expression (10) is obtained.

Lemma 1. If f (x) = − log x and a 6= b, then

T− log x(a, b) = log
(

b− a
ln b− ln a

)
+

a log b− b log a
b− a

− 1
ln 2
≥ 0.

Proof. It is easy to see that for fixed a, b, the function F(p) = p f (a) + (1− p) f (b)− f (pa + (1− p)b)
is concave for 0 ≤ p ≤ 1 and F(0) = F(1) = 0. So there exists the unique point p0 ∈ (0, 1) such as
T− log x(a, b) = max0≤p≤1 {F(p)} = F(p0) ≥ 0.

By the derivative of F(p) and solving equation F′(p) = 0, the unique point p0 is given by

p0 =
b− b−a

ln b−ln a
b− a

.

Because b−a
ln b−ln a is the logarithmic mean of a, b and a 6= b, we can get 0 < p0 < 1. After putting

p0 back to F(p) , we obtained

T− log x(a, b) = F(p0) = log
(

b− a
ln b− ln a

)
+

a log b− b log a
b− a

− 1
ln 2
≥ 0.
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Theorem 4. Define α := min1≤i≤n{pi}, β := max1≤i≤n{pi}. If α 6= β, n > 2, then

H(X) ≥ α log
1
α
+ β log

1
β
+

(1− α− β)

[
log

n− 2
1− α− β

− log
β− α

αβ(ln β− ln α)
− β log β− α log α

β− α
+

1
ln 2

]
.

(11)

Proof. Let f (x) = − log x, xi = 1/pi, i = 1, 2, · · · , n. Applying Theorem 2 and Lemma 1 with pµ = β,
pν = α, the expression (11) is obtained.

Remark 1. Compared with the bounds of H(X) in [36], the bounds obtained above keep more
information about α and β because we consider them in H(X) individually.

Based on the above bounds of Shannon’s entropy, we can obtain the new upper bound and lower
bound for degree-based network entropy.

Theorem 5. Let G(n, m) be an (n, m)-graph. Denote by ∆ and δ the maximum degree and minimum degree of
G, respectively. If ∆ 6= δ, n > 2, then the inequalities hold

NE(G) ≤ 1 +
∆ + δ

2m
log

2m
∆ + δ

+
2m− ∆− δ

2m
log

m(n− 2)
2m− ∆− δ

:= UNE (12)

Proof. Let α = δ
2m , β = ∆

2m . Applying the expression (10) in Theorem 3, the expression (12) follows.

Theorem 6. Let G(n, m) be an (n, m)-graph. Denote by ∆ and δ the maximum degree and minimum degree of
G, respectively. If ∆ 6= δ, n > 2, then the inequalities hold

NE(G) ≥ ∆
2m

log
2m
∆

+
δ

2m
log

2m
δ

+
2m− ∆− δ

2m

[
log

2m(n− 2)
2m− ∆− δ

−

log
2m(∆− δ)

∆δ ln ∆
δ

− ∆ log ∆− δ log δ

∆− δ
+ log 2m +

1
ln 2

]
:= LNE

(13)

Proof. Let α = δ
2m , β = ∆

2m . Applying the expression (11) in Theorem 4, the expression (13) follows.

Remark 2. If ∆ = δ, then NE(G) = log n. At this point G(n, m) is a regular graph (or regular network).

4. Graph Examples and a Practical Network Application

4.1. Monocentric Homogeneous Dendrimer Graph

A monocentric dendrimer D(t, r) is a tree with two additional parameters: the progressive degree
t and the radius r. Every internal vertex of the tree has degree t + 1. A monocentric dendrimer tree has
one central vertex, and its radius r is the maximum distance from any pendent vertex to the central
one. If all pendent vertices are at a distance r from the central vertex, then the monocentric dendrimer
is called homogeneous.For more details, please see [37,38]. Figure 1 is an example for a monocentric
homogeneous dendrimer with t = 3 and r = 3.
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Figure 1. The monocentric homogeneous dendrimer with t = 3 and r = 3.

To parameters t and r, we have the order n = 1 + (t+1)(tr−1)
t−1 , and m = n − 1, ∆ = t + 1,

δ = 1. Let t = 3, we change the value of parameter r to compute the degree-based network entropy
NE(D(3, r)) and bounds UNE, LNE. The results are listed in Table 1.

In Table 1, we can see that the value of degree-based network entropy NE(G) corresponds
to the scale of the graph. The larger the order and size are, the bigger the degree-based network
entropy is. This means that the corresponding graph is more complex in the structural information.
Furthermore the bounds we obtained are very close to the real value of entropy. Relatively speaking,
the entropy is nearer to the lower bound LNE than to the upper bound UNE. Compared with the list
for them in Table 3 in [33], we also find the new lower bound is better.

Table 1. Some values of the degree-based network entropy and bounds for D(3, r).

r NE(D(3,r)) UNE LNE

1 2.0000 2.1738 1.8734
2 3.7500 4.0780 3.7496
3 5.3928 5.7260 5.3911
4 6.9969 7.3304 6.9936
5 8.5883 8.9217 8.5843
6 10.1754 10.5087 10.1711
7 11.7610 12.0944 11.7567
8 13.3462 13.6796 13.3419
9 14.9313 15.2646 14.9269
10 16.5163 16.8496 16.5119
20 32.3659 32.6993 32.3615
30 48.2155 48.5489 48.2112
40 64.0652 64.3985 64.0608
50 79.9148 80.2481 79.9104
60 95.7644 96.0978 95.7600
70 111.6140 111.9474 111.6097
80 127.4637 127.7970 127.4593
90 143.3133 143.6466 143.3089

100 159.1629 159.4963 159.1585

4.2. Star Graph

A star graph Sn is a tree of order n with one internal vertex and n− 1 pendent vertices. So in Sn

one internal vertex has degree n− 1, while all others (if any) have degree 1. Moreover, m = n− 1,
∆ = n− 1, δ = 1.
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In Figure 2, the values of NE(red), UNE(blue) and LNE(green) with n ∈ [50, 1000] are shown.
We can see that the value of degree-based network entropy NE(Sn) is increasing with the order n of
the star graph Sn. The result also demonstrates that the degree-based network entropy corresponds
to the scale of the same type graph. Furthermore, the growth of the lower bound LNE is flat, but the
growths of the upper bound UNE and the entropy are steep. The entropy is nearer to the upper bound
UNE than to the lower bound LNE. Maybe the upper bound UNE contains more information because
its change trend is consistent with that of the entropy.

200 400 600 800 1000
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6
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d
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un

ds

Figure 2. The values of NE, UNE and LNE with different n for Sn.

4.3. A Special Computer Network

Next we consider the following practical example, inspired from computer networks. We have
a network with n nodes: a gateway (node n), a storage server connected only to the gateway (node
n− 1), and n− 2 computers connected with the gateway and possible directly connected. Figure 3
highlights this model.

1

n

2

3

4

n - 3

n - 2

n - 1

Figure 3. A simple model for computer network.
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In this model, we can confirm that two nodes have fixed degree values: The degree of node n is
n− 1, and the degree of node n− 1 is 1. For given n, the possible number of edges is

n− 1 ≤ m ≤ (n− 1)(n− 2)
2

+ 1. (14)

We let the values of n be 64, 128, 256, 512 respectively, and calculate the NE, UNE and LNE with
different m in the range (14).

The results are graphically represented in Figure 4. The red dots indicate the values of
degree-based network entropy in simulated networks. The blue lines indicate the upper bounds
UNE. The green lines indicate the lower bounds LNE. We can see the degree-based network entropy
NE is increasing with the scale of order n and size m. As the size m increasing, the growth trend of the
entropy becomes progressively flat. The entropy almost stabilizes after the drastic growth of size m in
the beginning. Furthermore, the entropy is very close to the upper bound UNE, especially when m and
n are large enough (see the right half part of every sub-figure). In addition, we find that the computer
network is comparable to the star graph by the change trends of NE, UNE and LNE. Maybe they have
some similar properties such as strong centrality, short average distance, weak robustness and so on.
The node n in the computer network is analogous to the internal vertex in the star graph. But the
computer network contains more structural information because the corresponding entropy is closer
to the upper bound in comparison with star graph. The difference indicates that real networks are
more complex than the regular star-graph networks.
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Figure 4. The values of NE, UNE and LNE for different nodes. (a) The values of NE, UNE and LNE

with different m for 64 nodes; (b) The values of NE, UNE and LNE with different m for 128 nodes;
(c) The values of NE, UNE and LNE with different m for 256 nodes; (d) The values of NE, UNE and LNE

with different m for 512 nodes.
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Above all, we can analyze and obtain the structural complexity for the computer network by
considering only two stable nodes without the connections of other nodes. The results can bring very
important impact in overlays construction for computer networks.

5. Summary and Conclusions

In this paper, we studied the properties for degree-based network entropy NE. We proposed a
new approach to analyze the entropy by determining its bounds. The new upper bound and lower
bound are based on a new refinement of Jensen’s inequality. Moreover, they can estimate NE only
by using the order n, the size m, the maximum degree and minimum degree of a given network. We
showed the numerical results which reflect the effects of NE for special graphs such as monocentric
homogeneous dendrimer graph and star graph. As an application to structural complexity analysis of
a computer network modeled by a connected graph, we did the simulation for different numbers of
nodes and edges. The bounds of degree-based network entropy can be also used to national security,
internet networks, social networks, structural chemistry, ecological networks, computational systems
biology, etc. They will play an important role in analyzing structural symmetry and asymmetry in real
networks in the future.
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