
symmetryS S

Article

Duality in Geometric Graphs: Vector Graphs,
Kirchhoff Graphs and Maxwell Reciprocal Figures

Tyler Reese, Randy Paffenroth and Joseph D. Fehribach *

Department of Mathematical Sciences, Worcester Polytechnic Institute, 100 Institute Road, Worcester,
MA 01609-2280, USA; tmreese@wpi.edu (T.R.); rcpaffenroth@wpi.edu (R.P.)
* Correspondence: bach@wpi.edu; Tel.: +1-508-831-5069

Academic Editor: Brigitte Servatius
Received: 28 September 2015; Accepted: 17 February 2016; Published: 29 February 2016

Abstract: We compare two mathematical theories that address duality between cycles and vertex-cuts
of graphs in geometric settings. First, we propose a rigorous definition of a new type of graph, vector
graphs. The special case of R2-vector graphs matches the intuitive notion of drawing graphs with
edges taken as vectors. This leads to a discussion of Kirchhoff graphs, as originally presented by
Fehribach, which can be defined independent of any matrix relations. In particular, we present simple
cases in which vector graphs are guaranteed to be Kirchhoff or non-Kirchhoff. Next, we review
Maxwell’s method of drawing reciprocal figures as he presented in 1864, using modern mathematical
language. We then demonstrate cases in which R2-vector graphs defined from Maxwell reciprocals
are “dual” Kirchhoff graphs. Given an example in which Maxwell’s theories are not sufficient to
define vector graphs, we begin to explore other methods of developing dual Kirchhoff graphs.

Keywords: Kirchhoff graphs; geometric graphs; duality; Maxwell reciprocals

1. Introduction

This paper will discuss a newly-defined type of graph: vector graphs. Graphs in which edges are
identified as vectors arise in the theory of Kirchhoff graphs developed by Fehribach [1,2]. Kirchhoff
graphs comprise a special class of vector graphs, which reflect the orthogonal complementarity of the
row and null space of integer matrices. The original development of Kirchhoff graphs was motivated
by the study of chemical reaction networks. Given the stoichiometric matrix of a chemical reaction
network, any Kirchhoff graph for the transpose of that matrix represents a circuit diagram for that
network. Kirchhoff graphs were so-named because they satisfy both the Kirchhoff potential law and
the Kirchhoff current law. The use of Kirchhoff graphs as reaction network diagrams was discussed by
Fehribach [1], as well as by Fishtik, Datta et al. [3–6], who discuss a related graph, the “reaction route
graph”. A number of other graphs have been used in the study of reaction networks; a summary can
be found in [7,8]. Within the context of reaction networks, the vertices of a Kirchhoff graph represent
combinations of component chemical species, whereas the vector edges represent the reaction steps
required to move between these combinations. Therein lies the motivation for developing graphs
with “vector” edges: within a chemical reaction network, the same reaction process can occur given
a number of different initial states of the chemical system. In a graphical representation, taking the
edges corresponding to this reaction to be identical in the vector sense allows us to graphically identify
this similarity. To the authors’ knowledge, graphs with vector edges, where edges identified as the
same vector are considered the same edge, have not been previously well studied.

The primary focus of this paper will be the relationships between Kirchhoff graphs and Maxwell’s
theory of reciprocal figures [9,10]. Both theories deal with geometric graphs in which the length and
direction of each edge are taken into consideration. In particular, this leads to a discussion of a new
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type of geometric duality: Kirchhoff dual graphs. Section 2 presents a rigorous definition of vector
graphs, including explicit examples in the two-dimensional Euclidean plane. After defining the edge,
cycle and cut spaces on this new type of graph, in Section 3, we define and discuss Kirchhoff graphs.
Here, we present some cases in which we are guaranteed that simple vector graphs are either Kirchhoff
or non-Kirchhoff. In order to ease the comparison of the two theories, Section 4 reviews the beginnings
of Maxwell’s reciprocal methods, using modern mathematical language. Section 5 then provides
connections between these two theories and demonstrates that in general, Maxwell reciprocals can
lead to pairs of Kirchhoff graphs (in R2), which are dual to each other. Given examples in which these
methods no longer agree, Section 6 moves beyond Maxwell’s reciprocals and begins to explore other
methods of identifying Kirchhoff duals.

2. Vector Graphs

Kirchhoff graphs are distinctive among all graphs in that their edges are identified as vectors.
In this section, we first give an abstract definition of this class of graphs, vector graphs, then
present concrete examples which are both useful in applications and have motivated these ideas.
These definitions may seem opaque upon first reading; subsequent examples will be used to illustrate
the intuition behind these abstract notions. Speaking generally, vector graphs are graphs with edges
identified as vectors, which satisfy the vector space axioms. The following discussion makes this
idea exact.

Let D = (V(D), E(D)) be a finite directed multi-graph with vertex set V(D) = {v1, . . . , vp}
and edge set E(D) = {e1, . . . , en}. A cycle L of D is an alternating sequence of vertices and edges
L = vL1(eL1)vL2(eL2) . . . vLk(eLk)vLk+1 , where vLk+1 = vL1 and edge eLj is directed between vertices
vLj and vLj+1 . (We allow that cycle L traverses any edge or vertex of D more than once, and edges may
be traversed in either direction, independent of orientation. Some authors would instead refer to this
as a “closed walk” in graph D.) We say edge eLj is oriented as L when vLj vLj+1 = eLj ; otherwise, when
vLj+1 vLj = eLj , eLj is not oriented as L [11]. L can also be written as L = (±eL1)(±eL2) · · · (±eLk)

(where +, respectively−, is chosen if eLk is oriented, respectively not oriented, as L). Let F be a vector
space with zero element 0 and S = {s1, . . . , sm} be a set of m non-zero vectors in F.

Definition 1. Given a multi-digraph D and some set S ⊂ F as above, a (D, S)-vector assignment
is a surjective map, ϕ : E(D) → S, which assigns to each edge ei ∈ E(D) some element sj ∈ S.
We will notate ϕ : ei 7→ sj as ϕ(ei) = sj. A (D, S)-vector assignment is consistent if for any cycle
L = (±eL1)(±eL2) · · · (±eLk) in D, then±ϕ(eL1)±ϕ(eL2)± · · · ±ϕ(eLk) = 0 in F.

Definition 2. A vector graph D = (D,ϕ) consists of a multi-digraph D, together with a (D, S)-vector
assignment ϕ that is consistent. A vector graph has a natural set of vertices V(D) = {v1, . . . , vp}
and edges {e1, . . . , en} (where vi ∈ V(D) 7→ vi ∈ V(D); ei in D 7→ ei in D). Two edges ei, ej of D
are identified if ϕ(ei) = ϕ(ej); otherwise, they are distinct. E(D) is now used to denote the set of
distinct edges in D, meaning |E(D)| = |S| (ϕ is surjective).

Remark 1. The underlying vector space F and set of vectors S are pivotal in the definition of a vector
graph, though not included in the notation (D,ϕ), as they are implicit by the inclusion of ϕ. We will
sometimes refer to a vector graph as an F-vector graph to make clear the ambient space F of vectors;
for example, R2-vector graphs will be detailed below in Section 2.1.

Remark 2. Under this definition, a vector graph must maintain the vector space axioms of F.
For example, let D = (D,ϕ) be a vector graph where (e1)(e2)(e3)(e4) is a cycle in D and ϕ(ei) = si

for 1 ≤ i ≤ 4. Then, for example, if the vectors of S satisfy s1 = −s3 in F, it must be the case that
s2 = −s4 in F, as well.
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The two-dimensional Euclidean plane is a natural space in which we visualize both graphs and
vectors; therefore, the next section is dedicated to an explicit description of vector graphs in the plane.

2.1. Vector Graphs in the Plane

We may choose vector space F = R2, so that each si ∈ S is a two-space vector. Then, given
multi-digraph D and (D, S)-vector assignment ϕ, if D = (D,ϕ) is a vector graph, D can be drawn in
the plane where each edge ei is drawn as its assigned vector sj. This is guaranteed by the consistency
of vector assignment ϕ. In such a drawing, identified edges in D are represented by identical vectors
in the plane. Thus, R2-vector graphs may be considered as geometric graphs constructed on vector
edges. Conversely, any drawing of a digraph in R2 in which edges are taken as vectors, those with the
same length and direction are considered identical, defines an R2-vector graph.

Remark 3. Herein lies the intuition behind requiring ϕ to be consistent; any graph drawn on vector
edges gives a well-defined vector graph. For instance, let D be a graph drawn on vector edges with
cycle (e1)(e2)(−e3)(−e4). If e1 and e3 are identical vectors, edges e2 and e4 are then forced to be
identical, as well. The definition of vector graphs maintains such forced identifications through the
consistency of ϕ.

All vector graphs illustrated in this paper will be shown as R2-vector graphs: points connected by
vectors in two-space. For simplicity, we will omit Euclidean axes, but label all vector edges with labels
si to make clear which edges are identified. Although vector graphs will always be presented in the
plane, these graphs are not inherently two-dimensional. In fact, for applications, it can be advantageous
to consider Rn-vector graphs, where two-space representations can arise as plane projections of these
higher dimensional objects.

Example 1. Consider a simple digraph, D = (V(D), E(D)), where:

V(D) = {v1, v2, v3, v4} E(D) = {e1 = v1v4, e2 = v4v3, e3 = v2v3, e4 = v1v2, e5 = v1v3, e6 = v2v4}

Take F = R2 and S = {s1 = [0, 2], s2 = [2, 0], s3 = [2, 2], s4 = [−2, 2]}. Let ϕ be the following
(D, S)-vector assignment:

e1 7→ s1 e2 7→ s2 e3 7→ s1 e4 7→ s2 e5 7→ s3 e6 7→ s4

One may verify that ϕ is consistent. For example, (e1)(−e6)(−e4) is a cycle in D and:

ϕ(e1)−ϕ(e6)−ϕ(e4) = s1− s4− s2 = [0, 2]− [−2, 2]− [2, 0] = [(0+ 2− 2), (2− 2+ 0)] = [0, 0] = 0 ∈ R2

Therefore, D = (D,ϕ) is a vector graph, and D can be drawn in the plane where each edge is
drawn as (and labeled by) its assigned vector sj, as shown in Figure 1.

v1 v2

v3v4

s1s1

s2

s3

s2

s4

Figure 1. Vector graph D = (D,ϕ).
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Example 2. Figure 2 displays two vector graphs, A = (D0,ϕ1) and B = (D0,ϕ2), where ϕi is
a (D0, Si)-vector assignment and S1 6= S2. Thus, two different (consistent) (D0,Si)-vector assignments
on the same multi-digraph D0 produce visibly different R2-vector graphs. A is a vector graph on
five vertices with eight distinct edges, whereas B is a vector graph on five vertices with four distinct
edges. By definition, vector graphs are allowed to have multiple edges connecting two vertices.
In an R2-vector graph, all such multiples must be identified with each other; Roman numerals will be
used to indicate the multiples of each edge when drawing vector graphs.

A

s1

s2

s3

s4

s5
s6

s7
s8

s1 s1

s2

s2

s3

s3

s4

s4

B

Figure 2. Two vector graphs generated by different vector assignments on the same multi-digraph.

2.2. The Edge Space of Vector Graphs

In classical graph theory, the edge space of a directed graph D is defined to be the vector space of
functions from E(D) into any scalar field (for example, C as in [11]) with distinct elements−1, 0 and 1.
The standard basis of the edge space is the functions { f1, . . . , fn} where fi(ej) = δi,j (the Kronecker
delta). Therefore, any a in the edge space of D may be written as a = ∑n

i=1 αi fi = [αi]
n
i=1. In

particular, any element of the edge space of D can be represented by a vector in Cn. When considering
vector graphs, which are both directed and allow multiple (identified) edges, we require a scalar field
F that contains Z as a sub-ring (we choose C). Let D = (D,ϕ) be a vector graph as above: in particular,
|V(D)| = |V(D)| = p, |E(D)| = n and |S| = |E(D)| = m.

Definition 3. The edge space of vector graph D, denoted by Ce(D), is the complex vector space of
all functions from E(D) into C; that is, from the set of distinct edges of D into C. For any subset
S1 = {s(1,1), . . . , s(1,k)} of distinct edges in E(D) and any G ∈ Ce(D), take G(S1) = ∑k

i=1 G(s(1,i)).

Lemma 4. Given D as in Definition 3, dim(Ce(D)) = m.

Proof. For each 1 ≤ i ≤ m, let Ei ∈ Ce(D) be the function defined by Ei(sj) = δi,j. In Ce(D), the
zero element, 0̄, is the function that assigns value zero to each distinct si ∈ E(D). If there exist scalars
{γ1, . . . , γm}, such that γ1E1 + . . . γmEm = 0̄, then, since Ei(sj) = δi,j, for each i,

0 = 0(si) = (γ1E1 + . . . γmEm)(si) = γiEi(si) = γi

Therefore E1 . . . Em are linearly independent in Ce(D). Furthermore, let G ∈ Ce(D) be arbitrary, such
that G : si 7→ yi ∈ C. Then, G = ∑m

i=1 yiEi, meaning E1 . . . Em span Ce(D), as well. Therefore,
E1 . . . Em are a basis of Ce(D) and dim(Ce(D)) = m.

We call {E1 . . . Em} the standard basis of Ce(D) and introduce the inner product under
which this basis is orthonormal. If G1 = ∑m

i=1 βiEi and G2 = ∑m
i=1 biEi in Ce(D), then define〈

G1,G2

〉
Ce(D)

:= ∑m
i=1 βibi. We can represent each G ∈ Ce(D) as a vector in Cm. In particular,
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given G = ∑m
i=1 βiEi represent G by [βi]

m
1 = [β1, . . . , βm] ∈ Cm, then for any G1, G2 as above,〈

G1,G2

〉
Ce(D)

= ∑m
i=1 βib̄i =

〈
[βi]

m
1 , [bi]

m
1

〉
Cm

. Next, we consider two special subspaces of Ce(D).

2.2.1. The Cycle Space

Let L = vL1(eL1)vL2 . . . vLk(eLk)vLk+1 be any cycle in vector graph D. L can be identified with
an element zL ∈ Ce(D). As zL = ∑m

i=1 zL(si)Ei, it suffices to define zL(si) for each si ∈ E(D).
Namely, for each distinct edge si ∈ E(D), define:

O(+)
L (si) := |{j : 1 ≤ j ≤ k and vLj vLj+1 = eLj and ϕ(eLj) = si}|

O(−)
L (si) := |{j : 1 ≤ j ≤ k and vLj+1 vLj = eLj and ϕ(eLj) = si}|

For each 1 ≤ i ≤ m, define:

zL(si) := O(+)
L (si)−O

(−)
L (si)

Observe that zL(si) is the net number of times edges identified as si are traversed in L.
This number is positive when more edges identified as si are traversed oriented as L and negative
if more occurrences of si are traversed that are not oriented as L.

Definition 5. Let Z(D) denote the subspace of Ce(D) spanned by the elements zL for all cycles L in
D. Z(D) is the cycle space of D.

Any zL ∈ Ce(D) can be represented as a vector in Cm. We call this vector the characteristic vector of
L, denoted by χ(L). This vector is also sometimes called the cycle vector corresponding to L. The cycle
space of D is the subspace of Cm spanned by the cycle vectors corresponding to all cycles L in D.

2.2.2. The Cut Space

Let P = (V1, V2) be a partition of V(D), such that V1 ∩ V2 = ∅ and V1 ∪ V2 = V(D).
Let E(V1, V2) denote the set of all directed edges in D between V1 and V2. More specifically,

E(V1, V2) = {e in D : e = vivj where vi ∈ V1 and vj ∈ V2 or vi ∈ V2 and vj ∈ V1}

Definition 6. A partition P = (V1, V2) of V(D) as described above is called a cut in D, and E(V1, V2)

denotes the set of cut edges. (Some authors refer to E(V1, V2) as the cut: the edges one would need to
“cut” to separate the vertex sets V1 and V2 in D.)

Any cut P of D is identified with an element uP ∈ Ce(D). Once again, it suffices to define uP(si)

for each si ∈ E(D). Namely, define:

P (+)(si) := |{j : 1 ≤ j ≤ n and ej is directed from V1 to V2 and ϕ(ej) = si}|

P (−)(si) := |{j : 1 ≤ j ≤ n and ej is directed from V2 to V1 and ϕ(ej) = si}|

For each 1 ≤ i ≤ m, define:

uP(si) := P (+)(si)−P (−)(si)

Therefore, uP(si) is the net number of edges identified as si directed from V1 to V2. This number
is positive when more edges identified as si are directed from V1 to V2 and negative if more are directed
from V2 to V1.
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Definition 7. Let U(D) denote the subspace of Ce(D) spanned by the elements uP for all cuts P of D.
U(D) is the cut space of D.

As uP ∈ Ce(D), it can be represented as a vector Λ(P) ∈ Cm. We will refer to this vector as the
cut vector corresponding to P. The cut space of D is the subspace of Cm spanned by the cut vectors
corresponding to all cuts P of D.

2.3. Computing the Cycle Space and Cut Space

The cycle space and cut space of multi-digraph D are defined in a similar way. For example,
any cycle l = vl1(el1)vl2 . . . vlk(elk)vlk+1 has cycle vector χ(l) = [λi]

n
i=1 ∈ Cn where λi is the net

number of times cycle l traverses edge ei. The dimension of the cycle space of D is the dimension of
the subspace of Cn spanned by the elements χ(l) for all cycles l of D.

Observe that if l = vl1(el1)vl2 . . . vlk(elk)vlk+1 is a cycle in D, then there is a corresponding cycle
L = vl1(el1)vl2 . . . vlk(elk)vlk+1 in D. Moreover, the cycle vectors χ(l) ∈ Cn and χ(L) ∈ Cm are
related by the (D, S)-vector assignment ϕ. In particular, we can represent the action of this vector
assignment in matrix form. Define:

T =
[

Ti,j

]
∈ Zn×m where Ti,j =

{
1 if ϕ(ei) = sj

0 Otherwise

Let A be any matrix with n columns. Observe that the j-th column of the product AT is the sum
of all columns of A with index i, such that ϕ(ei) = sj. For example, given any cycle L of D and
its corresponding cycle l in D, one may verify that (using row vectors) χ(L) = χ(l)T. Moreover,
this reduces finding the dimension of Z(D) to an exercise in linear algebra. Let Z(D) represent
the cycle space of multi-digraph D, and let M be any matrix with n columns whose rows span
Z(D) (for example, take the rows of M to be the cycle vectors of some set of fundamental cycles).
Then dim(Z(D)) = Rank(M) and, more importantly,

dim(Z(D)) = Rank(MT)

In particular, it follows that dim(Z(D)) ≤ dim(Z(D)). This inequality can be strict when
nontrivial cycles in D are reduced to null cycles with respect to edge identification or distinct cycles in
D become identified or dependent under ϕ. This will be better illustrated in an example below.

If p = ({v1,1, v1,2, . . . v1,k},{v2,1, . . . v2,p−k}) and P = ({v1,1, v1,2, . . . v1,k},{v2,1, . . . v2,p−k})
are corresponding cuts of D and D, respectively, one may verify that Λ(P) = Λ(p)T. Let
U(D) represent the cut space of D and N be any matrix with n columns whose rows span U(D).
Then dim(U(D)) = Rank(N) and, similarly,

dim(U(D)) = Rank(NT)

Once again, it follows that dim(U(D)) ≤ dim(U(D)). This is best illustrated with an example.

Example 3. Recall the following vector graph D = (D,ϕ) from Example 1.

V(D) = {v1, v2, v3, v4} E(D) = {e1 = v1v4, e2 = v4v3, e3 = v2v3, e4 = v1v2, e5 = v1v3, e6 = v2v4}

ϕ : e1 7→ s1 = [0, 2] e2 7→ s2 = [2, 0] e3 7→ s1 e4 7→ s2 e5 7→ s3 = [2, 2] e6 7→ s4 = [−2, 2]

Then ϕ can be represented by matrix:



Symmetry 2016, 8, 9 7 of 28

T =



1 0 0 0
0 1 0 0
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


One set of fundamental cycles in D is {l1 = v1v4v3v1, l2 = v1v2v3v1, l3 = v1v4v2v1},

so dim(Z(D)) = 3. (Note that D is simple, and we can notate cycles using only the order of
vertices.) Given corresponding cycles {L1, L2, L3} of D, take:

M0 =

χ(l1)

χ(l2)

χ(l3)

 =

1 1 0 0 −1 0
0 0 1 1 −1 0
1 0 0 −1 0 −1

 ; where M0T =

1 1 −1 0
1 1 −1 0
1 −1 0 −1

 =

χ(L1)

χ(L2)

χ(L3)


Therefore, dim(Z(D)) = Rank(M0T) = 2. Observe that the cycle l4 = v1v4v3v2v1 with

χ(l4) = [1, 1,−1,−1, 0, 0] is nontrivial in D. However, the corresponding cycle L4 = v1v2v3v4v1

satisfies χ(L4) = χ(l4)T = [0, 0, 0, 0, 0, 0], meaning that L4 is a null cycle in D.
A set of fundamental cuts for D is {p1 = (v4,{v1, v2, v3}), p2 = (v3,{v1, v2, v4}), p3 =

(v2,{v1, v3, v4})}, so dim(U(D)) = 3. Given corresponding cuts {P1, P2, P3} of D, take:

N0 =

Λ(p1)

Λ(p2)

Λ(p3)

 =

−1 1 0 0 0 −1
0 −1 −1 0 −1 0
0 0 1 −1 0 1

 ; where N0T =

−1 1 0 −1
−1 −1 −1 0
1 −1 0 1

 =

Λ(P1)

Λ(P2)

Λ(P3)


Therefore, dim(U(D)) = Rank(N0T) = 2. Though this vector graph does not contain a cut P in D

satisfying Λ(P) = [0, 0, 0, 0], examples of such cuts (in the form of null vertices) will be shown in later
examples; for instance, the center vertex of vector graph C1 in Figure 4 has cut vector [0, 0, 0, 0].

Remark 4. Observe that these bases were determined by choosing the spanning tree T of D where
V(T ) = V(D) and E(T ) = {e1, e4, e5}.

3. Kirchhoff Graphs

For any vertex vi ∈ V(D), we can choose a cut in D of the form (vi, V(D)− {vi}). In the
special case of such a cut, call the cut vector in Cm the incidence vector of vertex vi, and denote it by
λ(vi). (As we associate each edge with a vector in F and each vertex with a vector in Cm, the authors
recognize the possibility that Kirchhoff graphs may be studied using sheaves on graphs [12]. Such
connections are not explored any further here.) For example, given D as in Figure 3, consider the cut
P = (v1, V(D)− v1). Then, λ(v1) = [1, 1, 1, 0].

v1 v2

v3v4

s1s1

s2

s3

s2

s4

Figure 3. Vector graph D = (D,ϕ).
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Definition 8. A vector graph D is a Kirchhoff graph if and only if for all vertices v ∈ V(D) and all
cycles L of D, 〈

χ(L), λ(v)
〉
C|E(D)|

= 0

If D is an F-vector graph that is also Kirchhoff, we will sometimes call D an F-Kirchhoff graph.

Example 4. Consider the two R2-vector graphs in Figure 4, C1 and C2. We will demonstrate that
one of these vector graphs is a Kirchhoff graph, while the other is not.

s1 s1

s2

s2

s3

s3

s4

s4

s1 s1

s2

s2

s3

s3

s4

s4

s3

s4

v

C

L

C1 2

Figure 4. Two vector graphs, C1 and C2.

It is easy to check that:

Z(C1) = Z(C2) = span
{ [

1 0 −1 −1
]

,
[
0 1 1 −1

] }
For each vertex vi in vector graph C1, λ(vi) ∈ span{[1, 1, 0, 1], [−1, 1,−1, 0]}. Therefore, C1

is a Kirchhoff graph. On the other hand, consider the vertex labeled v in vector graph C2 satisfying
λ(v) = [0, 0, 1,−1]. The cycle labeled L in C2 has cycle vector χ(L) = [0, 1, 1,−1]. Then C2 is not
a Kirchhoff graph, because:〈

λ(v), χ(L)
〉

Ce(C2)
=
〈 [

0 0 1 −1
]

,
[
0 1 1 −1

] 〉
C4

= 2 6= 0

Next, we demonstrate broad cases in which we are guaranteed that a vector graph is either
a Kirchhoff graph or non-Kirchhoff. These results hold independent of the dimension or choice of
vector space F.

3.1. Simple Vector Graphs

Definition 9. A vector graph D = (D,ϕ) is simple if D is a simple digraph (i.e., for all i 6= j, there is
at most one edge directed from vi to vj).

In this section, we will present two general cases of simple vector graphs: one in which we
are guaranteed that the vector graph is Kirchhoff and one in which we are guaranteed the graph is
not Kirchhoff.

Definition 10. Let D = (V(D), E(D)) be a multi-digraph. A vector graph D = (D,ϕ) is general if
for all pairs of edges ei = vi1 vi2 and ej = vj1 vj2 in D,

ϕ(ei) = ϕ(ej) only if vi1 = vj1 and vi2 = vj2

That is, with the exception of multiple edges between the same two vertices, every pair of edges
in a general vector graph is distinct.

Theorem 11. Any simple, general vector graph is a Kirchhoff graph.
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Proof. Given that D has no multiple edges and vector graph D is general, every edge occurring in
vector graph D is distinct. Therefore, |E(D)| = |S|, and ϕ is bijective: its matrix representation
T is some n× n permutation matrix T = P . For any cycle L in D with corresponding cycle l
in D, χ(L) = χ(l)P ∈ Cn. Similarly, for every vertex vi of D with corresponding vertex vi in
D, λ(vi) = λ(vi)P ∈ Cn. Therefore, for any vertex vi and cycle L in vector graph D, because
permutation matrix P is unitary,〈

λ(vi), χ(L)
〉
=
〈

λ(vi)P , χ(l)P
〉
=
〈

λ(vi), χ(l)
〉
= 0

Therefore, D is a Kirchhoff graph. The fact that
〈

λ(vi), χ(l)
〉
= 0 follows from the orthogonality of

the cut space and cycle space of simple digraphs. A proof of this standard graph-theoretic result can
be found in [11].

Next, we present a general class of simple vector graphs, which are not Kirchhoff graphs.
Let D2 = (D,ϕ2) be a simple vector graph (as before, take V(D2) = {v1, . . . , vp} and E(D2) =

{s1, . . . , sm}) in which all edges are distinct except for one pair of identified edges. Without loss of
generality, we may re-label the vectors in set S, so that exactly two edges of D2 are identified as s1, and
for all 2 ≤ i ≤ m, ϕ2 assigns vector si to exactly one edge of D2.

Theorem 12. D2 is a Kirchhoff graph if and only if the two edges identified as s1 are either both bridges in D or
form a directed (oriented) cycle, which is also a set of cut-edges in D.

Proof. As defined above, D2 is a vector graph on p vertices and a total of m + 1 edges. We may
re-label the edges of D so that, without loss of generality, ϕ2(e1) = ϕ2(em+1) = s1: in D2 edges e1

and em+1 are the one pair of identified edges. Since D is a simple digraph, for any vertex vk and any
cycle l of D, 〈

λ(vk), χ(l)
〉
=

m+1

∑
i=1

λ(vk)iχ(l)i = 0 (1)

Considering vector graph D2, we can observe the effects of the pair of identified edges under ϕ2.
For vertex vk in D2 corresponding to vk,

λ(vk)i = λ(vk)i for 2 ≤ i ≤ m and λ(vk)1 = λ(vk)1 + λ(vk)m+1 (2)

Similarly, for any cycle L = vi1 vi2 . . . vi1 in D with corresponding cycle l in D,

χ(L)i = χ(l)i for 2 ≤ i ≤ m and χ(L)1 = χ(l)1 + χ(l)m+1 (3)

Therefore, for any vertex vk and any cycle L of D2:

〈
λ(vk), χ(L)

〉
=

m

∑
i=1

λ(vk)iχ(L)i = λ(vk)1χ(L)1 +
m

∑
i=2

λ(vk)iχ(L)i

=
(

λ(vk)1 + λ(vk)m+1

)(
χ(l)1 + χ(l)m+1

)
+

m

∑
i=2

λ(vk)iχ(l)i by Equations (2) and (3)

Therefore,

〈
λ(vk), χ(L)

〉
=
(

λ(vk)1χ(l)m+1 + λ(vk)m+1χ(l)1

)
+

m+1

∑
i=1

λ(vk)iχ(l)i

=
(

λ(vk)1χ(l)m+1 + λ(vk)m+1χ(l)1

)
+ 0 by Equation (1)
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That is, 〈
λ(vk), χ(L)

〉
= λ(vk)1χ(l)m+1 + λ(vk)m+1χ(l)1 (4)

First, assume that e1em+1 is a directed cycle and set of cut edges in D. Then, every vertex of
D is either incident with neither or both of e1 and em+1. If vk is incident with neither, λ(vk)1 =

λ(vk)m+1 = 0 (and notably, λ(vk)1 = −λ(vk)m+1); if incident with both, λ(vk)1 = −λ(vk)m+1.
Moreover, as directed cycle e1em+1 is a set of cut edges, any cycle l in D must traverse e1 and em+1 the
same net number of times. In particular, χ(l)1 = χ(l)m+1. Therefore, for all vk and l,

λ(vk)1χ(l)m+1 + λ(vk)m+1χ(l)1 = λ(vk)1χ(l)1− λ(vk)1χ(l)1 = 0

By Equation (4),
〈

λ(vk), χ(L)
〉
= 0, and D is a Kirchhoff graph. On the other hand, assume that

both edges identified as s1, e1 and em+1, are bridges in D. Then, given any cycle l in D,

χ(l)1 = χ(l)m+1 = 0 (5)

Thus, for any vertex vk and any cycle L in D2, by Equations (4) and (5):〈
λ(vk), χ(L)

〉
= λ(vk)1χ(l)m+1 + λ(vk)m+1χ(l)1

= λ(vk)1(0) + λ(vk)m+1(0) = 0

Therefore, D2 is a Kirchhoff graph.
Conversely, assume that at least one of e1 and em+1 is not a bridge in D, and either e1em+1 is not

a directed cycle in D or is a directed cycle, but not a cut-set. Assume, without loss of generality, e1 is
not a bridge in D. Then, there exists some cycle l0 in D, such that χ(l0)1 6= 0.

Case 1: e1em+1 is not a directed cycle in D. As D was a simple digraph, e1 and em+1 cannot have the
same initial and terminal vertices. Moreover, because e1em+1 is not a directed cycle in D, there must
exist a vertex vj that is incident to edge em+1, but not edge e1. In particular,

λ(vj)m+1 6= 0 and λ(vj)1 = 0

Then, taking the corresponding vertex vj and cycle L0 in D2, by Equation (4),〈
λ(vj), χ(L0)

〉
= λ(vj)1χ(l0)m+1 + λ(vj)m+1χ(l0)1 = 0 + λ(vj)m+1χ(l0)1

= λ(vj)m+1χ(l0)1 6= 0

Therefore, D2 is not a Kirchhoff graph.

Case 2. e1em+1 is a directed cycle, but not a cut-set in D. Let vi and vj denote the end-vertices of e1

and em+1, so that vie1vjem+1vi is the directed cycle in D. In particular,

λ(vi)1 = 1 and λ(vi)m+1 = −1

As {e1, em} is not a cut-set of D, there exists a vj− vi path P, which does not traverse e1 or em+1.
Now, consider the cycle:

lP = vie1vjPvi

Then, in particular,
χ(lP)1 = 1 and χ(lP)m+1 = 0
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Therefore, by Equation (4):〈
λ(vi), χ(LP)

〉
= λ(vi)1χ(lP)m+1 + λ(vi)m+1χ(lP)1 = 0 + λ(vi)m+1χ(lP)1

= (−1)(1) = −1 6= 0

Therefore, D2 is not a Kirchhoff graph. This completes the proof of the theorem.

Theorems 11 and 12 illustrate that Kirchhoff graphs are a very special class of vector graphs.
While a general simple vector graph is guaranteed to be Kirchhoff, if we change vector assignment ϕ

slightly, and identify only one pair of identical edges, the Kirchhoff property is easily lost.

3.2. Kirchhoff Graphs and Matrices

Of particular interest in applications [1,2] is the discussion of Kirchhoff graphs in relation to
integer-valued matrices. We define (this definition is identical in mathematical content, though
presented in a different form, to that given in [2]) the following:

Definition 13. For a matrix A ∈ Zp×m, a vector graph D is a Kirchhoff graph for A if and only if:

(i) |S| = |E(D)| = m (ii) dim(Z(D)) = dim(Null(A))

(iii) For any cycle L of D, χ(L) ∈ Null(A) (iv) For any v ∈ V(D), λ(v) ∈ Row(A)

In the case that (i)–(iv) are satisfied, we also say that D is a Kirchhoff graph generated by A.

Under this definition, if D is a Kirchhoff graph generated by A, D is also a Kirchhoff graph for
any matrix B that is row-equivalent to A.

Definition 14. Let A ∈ Zp×m be an integer matrix, and suppose Null(A) is the column span of BT

for B ∈ Zk×m. A vector graph D is a Kirchhoff graph generated by Null (A) if D is a Kirchhoff graph
generated by matrix B.

Definition 15. Two Kirchhoff graphs D and D′ are dual Kirchhoff graphs if there exists some matrix
A, such that D is a Kirchhoff graph generated by A, and D′ is a Kirchhoff graph generated by Null(A).
We say each vector graph is a Kirchhoff dual of the other.

One question we will begin to explore in this paper is:

Question 1. Given a Kirchhoff graph D generated by matrix A, can we use vector graph D to construct a vector
graph D′ that is a Kirchhoff graph generated by Null(A), that is, a Kirchhoff dual of D?

Answering this question as “yes” would be an important step towards proving the existence of
a Kirchhoff graph generated by any (arbitrary) integer matrix, one of the primary open problems in the
theory of Kirchhoff graphs [1,2]. This would mean that given any integer matrix A, if one can construct
a Kirchhoff graph for either A or Null(A), then there exists a Kirchhoff graph generated by A.

A natural place to begin exploring this idea of dual Kirchhoff graphs, and in particular dual
R2-Kirchhoff graphs, is the well-developed theory of reciprocal figures of James Clerk Maxwell.
Given a geometric graph satisfying certain properties, Maxwell’s work provides a concrete and
universal method of constructing a reciprocal diagram, where the vertex cuts and cycles in one diagram
correspond exactly with the cycles and vertex cuts in the other. We will begin by presenting
a re-description of Maxwell’s original work in [9] using modern mathematical terms. Given these
foundations, we will describe commonalities between Maxwell figures and Kirchhoff graphs. Cases
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in which Maxwell’s theory is no longer applicable lead us to consider other methods of finding
R2-Kirchhoff duals.

4. Maxwell Reciprocal Figures

James Clerk Maxwell introduced his idea of reciprocal figures in the mid 1860s [9]. He describes
a type of geometric reciprocity, which has applications to mechanical problems. A “frame” is
a geometric system of points connected by straight lines. In order to study equilibrium within
these frames, he suggests we think of the points as mutually acting on each other, with forces in the
direction of the lines adjoining them. Each line is thus endowed with one of two types of forces:
if the force acting between its endpoints draws the points closer together, we call the force a tension,
and if the force tends to separate the points, we call the force a pressure. Maxwell outlines a method
for drawing a diagram of force corresponding to this frame, where every line of the force diagram
represents, in magnitude and direction, the force acting on a line in the frame. Thus, the frame and
its forces are presented in two separate diagrams, henceforth referred to as the frame diagram and the
force diagram. In representing the forces in a separate diagram, Maxwell recognizes the loss of some
interpretability: it is not immediately clear which forces act on which points in the frame. On the other
hand, this method reduces finding the equilibrium of forces to examining whether the force diagram
has closed polygons.

We draw a force diagram, such that each line in the force diagram is parallel to the line on which
it acts in the frame. The lengths of these lines are proportional to the forces acting on the frame. For a
frame that is in equilibrium, when any number of lines meet at a point in the frame, the corresponding
lines in the force diagram form a closed polygon. In certain cases, Maxwell observes, for any lines that
meet in the force diagram, the corresponding lines in the frame form a closed polygon. This is the type
of geometric reciprocity Maxwell desires: two figures are considered “‘reciprocal” if either diagram
can be taken as a frame diagram, and the other represents the system of forces that keeps that frame in
equilibrium. More precisely, in [9], he gives:

Definition 16. Two plane rectilinear figures are reciprocal when they consist of an equal number of
straight lines, so that the corresponding lines that meet in a point in the one figure form a closed
polygon in the other.

The two diagrams in Figure 5 are the original example of reciprocal figures as presented by
Maxwell [9]. Note that the same letters are used to label corresponding (parallel) lines in the frame
diagram and the force diagram.

A

B

C

R

Q

P
p

q

r

b

a

c

Figure 5. Maxwell’s reciprocal figures as presented in [9]. Corresponding parallel edges are labeled
with the same letter; capitalized in the frame diagram and lower-case in the force diagram.

Given that the frame is in equilibrium, we may draw the force diagram as outlined below. For
convenience, refer to points of the frame by the labels of the lines incident to it. For example, the center
point in the frame diagram is PQR.
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(1) Begin by drawing line p in the force diagram, parallel to line P in the frame. Choose a length for
this line that represents the magnitude of the force acting along P. Although the length of this first
edge is an arbitrary choice, once the length of line p has been fixed, the lengths of all other lines in the
force diagram are determined.
(2) The forces acting along lines P, Q and R in the frame are in equilibrium. Therefore, in the force
diagram, draw from one endpoint of p a line parallel to Q and from the other endpoint of p a line
parallel to R. Thus, form a (closed) triangle pqr in the force diagram, representing the equilibrium of
forces acting on point PQR. Steps (1) and (2) are illustrated in Figure 6. Note that once we fixed the
length of edge p, the lengths of q and r are therefore predetermined and represent the magnitude of
the forces acting on Q and R.

p
p p

(R)

(Q)

r

q

(1.) (2.)

Figure 6. Steps (1) and (2).

(3) The other end of line P in the frame diagram meets lines B and C at a point. As the forces at point
PBC are in equilibrium, draw a triangle in the force diagram with p as one side and lines parallel to B
and C as the others. This can be done in one of two ways, illustrated in Figure 7.

p

q

r

p

q

r

(B)

(B)(C)

(C)

Figure 7. Two possible choices for Step (3).

Only one of these triangles belongs in the force diagram. As the force diagram is the reciprocal
figure of the frame, look to the frame diagram to determine which of these two choices is correct. The
endpoints of line p in the force diagram correspond to closed polygons in the frame diagram: namely,
those polygons that contain P as an edge. That is, the endpoints of p in the force diagram correspond
to polygons PRB and PQC. As PRB is a closed polygon in the frame diagram, line b in the force
diagram (parallel to B) must meet lines r and p in a point. Similarly, since PQC is a closed polygon in
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the frame diagram, line c in the force diagram (parallel to C) must meet lines q and c in a point. This
corresponds to choosing the first case shown in Figure 7.
(4) Consider the equilibrium of forces at point QCA in the frame diagram. Two of the corresponding
lines of force, q and c, have already been determined in the force diagram. Therefore, the only choice for
line a (parallel to A) in the force diagram must complete triangle qca. Step (4) is illustrated in Figure 8.

p

q

r

b

a

c
p

q

r

b

c

Figure 8. Step (4).

Remark 5. We can use an alternate notation to label the frame and force diagrams, known as
Bow’s notation or interval notation. In this method, we label regions of the frame diagram and the
corresponding vertices in the force diagram with the same label. A full description of this method can
be found in [10].

Maxwell’s reciprocal figures are, in fact, geometric graphs that are dual to one another. Therefore
of particular interest to us is Maxwell’s description of diagrams, which have reciprocal figures: namely,
plane projections of (closed) polyhedra. Consider a closed polyhedron P as the region bounded by
some (finite) number of intersecting planes, {Mi}.

(1) Let N1, . . . , Nn be the normal vectors to planes M1, . . . Mn. Choose a plane of projection, M,
that satisfies:

(a) M does not intersect the closed polyhedron P .
(b) For all 1 ≤ i ≤ n, a line through normal vector Ni of plane Mi intersects plane M.

The standard plane projection of polyhedron P onto plane M gives one of the two figures.
Now, construct a second polyhedron P ′, which, with respect to some paraboloid of revolution, is a
geometric reciprocal to the first polyhedron. The projection of P ′ onto plane of projection M is then
a reciprocal figure of the projection of P onto M. These two figures are reciprocal in the sense that
corresponding lines are perpendicular to each other. One may obtain reciprocal figures with parallel
orientation simply by rotating one figure by 90 degrees in the plane. Construct P ′ as follows:

(2) Let z0 be a fixed-point in three-space that does not lie in M, which we will call the origin.
The line perpendicular to plane of projection M that passes through point z0 will be called the axis,
denoted by z. Lastly, let zM be the point of intersection of line z with plane M.

(3) For each 1 ≤ k ≤ n, draw a line that is normal to plane face Mk of P and passes through
point z0. This line will intersect (projection) plane M at a unique point, call it mk. Each point mk may
be thought of as the “projection” of face Mk onto plane M.

(4) For each 1 ≤ k ≤ n, let zk be the point of intersection of axis z with face Mk. This intersection
always exists, since we chose M which is not parallel to any of the normal vectors Nk (and z is a normal
vector of M). Let dk be the (three-space) vector zMzk. That is, dk is the vector between the intersection
points of z with M and Mk. Ultimately, let:

pk = mk− dk
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We will call this point in space pk the “point corresponding to face Mk of the polyhedron P”.
Steps 2–4 of finding a point pk corresponding to a particular face Mk are illustrated in Figure 9.

Mk

z0

zM M

z k

mk

z

pk

dk

-dk

Figure 9. Finding a point pk corresponding to a particular face Mk.

In this way, we determine n points p1, · · · , pn corresponding to the faces M1, · · ·Mn of P .
These points form the vertices of polyhedron P ′.

(5) For any two faces Mi and Mj that meet in an edge in polyhedron P , draw a line between the
corresponding points pi and pj. These new lines give us the edges of polyhedron P ′.

If we let Mi Mj denote the edge at the intersection of planes Mi and Mj and pi pj denote the line
joining the corresponding points, one may easily check geometrically that the projection of line Mi Mj

onto M is perpendicular to the projection of line pi pj onto M. In this way, the projection of P ′ onto M
produces a figure, every line of which is perpendicular to the projection of the corresponding line of P
onto M. What is more, for any lines that meet at a point in one projection, the corresponding lines
form a closed polygon in the other projection. That is, the projection onto M of P and P ′ forms a pair
of reciprocal figures in the sense of Maxwell.

5. Maxwell Reciprocal Figures and Kirchhoff Graphs

Through his theory of reciprocal figures, Maxwell deals with a pair of geometric graphs in
which the vertex-cuts of one graph correspond to the cycles in the other, and vice versa. In this
section, we discuss the relationship between Maxwell’s figures, R2-Kirchhoff graphs and, particularly,
R2-Kirchhoff duals. To make a connection between these Maxwell figures and Kirchhoff graphs, we
define an R2 vector graph corresponding to a given Maxwell diagram. First, we define a pair of
embedded digraphs corresponding to Maxwell figures and then derive vector graphs accordingly.

Label the edges of the frame diagram as ej and the corresponding (parallel) edges of the force
diagram as fj. We will adopt notation that indexes both vertices and cycles by these edge labels. Let
{ei, ej, ek} denote the vertex incident to edges ei, ej and ek, and use standard cycle notation for simple
graphs, fi fj fk. Observe that if fi fj fk is a cycle in the force diagram, there is a vertex of the form
{ei, ej, ek} in the frame diagram, and vice versa. By arbitrarily assigning directions to each edge in
the frame diagram, construct a corresponding plane-embedded digraph, H. We can then construct
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a plane-embedded digraph corresponding to the force diagram, H′, by carefully assigning directions
to each edge fi. In particular, assign directions, such that for each cycle fi fj fk . . . in the force diagram,

χ( fi fj fk . . . ) = λ({ei, ej, ek, . . . }) (6)

Finally, derive a pair of vector graphs, D and D′, from H and H′ by identifying pairs of geometric
edges with the same length and direction (i.e., the same two-space vector). Re-label all edges (with
labels {si} in D and {ti} in D′) to reflect this edge-identification. One may verify that the result is
two R2-vector graphs derived from the original pair of Maxwell figures.

Definition 17. Let D and D′ be the pair of R2-vector graphs defined above. We say that D and D′

are a pair of corresponding R2-vector graphs to the Maxwell figures. Note that we say “a pair”, as
there are many such sets of corresponding vector graphs, depending on the arbitrary assignment of
directions to edges in the frame diagram.

Example 5. Figure 10 displays the Maxwell reciprocal figures as in Figure 5, now re-labeled as
described above.

e1

e4

e3

e6

e2
e5

f4 f1

f3

f6 f2
f5

Figure 10. Maxwell reciprocal figures.

Figure 11 illustrates one pair of R2-vector graphs corresponding to these Maxwell reciprocals.
In this example, the re-labeling of vector edges seems to be trivial. An example in which this process is
nontrivial appears at the end of this section. Taking:

A =

1 0 1 1 0 0
0 1 1 0 0 1
0 0 0 −1 1 1

 and B =

1 0 0 −1 −1 0
0 1 0 0 1 −1
0 0 1 −1 0 −1



t1

t2

t3

t4

t5
t6

s1

s2

s3

s4

s5

s6

D'D

Figure 11. A pair of corresponding R2-vector graphs.



Symmetry 2016, 8, 9 17 of 28

It is easy to verify that D is a Kirchhoff graph generated by A. Moreover, Null(A) is the column
span of BT , and most importantly, D′ is a Kirchhoff graph generated by B. Beginning with Maxwell
reciprocal diagrams, we have arbitrarily assigned directions to one diagram, then consistently assigned
directions to the other diagram. The result is two R2-vector graphs that are both Kirchhoff and indeed
are each others’ Kirchhoff dual.

The observation above is actually one example of more general results. Let G be a geometric
(simple) graph, which has a reciprocal figure in the sense of Maxwell.

Lemma 18. If no pair of edges of G is parallel in the plane, then any vector graph corresponding to G is
a Kirchhoff graph.

Proof. Let D be any vector graph derived by assigning directions to each edge in G, and let θ(si)

be the angle vector si makes with the positive x-axis. Then, because no edges of G were parallel in
the plane, every pair of vectors si, sj for D satisfies θ(si) 6= θ(sj). That is, each edge ei is assigned a
distinct two-space vector, and D is a general vector graph. Therefore as D is also simple, D is Kirchhoff
by Theorem 11.

Now, let G and G′ be a pair of Maxwell reciprocal figures and D and D′ be any pair of R2-vector
graphs corresponding to G and G′.

Theorem 19. If G has no parallel edges in the plane, both D and D′ are Kirchhoff graphs. Moreover, for
any matrix A, such that D is a Kirchhoff graph generated by A, D′ is generated by Null(A): D and D′ are
Kirchhoff duals.

Proof. Since G has no parallel edges in the plane, its Maxwell reciprocal G′ also has no pair of parallel
edges. Therefore, both D and D′ are Kirchhoff graphs by Lemma 18. Both D and D′ are general vector
graphs; therefore, in Step (4) above, we use the following simple re-labeling:

ei 7→ si and fi 7→ ti for all i

For any matrix A, such that D is generated by A, the fact that D′ is generated by Null(A) follows
from Equation (6).

Remark 6. Lemma 18 and Theorem 19 above demonstrate that any Maxwell frame diagram without
parallel edges leads to a number of pairs of dual R2-Kirchhoff graphs. This means that most Maxwell
diagrams will lead directly to pairs of Kirchhoff duals: given a randomly-chosen closed polyhedron,
a randomly-chosen plane projection will lead to a frame diagram with no parallel edges.

Though Remark 6 demonstrates that there is significant overlap between Maxwell reciprocals
and simple R2-Kirchhoff duals, arguably, the cases that make vector graphs interesting are those
in which vector edges are identified. The connection between Maxwell figures and R2-Kirchhoff
graphs becomes considerably more delicate when considering geometric graphs with parallel edges.
The care with which the polyhedron and projection must be constructed in the following example,
however, demonstrates that, in some sense, these situations arise as particular special cases of general
Maxwell diagrams.

Example 6. In this example, we explicitly construct a graph G with the following properties:
(1) When considered as a geometric graph, G has a Maxwell reciprocal, G′.
(2) There exists an R2-vector graph G corresponding to G that is not Kirchhoff.
(3) Any R2-vector graph G′ corresponding to G′ is Kirchhoff.
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Consider the following system of five planes in R3:

−x + z = 0 − x + 3y− 2z = 0 y + z = 0 5x− y + 4z = 0 z = 0 (7)

The three-dimensional region bounded by these five planes forms a closed, bounded polyhedron
in R3, as illustrated in Figure 12.

0
1

2
3

4

−2

0

2
4
0

0.5

1

1.5

2

(3,−1,0)(3,−1,0)(3,−1,0)

(4,4,0)(4,4,0)(4,4,0)

(2,2,2)(2,2,2)

(0,0,0)(0,0,0)(0,0,0)(0,0,0)(0,0,0)

(0,4,0)(0,4,0)(0,4,0)

Student Version of MATLAB

Figure 12. Closed polyhedron defined by Equation (7).

The projection of this figure onto the xy-plane has a reciprocal figure in the sense of Maxwell. The
projection of this polyhedron is shown in Figure 13.

Remark 7. This was a very specifically-chosen embedding of this polyhedron, which forces the
projection of two edges to be parallel with the same length in the plane. As these two edges were
not parallel in three-space, a randomly-chosen plane projection of this polyhedron would, in general,
result in a geometric graph having no pair of parallel edges.

0 0.5 1 1.5 2 2.5 3 3.5 4
−1

−0.5

0

0.5

1

1.5

2

2.5

3

3.5

4

(0,0)

(3,−1)

(4,4)(0,4)

(0,0)(0,0)

(2,2)

(4,4)(0,4)

(2,2)

(3,−1)

(0,0)

(3,−1)

(4,4)(0,4)

(0,0)

Student Version of MATLAB

Figure 13. Projection on the xy-plane of the Polyhedron in Figure 12.

Now, consider the projection in Figure 13 as a frame diagram and, being the plane projection of
a convex polyhedron, as shown in Figure 14, construct the associated force diagram.
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e1

e2

e3

e4

e5

e6 e7

e8

f1

f2

f3

f4

f6

f7
f8

f5
G G'

Figure 14. G and G′, Maxwell reciprocals.

The vector graph G shown in Figure 15 is one corresponding vector graph for the frame diagram
G in Figure 14. Every edge in vector graph G has multiplicity one, and each vector edge occurs exactly
once, except for edge s1, which occurs exactly twice. Given that both occurrences of s1 are not bridges
(nor a directed cycle), it follows from Theorem 12 that G is not a Kirchhoff graph. On the other hand,
consider the force diagram G′. It is clear that given any vector graph G′ corresponding to G′, every
pair of vector edges ti, tj satisfies either |ti| 6= |tj| or θ(ti) 6= θ(tj). That is, each edge is assigned
a distinct vector in R2. Therefore, every R2-vector graph corresponding to G′ is general and, thus,
Kirchhoff by Theorem 11.

s1

s1s2

s3

s4

s5

s6

s7

Figure 15. G, a corresponding R2-vector graph for G.

Remark 8. This example illustrates a few important differences. First, not every R2-vector graph
corresponding to a Maxwell figure is a Kirchhoff graph. Second, it is possible that a pair of Maxwell
reciprocals generates a pair of corresponding R2-vector graphs, one of which is Kirchhoff, while the
other is not. These discrepancies arise because the corresponding vector graphs may have differing
numbers of distinct vector edges. When constructing Maxwell’s reciprocal figures, we are guaranteed
that every pair of corresponding edges is parallel to each other. The length of each edge in the reciprocal
figure is prescribed in Maxwell’s construction. However, if two parallel edges in the frame diagram
have the same length, the corresponding edges in the force diagram are parallel, but need not have the
same length. For example, in Figure 14, edges e5 and e7 are parallel and have the same length. In the
reciprocal diagram, as guaranteed by Maxwell, edges f5 and f7 are parallel. However, f5 and f7 have
different lengths.

This is not to suggest that the only Maxwell figures that correspond to dual Kirchhoff graphs
are those with no parallel edges. Symmetry in the frame diagram can lead to symmetry in the force
diagram, which results in a number of identified edges in the corresponding vector graphs.
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Example 7. Consider the pair of Maxwell reciprocal figures in Figure 16 and pair of corresponding
R2-vector graphs in Figure 17.

e1 e2

e3e4

e5

e6

e7

e8

f8

f7

f6

f5

f4

f3f2

f1

Figure 16. A pair of Maxwell reciprocal figures.

s1 s1

s2

s2

s3

s3s4

s4

t2

t2

t1 t1

t3

t3 t4

t4

Figure 17. A pair of corresponding vector graphs.

One may verify that these two R2-vector graphs are both Kirchhoff graphs, generated by matrices
A and B, respectively, where:

A =

[
1 1 1 0
−1 1 0 1

]
and B =

[
1 0 −1 1
0 −1 1 1

]

Moreover, Null(A) = colspan(BT ); these Kirchhoff graphs are, in fact, a pair of Kirchhoff duals.

6. Non-Simple, Non-General and Non-Planar R2-Vector Graphs
Remark 6 and Example 7 illustrate that in many cases, Maxwell reciprocal figures can lead to

pairs of R2-Kirchhoff duals. Example 6, however, demonstrates that these two theories do not always
agree: R2 vector graphs corresponding to a Maxwell figure are not necessarily Kirchhoff when edges
are identified as vectors. Even if the vector graph corresponding to a Maxwell figure is Kirchhoff,
the vector graph corresponding to the Maxwell reciprocal need not be Kirchhoff. Moreover, there are
a number of classes of vector graphs that will never correspond to a Maxwell figure; for instance,
vector graphs with multiple edges and vector graphs that are not the projection of a polyhedron. This
leads us to begin exploring other methods of constructing dual vector graphs, in particular, dual
R2-vector graphs.

6.1. Planar R2-Kirchhoff Graphs

Before considering non-simple Kirchhoff graphs, we first illustrate an alternative method of
constructing the pair of R2-Kirchhoff duals given in Figure 17, based on planarity. Rather than Maxwell
reciprocals, we consider very specific embeddings of digraphs, which are dual in the standard sense.

Example 8. Begin with the first vector graph in Figure 17, D. Next, construct a dual R2-vector graph,
D′, for D, as follows. First, view D as a standard (planar) directed graph, and form the standard dual
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graph (we will use the convention of assigning directions to edges in D′ by traversing cycles in D in
a clockwise orientation). For each edge labeled si in D, we draw a corresponding edge in D′, which we
label as ti. This process is illustrated in Figure 18, and leads to the following:

Question 2. Can we position/embed the vertices of D′ in R2, such that for each j, all copies of every edge with
label tj are identical vectors in R2?

We see that in the case of vector graph D, the answer to this question is “yes”. In particular, we
can arrange vector graph D′ as shown in Figures 19. Observe that this is precisely the R2-vector graph
D′ corresponding to Maxwell reciprocal G′ in Example 7.

Therefore, in the example above, much like the standard case of plane-embedded digraphs,
one can interchange the roles of faces and vertices to find Kirchhoff duals. Moreover, this method
can address Kirchhoff graphs with multiple edges: multiple vector edges are replaced by consecutive
(identical) vector edges in the dual R2-vector graph, and vice versa.

Remark 9. This relation between vector edges corresponds to the desired result in reference to matrices.
Non-unit entries in an incidence vector indicate multiple edges, whereas non-unit entries in a cycle
vector indicate consecutive edges. Therefore, replacement of multiple edges by consecutive edges (and
vice versa) causes the cut space and cycle space to interchange roles.

s1 s1

s2

s2

s3

s3s4

s4

t2

t2

t1

t1
t3

t3
t4

t4

Figure 18. The standard dual of D.

t2

t2

t1 t1

t3

t3 t4

t4t2

t2

t1

t1
t3

t3
t4

t4

Figure 19. Arranging vector graph D′.

Example 9. Consider the matrix:

A =

[
2 0 −1
0 2 1

]
where Null(A) = span

{ [
1 −1 2

]T }
The first R2-vector graph in Figure 20 is a Kirchhoff graph D generated by A. We also re-draw

this vector graph in order to better illustrate the method of addressing multiple edges.
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s1 s2

s3 s3

s1 s2
s1 s2

s3 s3

Figure 20. Kirchhoff graph D generated by matrix A.

As before, construct a dual directed graph and arrange the vertices to give a dual R2 vector graph,
shown in Figure 21. Observe that multiple edges in the R2-vector graph result in consecutive edges
in the dual R2-vector graph, and vice versa. One can easily verify that this is an R2-Kirchhoff graph
generated by Null(A).

t1

t2

D'

t1

t2

t3 t3t2

t2

t1

t1

t3 t3

t1

t2

D'

t3

t1

t2

Figure 21. Arranging vector graph D′.

One advantage of using dual methods is graph construction. In some cases, given a matrix A, it
may be relatively straightforward to construct an R2-Kirchhoff graph for Null(A). Using a dual vector
graph method may then lead to an R2-Kirchhoff graph for A without constructing one directly. In the
example above it may not be intuitively clear how to construct an R2-Kirchhoff graph for the matrix
[1,−1, 2]. On the other hand, it is a fairly easy task to construct an R2-Kirchhoff graph with cycle space
spanned by [1,−1, 2], and an R2-Kirchhoff graph for [1,−1, 2] was then obtained via a Kirchhoff dual.

6.2. Non-Planar R2-Kirchhoff Graphs

The planar R2-Kirchhoff graphs given above are not representative of all R2-Kirchhoff graphs,
which need neither be planar nor have a geometric dual. One advantage of Definition 15 is the
opportunity to construct dual R2-Kirchhoff graphs in cases where no dual graph exists under standard
notions. In the following example, we consider H = (K3,3,ϕ), an R2-vector graph representation of
K3,3, and present a Kirchhoff dual, H′. This Kirchhoff dual leads to a few interesting observations:
H′ is an embedding of a digraph, which has a geometric dual, and embedding this geometric dual to
create an R2-vector graph H′′ results in a Kirchhoff graph that is, nearly, the original H.
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Example 10. Consider the vector graphs H shown in Figure 22, and H′ in Figure 23.

s1

s2

s3

s4

s5

s6

s7
s8

s9

Figure 22. An R2-Kirchhoff graph, H = (K3,3,ϕ).

t7

t7 t8

t8

t9t9 t1 t1

t6

t6

t3

t3

t2

t2

t5

t5

t4

t4

Figure 23. Dual R2-Kirchhoff graph, H′.

H is both simple and general. Therefore, by Theorem 11, H is an R2-Kirchhoff graph. H is
an embedding of K3,3, which is non-planar and has no geometric dual. However, H is an R2-Kirchhoff
graph generated by matrix A, where Null(A) = BT . Moreover, vector graph H′ is an R2-Kirchhoff
graph generated by B. That is, H′ is a Kirchhoff dual of H.

A =


−1 1 0 0 0 0 1 0 0
0 −1 1 0 0 0 0 −1 0
0 0 −1 1 0 0 0 0 −1
0 0 0 −1 1 0 −1 0 0
0 0 0 0 −1 1 0 1 0



B =


1 1 1 0 0 0 0 0 −1
0 1 1 1 0 0 −1 0 0
0 0 1 1 1 0 0 1 0
0 0 0 1 1 1 0 0 1


Therefore, although H does not have a dual graph under any standard notions, when taken as

an R2-vector graph, it has a dual in the Kirchhoff sense. Moreover, this Kirchhoff dual H′ arises as
a plane projection of a polyhedron in R3, meaning H′ has a geometric dual. This polyhedron and its
geometric dual are illustrated in Figure 24 (for each edge labeled tj in H′, we label the corresponding
edge as sj in the geometric dual)
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s7

v1 v2

v3

v4v5

v6

v7v8

v9

v10 v11

v12
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s5

s5

s3

s4

s6

s6

s1

s1

s8

s9 s9

s7s8
s3

s4

Figure 24. The polyhedron of H′ and its geometric dual.

In order to construct this geometric dual as an R2-vector graph, H′′, we must embed the vertices
in the plane so that all vector edges with label si are identical. This can be accomplished by, for each
1 ≤ j ≤ 6, mapping the pair of vertices vj and vj+6 to the same point in the plane. This embedding is
illustrated in Figure 25.

v1 v2

v3

v4v5

v6

v7v8

v9

v10 v11

v12

v1 v2

v4v5

v6

v7

v8

v9

v10

v11

v12

v3

v1 v2

v4v5

v6

v7 v8

v9

v10v11

v3
s1

s2
s3

s4

s5

s6

s7

s9

s8

v12

Figure 25. Constructing R2-vector graph H′′.

This R2-vector graph is vector graph H, with every edge doubled. As a result, H′′ is both an
R2-Kirchhoff graph generated by A and a Kirchhoff dual for H′.

By following essentially the reverse process as that outlined in Example 10, we can illustrate
how to directly construct an R2-Kirchhoff dual for K5, the complete graph on five vertices, which is
also non-planar.

Example 11. Consider the R2-vector graph in Figure 26, K = (K5,ϕ), which is a vector graph
constructed from an R2-vector assignment of K5:
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s1 s2

s3

s4

s5

s6

s7

s8 s9

s10

Figure 26. R2-vector graph K = (K5,ϕ).

As an R2-vector graph, K is both simple and general. Therefore, K is Kirchhoff and generated by
matrix A, given below. Moreover, Null(A) is the column span of BT where:

A =


−1 1 0 0 0 0 0 −1 1 0
0 −1 1 0 0 −1 1 0 0 0
0 0 −1 1 0 0 0 0 −1 1
0 0 0 −1 1 0 −1 1 0 0



B =



1 1 0 0 0 −1 0 0 0 0
0 0 1 0 0 1 0 0 0 1
0 0 0 1 1 0 0 0 0 −1
0 0 0 1 0 0 0 1 1 0
0 1 1 0 0 0 0 0 −1 0
0 0 1 1 0 0 −1 0 0 0


Our goal is to construct an R2-Kirchhoff graph generated by B. Rather than attempting to do so

directly from the matrix, we can utilize any R2-Kirchhoff graph generated by A. Clearly, R2-vector
graph K′′, shown in Figure 27, is vector graph K with each vector edge doubled. Therefore, K′′ is
also a Kirchhoff graph for A, and any R2-Kirchhoff dual for K′′ is also a Kirchhoff dual for K. We will
demonstrate that we can use R2-vector graph K′′ to construct a Kirchhoff dual, K′. Clearly, K′′ results
from a plane embedding of a digraph with 20 edges. For a moment, however, suppose that this
digraph had more than five vertices; some of these vertices were then embedded at the same point
when forming R2-vector graph K′′. In particular, consider digraph D as in Figure 28, on 10 vertices
and 20 edges.

s1 s2

s3

s4

s5

s6

s7

s8 s9

s10

Figure 27. R2-vector graph K′′.



Symmetry 2016, 8, 9 26 of 28

v1

v2

v3v4

v5

v6

v7

v8 v9

v10

Figure 28. Digraph D with 10 vertices and 20 edges.

An embedding of D, which, for each 1 ≤ j ≤ 5, maps the pair of vertices vj and vj+5 to the same
point in the plane will produce R2-vector graph K′′. We alternately render digraph D in Figure 29,
labeling edges to indicate which become identical vectors under this embedding. This digraph D is
clearly planar, so we may construct its standard dual, D′. For each edge labeled sj in D, we label
the corresponding edge as tj in D′. Given dual picture D′, shown in Figure 30, we have returned
to Question 2: can we embed the vertices of D′ in R2, such that all directed edges with label tj are
identical vectors? One such embedding of D′ is illustrated in Figure 31, forming an R2-vector graph
K′. More importantly, one may verify that this vector graph K′ is a Kirchhoff graph generated by B.
That is, K′ is a Kirchhoff dual of K = (K5,ϕ), and we have constructed K′ directly from one of its
R2-Kirchhoff duals, K′′.

s2

s3

s4

s1

s3

s4

s5

s5

s1s2
s10

s9s8

s7

s6

s10

s9
s8

s7

s6

Figure 29. Identified edges in digraph D.
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t5 t4

Figure 30. Constructing the dual D′ of digraph D.
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Figure 31. R2-vector graph K′, a Kirchhoff dual of K.

7. Conclusions

In this paper, we have described a new type of graph, a vector graph, allowing us to define the
notion of Kirchhoff graphs without any reference to matrices. In particular, any simple general vector
graph is guaranteed to be Kirchhoff, whereas any simple vector graph having exactly one pair of
identified edges is not Kirchhoff unless both such edges are bridges, or form a directed cycle, which is
a cut set. Similar to R2-Kirchhoff graphs, Maxwell’s reciprocal figures also address cycles and vertex
cuts in graphs having edges with a specified length and direction. Given any Maxwell diagram with
no parallel edges, we showed that any pair of R2-vector graphs corresponding to this diagram and its
reciprocal are a pair of Kirchhoff duals. As a result, most Maxwell figures correspond to many pairs of
dual R2-Kirchhoff graphs. Given R2-Kirchhoff graphs with identified edges, more careful treatment is
required to construct Kirchhoff duals directly. Using R2-vector graph representations of K5 and K3,3,
which have no dual under standard notions, we illustrated R2-vector graphs, which are dual to K5

and K3,3 in the Kirchhoff sense.
Moving forward, there are many unresolved questions in the study of Kirchhoff graphs.

As mentioned above, the overarching open problem is the existence and construction of a Kirchhoff
graph generated by any integer-valued matrix. The following is a (by no means exhaustive) set of
open problems surrounding Kirchhoff graphs, which could lead to an existence proof.

Problem 1. Given any A ∈ Zm×n, determine constants αA, βA ∈ Z, such that there always exists
a Kirchhoff graph D generated by A satisfying αA ≤ |V(D)| ≤ βA. Determining bounds on the
number of vertices required for a Kirchhoff graph generated by A can lead to algorithmic approaches
of Kirchhoff graph construction.

Problem 2. Though a standard multi-digraph is uniquely determined by its incidence matrix,
a Kirchhoff graph is generated by many matrices, and a matrix can generate many Kirchhoff graphs.
Define a matrix-like structure that both uniquely identifies a Kirchhoff graph and reflects which class
of matrices generate this graph.

Problem 3. A unique facet of vector graphs is the existence of vertices that are incident to some edge,
but are null with respect to that vector edge (for example, if vertex v is the initial vertex of some edge
ei and the terminal vertex of edge ej where ϕ(ei) = ϕ(ej)). Determine the properties of matrix A that
require that any Kirchhoff graph generated by A have such null vertices.
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Problem 4. Classify the integer matrices that generate a Kirchhoff graph that is simple.

Problem 5. Determine a canonical or minimal form of Kirchhoff graph that is uniquely determined by
its generating matrices.
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