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Abstract: We prove a rate of convergence for smooth solutions of the Monge-Ampère equation of
a stable, monotone and consistent discretization. We consider the Monge-Ampère equation with
a small low order perturbation. With such a perturbation, we can prove uniqueness of a solution
to the discrete problem and stability of the discrete solution. The discretization considered is then
known to converge to the viscosity solution but no rate of convergence was known.

Keywords: rate of convergence; Monge-Ampère; monotone scheme; smooth solution

MSC: Primary: 65N12, Secondary: 65M06

1. Introduction

We obtain a rate of convergence, in the case of smooth convex solutions, of the finite difference
schemes introduced in [1,2] for the elliptic Monge-Ampère equation

det D2u = f in Ω, u = g on ∂Ω (1)

Here, for a smooth function u, D2u =

(
(∂2u)/(∂xi∂xj)

)
i,j=1,...,d

is the Hessian of u, a symmetric

matrix field. We assume that Ω is a bounded convex domain of Rd, d ≥ 2, g ∈ C(∂Ω) can be
extended to a function g̃ ∈ C(Ω) which is convex in Ω and f > 0 ∈ C(Ω). We consider in this paper
a finite difference scheme Fh(uh) = 0 which is stable, monotone and consistent for the perturbed
Monge-Ampère equation

det D2u + δu = f in Ω, u = g on ∂Ω (2)

Here δ > 0 is a small parameter and, for the discretizations we consider, both the term δu and its
discretization are often omitted by an abuse of notation. The scheme we consider was introduced in [2]
but the approach we take also applies to the one introduced in [1]. The consistency error is O(h2 + dθ)
where h is the spatial resolution and dθ the directional resolution. Our error estimates are in terms
of O(h2 + dθ). The stability of the schemes for smooth solutions is a direct consequence of our error
estimates. See also Remark 3.3 for a proof of stability in the general case, which seems to indicate that
the perturbation δu is needed for the stability of the scheme we consider.

Rate of convergence for smooth solutions were previously established in the context of finite
elements [3–5] or the standard finite difference method [6,7]. The rate of convergence proven in this
paper for a stable, monotone and consistent scheme is a key component of the theory developed
in [7] for the convergence of finite difference discretizations to the Aleksandrov solution of the
Monge-Ampère equation. It follows from the approach taken therein and the results of this paper, that
the discretizations proposed in [1,2] have approximations which converge to the weak solution, as
defined in [8], of an approximate problem to Equation (2), even in the general case where Equation (2)
does not have a smooth solution. For convergence results in the classical sense, the rate of convergence
given here is expected to help establish a rate of convergence for the scheme without a dependence
on the smoothness of the solution. Such a result would eliminate the need for convergence to an
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approximate problem, instead of Equation (2), for the theory developed in [7]. See also [9] for
a different approach.

2. Notations and Preliminaries

We make the usual convention of using the letter C for various constants independent of the
discretization. We make the assumption that Ω = (0, 1)d ⊂ Rd. Let h > 0 denote the mesh size.
We assume without loss of generality that 1/h ∈ Z. Put

Zh = {x = (x1, . . . , xn)
T ∈ Rn : xi/h ∈ Z}

Ωh
0 = Ω ∩Zh, Ωh = Ω ∩Zh, ∂Ωh = ∂Ω ∩Zh = Ωh \Ωh

0

For x ∈ Rd, we denote the maximum norm of x by |x|∞ = maxi=1,...,d |xi|. We will use the notation
|.| for the Euclidean norm.

LetM(Ωh) denote the set of real valued functions defined on Ωh, i.e. the set of mesh functions.
For a subset Th of Ωh, and vh ∈ M(Ωh) we define

|vh|∞,Th = max
x∈Th
|vh(x)|∞

Let v be a continuous function on Ω and let rh(v) denote the unique element ofM(Ωh) defined by

rh(v)(x) = v(x), x ∈ Ωh

We extend the operator rh canonically to vector fields and matrix fields. For a function g defined
on ∂Ω, rh(g) defines the analogous restriction on ∂Ωh.

We are first interested in discrete versions of Equation (1)

Fh(uh)(x) = 0, x ∈ Ωh
0, uh(x) = rh(g)(x), x ∈ ∂Ωh (3)

where Fh denotes a finite difference discretization of Equation (1).

2.1. Consistency

We recall that the consistency error of the scheme is defined as |Fh(rh(u))|∞,Ωh
0

and that the scheme

is consistent if for u ∈ C2(Ω) |Fh(rh(u))|∞,Ωh
0
→ 0 as h → 0. We will assume that the discretization

Fh(uh) = 0 is consistent. For the scheme we consider, the consistency error is given in terms of the
usual spatial resolution h and the directional resolution.

To introduce the directional resolution, we first note that the determinant of the Hessian of
a smooth function is essentially a second order directional derivative. More precisely, if we let W
denote the set of orthogonal bases of Rd, we have [2]

det D2u(x) = min
(ν1,...,νd)∈W

d

∏
i=1

νT
i (D2u(x))νi

|νi|2

where νT
i denotes the transpose of νi.

The local directional resolution at x is defined as

dθ(x) = max
|v|=1

min
αh/x±αh∈Ωh

|v− αh

|αh|
|

We note that as h→ 0, dθ(x)→ 0. The directional resolution dθ is then defined as

dθ = min
x∈Ωh

0

dθ(x)

The directional resolution can also be defined in terms of the angles between vectors. Here we
have followed the approach used in [10].
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Let x0 ∈ Ωh
0 such that

dθ(x0) = min
x∈Ωh

0

dθ(x)

We denote by Wh the set of orthogonal bases of Rd such that (α1, . . . , αd) ∈ Wh if and only if
x0 ± αi ∈ Ωh, ∀i. Let vh be a given a mesh function and let x ∈ Ωh

0, such that x + αi ∈ Ωh but
x − αi /∈ Ωh for some i. We denote by xαi the closest to x point of intersection with ∂Ω of the line
through x and x + αi. We then define vh(x− αi) to be the value obtained by quadratic interpolation of
vh(xαi ), vh(x) and vh(x + αi). Similarly, if x− αi ∈ Ωh but x + αi /∈ Ωh for some i, we define vh(x + αi)

by quadratic interpolation of vh(xαi ), vh(x) and vh(x− αi), where now xαi is the closest to x point of
intersection with ∂Ω of the line through x and x− αi.

We consider the discrete Monge-Ampère operator defined by

M[uh](x) = inf
(α1,...,αd)∈Wh

d

∏
i=1

uh(x + αi)− 2uh(x) + uh(x− αi)

|αi|2
(4)

The operator M[rh(u)] is shown in [2] to be consistent with det D2u(x). We give here a
detailed proof.

By a Taylor series expansion

rh(u)(x + α) = rh(u)(x) + Drh(u)(x) · α +
1
2

αT D2rh(u)(x)α

+
1
6

D(αT D2rh(u)(x)α) · α + O(|α|4)

rh(u)(x− α) = rh(u)(x)− Drh(u)(x) · α +
1
2

αT D2rh(u)(x)α

− 1
6

D(αT D2rh(u)(x)α) · α + O(|α|4)

Thus, using |αi| = O(h) for αi ∈ Rd such that x0 ± αi ∈ Ωh, we have

αT
i D2u(x)αi

|αi|2
=

rh(u)(x + αi)− 2rh(u)(x) + rh(u)(x− αi)

|αi|2
+ O(h2) (5)

Moreover, for v ∈ Rd, |v| = 1, and α ∈ Rd with x0 ± α ∈ Ωh, a direction vector closest to v, i.e.,
α = arg minζ∈Rd ,x0±ζ∈Ωh |v− ζ/|ζ||, we have

(
v +

α

|α|

)T

D2u(x)
(

v− α

|α|

)
= vT D2u(x)v− αT D2u(x)α

|α|2

By definition of α, |v− α/|α|| ≤ dθ. Let us assume that u ∈ C4(Ω) (so that second derivatives of
u are locally bounded). Since |v + α/|α|| ≤ 2, for a constant C > 0 we have |(v + α/|α|)T D2u(x)(v−
α/|α|)| ≤ Cdθ. Thus by Equation (5)

vT D2u(x)v =
rh(u)(x + α)− 2rh(u)(x) + rh(u)(x− α)

|α|2 + O(h2) + O(dθ) (6)

Let x ∈ Ωh
0 and let νh = (ν1, . . . , νd) ∈Wh such that

M[rh(u)](x) =
d

∏
i=1

rh(u)(x + νi)− 2rh(u)(x) + rh(u)(x− νi)

|νi|2
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Thus

M[rh(u)](x) =
d

∏
i=1

νT
i D2u(x)νi

|νi|2
+ O(h2) + O(dθ)

≥ det D2u(x) + Ch2 + Cdθ

It follows that
lim
h→0

M[rh(u)](x) ≥ det D2u(x) (7)

Next, if (ν1, . . . , νd) is a basis of eigenvectors of D2u(x), we know from [2] that det D2u(x) =

∏d
i=1 νT

i D2u(x)νi/|νi|2. We claim that for each h > 0, we can find (µ1, . . . , µd) ∈ Wh(x) such that
|νi/|νi| − µi/|µi|| ≤ dθ for all i. This follows from the observation that for i 6= j, νi/|νi| is obtained
from νj/|νj| by an orthogonal transformation. We recall that orthogonal transformations preserve inner
products and that for µ ∈ Rd such that x± µ ∈ Ωh, the image of µ by a rotation of angle π/2 in a plane
spanned by two axis vectors is a vector µ′ for which x± µ′ ∈ Ωh. Thus having found µ1 such that
|ν1/|ν1| − µ1/|µ1|| ≤ dθ, the other vectors µi, i = 1, . . . , d are obtained by orthogonal transformations.

It then follows from Equation (6) that

det D2u(x) =
d

∏
i=1

rh(u)(x + µi)− 2rh(u)(x) + rh(u)(x− µi)

|µi|2
+ O(h2) + O(dθ)

≥ M[rh(u)](x) + O(h2) + O(dθ)

We conclude that
det D2u(x) ≥ lim

h→0
M[rh(u)](x) (8)

It follows from Equations (7) and (8) that consistency holds for u ∈ C4(Ω).

3. Rate of Convergence

The proof of the rate of convergence is an application of the combined fixed point iterative method
used in [4].

To ensure convergence to a convex solution of Equation (1), it is natural to use a suitable notion of
discrete convexity. We require that at an interior grid point x and for α ∈ Rd such that x0 ± α ∈ Ωh

uh(x + α)− 2uh(x) + uh(x− α) ≥ 0

with the usual assumption of the value of uh(x + α) (resp. uh(x − α)) obtained by quadratic
interpolation of uh(xα), uh(x) and uh(x − α) (resp. uh(xα), uh(x) and uh(x + α)) when x + α /∈ Ωh

(resp. x− α /∈ Ωh). Here we have denoted by xα the closest to x point of intersection with ∂Ω of the
line through x and x− α (resp. the line through x and x + α).

As with [2], the discrete convexity conditions can be combined with a discretization of the
differential operator in a single equation. Recall that x+ = max(x, 0) and define

M+[uh](x) = inf
(α1,...,αd)∈Wh

d

∏
i=1

max
(

uh(x + αi)− 2uh(x) + uh(x− αi)

|αi|2
, 0
)

Put
Fh(uh)(x) = M+[uh](x) + δuh − rh( f )(x)

In practice the term δuh is not used. It makes the discretization proper as defined below.
And guarantees uniqueness of the discrete solution. For consistency, we are forced to consider the
perturbed Equation (2).

The discrete Monge-Ampère equation is given by

M+[uh](x) + δuh − rh( f )(x) = 0, x ∈ Ωh
0

uh(x) = rh(g)(x) on ∂Ωh
(9)
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Let N(x) denote the set of points x± α, α ∈ Wh and let #N(x) denote the cardinality of the set
N(x). We note that the discretization takes the form

Fh(uh)(x) ≡ F̂h(uh(x), uh(y)− uh(x)|y 6=x,y∈N(x))

where for x ∈ Ωh
0, F̂h is a real valued map defined on R×R#N(x). For convenience we do not write

explicitly the dependence of F̂h on x.
A scheme is proper if there is δ > 0 such that for x ∈ Ωh

0 and for all a0, a1 ∈ R and b ∈ R#N(x),
a0 ≤ a1 implies F̂h(a0, b)− F̂h(a1, b) ≤ δ(a0 − a1).

Thus our scheme is proper and the constant δ > 0 can be chosen independently of h.
The scheme is degenerate elliptic since if it is nondecreasing in each of the variables uh(x) and

uh(y)− uh(x), y ∈ N(x), y 6= x.
A scheme Fh(uh) = 0 is Lipschitz continuous if there is K > 0 such that for all x ∈ Ωh

0 and
(a0, b0), (a1, b1) ∈ R#N(x)+1

|F̂h((a0, b0))− F̂h((a1, b1))| ≤ K|(a0, b0)− (a1, b1)|∞

We claim that our scheme is Lipschitz continuous with Lipschitz constant K = C/h2d.
For (a, b) ∈ R#N(x)+1, we can find r ∈ R2d+1 such that

F̂h((a, b)) = − f (x) + δr0 +
d

∏
i=1

ri + ri+d
h2

If M+[vh](x) = 0 we take ri = 0, i = 1, . . . , 2d. Otherwise we have

M+[vh](x) =
d

∏
i=1

vh(x + αi)− 2vh(x) + vh(x− αi)

|αi|2

for an orthogonal basis (α1, . . . , αd). We then take ri = h2/|αi|2(vh(x + αi) − vh(x)), and ri+d =
h2/|αi|2(vh(x− αi)− vh(x)). In both cases, r0 = vh(x).

Since the map r → ∏d
i=1(ri + ri+d)/h2 is multilinear, F̂h is Lipschitz continuous with Lipschitz

constant max(δ, C/h2d) which we can take as C/h2d for h sufficiently small.
Next we define the mapping

S :M(Ωh)→M(Ωh), S(vh)(x) = vh(x)− νFh(vh)(x) (10)

for ν > 0. We have ([11] Theorem 7)

Lemma 3.1. There exists a positive constant a < 1 such that for all vh, wh ∈ M(Ωh), we have

|S(vh)− S(wh)|∞,Ωh
0
≤ a|vh − wh|∞,Ωh

0

for C0 ≤ ν ≤ C1 where C0 and C1 are positive constants.

The proof of ([11] Theorem 7) shows that under the assumption νK < 1, the constant a takes the
form max(1− νδ, νK). If necessary, by taking ν smaller we may assume that νK < 1/2 and νδ < 1/2.
Thus the constant a takes the form

a = 1− νδ

and since K = C/h2d, we have ν ≤ Ch2d.
We can now state the main result of this paper.

Theorem 3.2. For a solution uh of Equation (9) and for u ∈ C4(Ω) we have

|uh − rh(u)|∞,Ωh
0
≤ C

δ
(h2 + dθ)

for a constant C which is a scalar multiple of the maximum of the derivatives of u up to order 4 on Ω and d.
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We recall that is it is proven in [2], see [11] for details, that Equation (9) has a solution uh which is
a fixed point of the mapping S. We have

|uh − rh(u)|∞,Ωh
0
= |S(uh)− rh(u)|∞,Ωh

0

≤ |S(uh)− S(rh(u))|∞,Ωh
0
+ |S(rh(u))− rh(u)|∞,Ωh

0

≤ a|uh − rh(u)|∞,Ωh
0
+ |S(rh(u))− rh(u)|∞,Ωh

0

= a|uh − rh(u)|∞,Ωh
0
+ ν|Fh(rhu)|∞,Ωh

0

= a|uh − rh(u)|∞,Ωh
0
+ ν|M[rh(u)]− rh(det D2u)|∞,Ωh

0

≤ a|uh − rh(u)|∞,Ωh
0
+ Cν(h2 + dθ)

by the consistency of the scheme, the observation that rh(u) is discrete convex and Equation (2).
The constant C is a consistency error constant and depends on the maximum of derivatives of u up to
order 4 on Ω and d.

We therefore have

|uh − rh(u)|∞,Ωh
0
≤ C

ν

1− a
(h2 + dθ)

=
C
δ
(h2 + dθ)

This completes the proof.

Remark 3.3. The approach in the proof of the previous theorem also gives stability of a solution of Equation (9)
in the general case, when f is uniformly bounded. We have

|uh|∞,Ωh
0
= |S(uh)|∞,Ωh

0
≤ |S(uh)− S(0)|∞,Ωh

0
+ |S(0)|∞,Ωh

0

≤ a|uh|∞,Ωh
0
+ ν| f |∞,Ωh

0

Therefore

|uh|∞,Ωh
0
≤ ν

1− a
| f |∞,Ωh

0
≤ 1

δ
| f |∞,Ωh

0
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