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Abstract:

 By the method of recurrence relations, the time evolution in a local variable in a harmonic chain is obtained. In particular, the autocorrelation function is obtained analytically. Using this result, a number of important dynamical quantities are obtained, including the memory function of the generalized Langevin equation. Also studied are the ergodicity and chaos in a local dynamical variable.
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1. Introduction


A harmonic chain has been a useful model for a variety of dynamical phenomena, such as the lattice vibrations in solids, Brownian motion and diffusion. It has also been a useful model for testing theoretical concepts, such as the thermodynamic limit, irreversibility and ergodicity. One can study these properties in a harmonic chain. In this work, we shall touch on most of these issues analytically.



The dynamics in a chain of nearest-neighbor (nn) coupled monatomic oscillators (defined in Section 3) has been studied in the past almost exclusively by means of normal modes [1]. If there are N oscillators in a chain, the single-particle or individual coordinates of the oscillators [image: there is no content], [image: there is no content], are replaced by the total or collective coordinates [image: there is no content], [image: there is no content]. In the space of the collective coordinates, the “collective” oscillators are no longer coupled. As a result, their motions are simply periodic. Each collective oscillator would have a unique frequency associated with it (if degeneracy due to symmetry could be ignored).



On the one hand, this collective picture is very helpful in understanding the dynamics of a harmonic chain by avoiding what might be a complicated picture due to a set of motions of coupled single particles. If only the collective behavior is required, this approach is certainly sufficient.



On the other hand, if one wishes to know the dynamics of a single oscillator in a chain, the traditional approach becomes cumbersome. Why would one wish to know the dynamics of one oscillator in a chain? There may be a defect in a chain, for example. It may be a heavier or lighter mass than its neighbors’. Diffusivity is attributed to the motions of single oscillators. For these and other physical reasons that will become apparent, there is a need to study how a single oscillator embedded in a chain evolves in time. We shall term it local dynamics to be distinguished from total dynamics.



In the 1980s, a new method of calculating the time evolution in a Hermitian system was developed, known as the method of recurrence relations [2]. It solves the Heisenberg equation of motion for a dynamical variable of physical interest, which may be the momentum of a single particle, the number or current density. Although it was intended to deal with dynamical variables of quantum origin, i.e., operators, it was found to be applicable to classical variables by replacing commutators with Poisson brackets. During the past three decades, this method has been widely applied to a variety of dynamical issues emanating from the electron gas, lattice spins, lattice vibrations and classical fluids. For reviews, see [3,4,5,6,7]. For a partial list of recent papers, see [8,9,10,11,12,13,14,15,16,17,18,19,20,21].



Formally, this method shows what types of solutions are admissible [22]. It provides a deeper insight into the memory function and the Langevin equation. It has also provided a basis from which to developed the ergometric theory of the ergodic hypothesis.



In Section 2, we will briefly introduce the method of recurrence relations, mostly by assertion, referring the proofs to the original sources and review articles. In Section 3, the dynamics of a local variable (a single particle) in an infinite harmonic chain will be solved by the method of recurrence relations. Some useful physical applications will follow to complete this work.




2. Method of Recurrence Relations


Let A be a dynamical variable, e.g., a spin operator, and [image: there is no content] an N-body Hamiltonian. The number of particles N is not restricted initially. The Hamiltonian H must however be Hermitian, which means that there is to be no dissipation in the dynamics of A. The time evolution of A is to be given by the Heisenberg equation of motion:


[image: there is no content]



(1)




with [image: there is no content] and [image: there is no content]. If A is a classical variable, the rhs of Equation (1) is to be replaced by the Poisson brackets.



A formal solution for Equation (1) may be viewed in geometrical terms. Let [image: there is no content] be a vector in an inner product space S of d dimensions. This space is spanned by d basis vectors fk,k=0,1,..d-1,d≥2. These basis vectors are mutually orthogonal:


(fk,fk′)=0ifk′≠k



(2)




where ( , ) denotes an inner product, which defines the space S. Observe that they are time independent. In terms of these, [image: there is no content] may be expressed as:


[image: there is no content]



(3)




where ak,k=0,1,..d-1, is a set of functions or basis functions conjugate to the basis vectors. They carry time dependence.



As t evolves, this vector [image: there is no content] evolves in this space S. Its motion in S is governed by Equation (1), so that it is H specific. Since [image: there is no content], that is [image: there is no content], the “length” of [image: there is no content] in S is an invariant of time. As t evolves, [image: there is no content] may only rotate in S. This means that there is a Bessel equality, which limits what kind of rotation is allowed.



Since both the basis vectors and functions are only formally stated, Equation (3) is not yet useful. One does not know what is d, the dimensionality of S. To make it useful, we need to realize S, an abstract space by defining the inner product in a physically-useful way.



2.1. Kubo Scalar Product


We shall realize S by the Kubo scalar product (KSP) as follows: let X and Y be two vectors in S. The inner product of X and Y is defined as:


[image: there is no content]



(4)




where [image: there is no content], T temperature, [image: there is no content] means an ensemble average, * means Hermitian conjugation and:


[image: there is no content]



(5)







Equation (4) is known as KSP in many body theory [23]. There is a deep physical reason for using KSP to realize S [24]. When realized by KSP, it shall be denoted [image: there is no content].




2.2. Basis Vectors


We have proved that the basis vectors in [image: there is no content] satisfy the following recurrence relation, known as RR I:


fk+1=f˙k+Δkfk-1,k=0,1,2,..,d-1



(6)




where f˙k=i[H,fk],Δk=||fk||/||fk-1||, with [image: there is no content] and [image: there is no content].



If [image: there is no content] in Equation (6), [image: there is no content]. With [image: there is no content] (by choice), [image: there is no content] is obtained and, therewith, [image: there is no content].



Given [image: there is no content], by setting [image: there is no content] in Equation (6), one can calculate [image: there is no content], therewith [image: there is no content]. If proceeding in this manner, [image: there is no content] for some finite value of d giving a finite dimensional [image: there is no content] or [image: there is no content] as [image: there is no content] giving an infinite dimensional [image: there is no content]. By RR I, we can determine d and, thus, generate all of the basis vectors needed to span [image: there is no content] in [image: there is no content] for a particular H. In addition, we can construct the hypersurface σ:


[image: there is no content]



(7)







As we shall see, the dynamics is governed by σ. The Δ’s known as the recurrants are successive ratios of the norms of [image: there is no content]. They are static quantities, so that they are in principle calculable as a function of parameters, such as temperature, wave vectors, etc., for a given H. They collectively define the shape of [image: there is no content], constraining what kind of trajectory is possible for [image: there is no content].




2.3. Basis Functions


If RR I is applied to Equation (1), it yields a recurrence relation for the basis functions: with [image: there is no content],


Δk+1ak+1=-a˙k+ak-1,k=0,1,..d-1



(8)




where a˙k=d/dtak. Equation (8) is known as RR II. It is actually composed of two recurrence relations, one for [image: there is no content] (because of [image: there is no content]) and another for the rest [image: there is no content].



There is an important boundary condition on [image: there is no content]. By Equation (3), [image: there is no content]. Thus, [image: there is no content] and ak(t=0)=0,k≠0. These basis functions are autocorrelation functions. For example, [image: there is no content], etc. Hence, the static and dynamic information is to be contained in them.




2.4. Continued Fractions


If [image: there is no content] is known, the rest of the basis functions can be obtained one by one by RR II. To obtain it, let Lzak(t)=a˜k(z),k=0,1,..d-1, where [image: there is no content] is the Laplace transform operator. The RR II is transformed to:


[image: there is no content]



(9)






a˜k-1=za˜k+Δk+1a˜k+1,k=1,2,..d-1



(10)







From Equation (9), [image: there is no content] is obtained in terms of [image: there is no content]. By setting [image: there is no content] in Equation (10), [image: there is no content] in terms of [image: there is no content]. Proceeding term by term, we obtain the continued fraction form for [image: there is no content]:


[image: there is no content]



(11)







If the hypersurface is determined, the continued fraction may be summable. By taking [image: there is no content] on Equation (11), we can obtain [image: there is no content]:


a0(t)=1/2πi∫ca˜0(z)eztdz,Rez>0



(12)




where by c, we mean that the contour is to be on the right of all singularities contained in the rhs of Equation (11). If [image: there is no content] is thus determined, the rest of the basis functions can be obtained one by one by RR II. Hence, [image: there is no content] (see Equation (3)) is completed solved if formally. This recurrence relation analysis can be implemented for a harmonic chain, described in Section 3.





3. Local Dynamics in a Harmonic Chain


Consider a classical harmonic chain of N equal masses in periodic boundary conditions (N even number, m mass and κ the coupling constant) defined by the Hamiltonian:


H=∑-N/2N/2-1pi2/2m+1/2κ(qi-qi+1)2



(13)




where [image: there is no content] and [image: there is no content] are the momentum and the coordinate of mass m at site i, and sites [image: there is no content] and [image: there is no content] are nns. Let [image: there is no content] the momentum of mass m at Site 0. The time evolution of [image: there is no content] follows from the method of recurrence relations: in units [image: there is no content],


p0(t)=a0(t)p0+a1(t)((q-1+q1)/2-q0)+a2(t)(p-1+p1)+...



(14)







Let HC denote a harmonic chain of N masses defined by Equation (13). It has been shown that for HC, d=N+1 and that there are N recurrants in the hypersurface [25]. If the recurrants are expressed in our dimensionless units, the hypersurface has a symmetric structure in the form: [image: there is no content], [image: there is no content], [image: there is no content], etc. We can conclude that for N oscillators (N even number), [image: there is no content] and [image: there is no content] and [image: there is no content], [image: there is no content], giving a general form:


[image: there is no content]



(15)







If these recurrants are substituted in Equation (11), they will realize Equation (11). If [image: there is no content],


[image: there is no content]



(16)







Taking this limit breaks the front-end symmetry. Equation (11) is summable:


[image: there is no content]



(17)







By taking the inverse transform, see Equation (12), we obtain:


[image: there is no content]



(18)




where J is the Bessel function. This is a known result [26,27]. By RR II, we obtain:


ak(t)=Jk(2t),k=1,2,..



(19)







Therewith, we have obtained the complete time evolution of [image: there is no content] in an infinite HC.



Observe that [image: there is no content]. The vanishing of the autocorrelation function at [image: there is no content] is an indication of irreversibility. It is possible in a Hermitian system only by the thermodynamic limit being taken. This property is an important consideration for the ergodicity of the dynamical variable [image: there is no content], to be considered later [28].



Langevin Dynamics


The equation of motion for A may also be expressed by the generalized Langevin equation [29]:


d/dtA(t)+∫0tM(t-t′)A(t′)dt′=F(t)



(20)




where M and F are the memory function and the random force, resp. They are important quantities in many dynamical issues, most often given phenomenologically or approximately [23]. For an infinite HC, we can provide exact expressions for them.



In obtaining a continued fraction for [image: there is no content], we have introduced [image: there is no content], [image: there is no content]. By convolution, we can determine [image: there is no content]. They are the basis functions for [image: there is no content], a subspace of [image: there is no content], spanned by fk,k=1,2,..d-1. They satisfy RR II with the boundary condition that [image: there is no content] and [image: there is no content] if [image: there is no content], with [image: there is no content]. The hypersurface for this subspace is the same as Equation (7) with [image: there is no content] removed. One can also express [image: there is no content] in a continued fraction:


[image: there is no content]



(21)







The random force is a vector in [image: there is no content]; thus,


[image: there is no content]



(22)







and:


[image: there is no content]



(23)







For the infinite HC, [image: there is no content], summable to:


b˜1(z)=1/2(z2+4-z)



(24)







By the inverse Laplace transform, we obtain:


[image: there is no content]



(25)




and the rest by RR II. Therewith, we have obtained exact expressions for the two Langevin quantities.





4. Dispersion Relation for Harmonic Chain


Equation (11) for [image: there is no content] shows that if d the dimensionality of [image: there is no content] is finite, the continued fraction may be expressed as a ratio of two polynomials in z. For HC, let us denote the lhs of Equation (11) by [image: there is no content] and the rhs of Equation (11) the continued fraction by two polynomials as:


[image: there is no content]



(26)







Since every [image: there is no content] is found to contain [image: there is no content] as a common factor, we express it as:


QN=z(z2+4)qN,N=2,4,6,..



(27)







Below, we list [image: there is no content] and [image: there is no content] for several values of N, sufficient to draw a general conclusion therefrom:

	(a)

	
N=2,σ=(2,2)



[image: there is no content]



[image: there is no content]




	(b)

	
N=4,σ=(2,1,1,2)



[image: there is no content]



[image: there is no content]




	(c)

	
N=6;σ=(2,1,1,1,1,2)



[image: there is no content]



[image: there is no content]




	(d)

	
N=8;σ=(2,1,1,1,1,1,1,2)



[image: there is no content]



[image: there is no content]




	(e)

	
N=10;σ=(2,1,1,1,1,1,1,1,1,2)



[image: there is no content]



[image: there is no content]




	(f)

	
N=12;σ=(2,1,1,1,1,1,1,1,1,1,1,2)



[image: there is no content]



[image: there is no content]









If [image: there is no content], [image: there is no content], the above polynomials have simple expressions for all orders of N:


[image: there is no content]



(28)






qN=sinNα/sin2α,sin2α≠0



(29)







4.1. Zeros of [image: there is no content]


The dispersion relation can be deduced from [image: there is no content] the zeros of [image: there is no content]:


[image: there is no content]



(30)







From Equation (29),


[image: there is no content]



(31)







with [image: there is no content] and [image: there is no content]. Hence,


αk=(π/N)k,k=±1,±2,..±(N/2-1)



(32)







Hence, with k given above,


[image: there is no content]



(33)







One may also write:


[image: there is no content]



(34)







Since [image: there is no content] (see Equation (26)), the prefactor contributes to the zeros of [image: there is no content]. They may be included in Equation (32) if the range of k is made to includes zero and [image: there is no content].




4.2. [image: there is no content] for Finite N


Given the zeros of [image: there is no content], it is now straightforward to obtain [image: there is no content] by Equation (12). For example, if [image: there is no content],


[image: there is no content]



(35)







A general expression would be:


a0(t)=1/N∑kcosωkt



(36)




where:


[image: there is no content]



(37)







[image: there is no content]. Since Equation (36) is a dispersion relation, [image: there is no content] will be termed “wave vectors”.




4.3. [image: there is no content] When [image: there is no content]


If [image: there is no content], the sum in Equation (36) may be converted to an integral:


rhsofEquation(36)=1/2π∫-ππe2itsinθdθ



(38)







The rhs of Equation (38) is an integral representation of [image: there is no content]. Hence, [image: there is no content], the same as Equation (18).



It is worth noting here that the zeros of [image: there is no content] can thus be obtained from Equation (36) by taking [image: there is no content] by the condition:


ωkt=π/2(2n+1),n=0,1,2,..



(39)







If we write [image: there is no content], by Equation (37):


2tk=π(2n+1)/|2sinπk/N|,k/N=(-1/2,1/2)



(40)







Evidently, there are infinitely many zeros in [image: there is no content] [30]. This result will be significant in Section 6.




4.4. [image: there is no content] When N[image: there is no content]


By Equations (26)–(29),


[image: there is no content]



(41)




where V=2sin2α/(z(z2+4))=dα/dz(byz=2isinα). Furthermore:


cosNα/sinNα=1/Nd/dα(logsinNα)












=1/Nd/dα[log(sinNα/sin2α)+logsin2α]



(42)





The second term on the rhs of Equation (42) may be dropped if [image: there is no content]. For the first term, by Equations (28) and (29),


rhsofEquation(42)=dz/dαd/dzlogΠ(z-zk)=dz/dα∑1/(z-zk)



(43)







The prefactor [image: there is no content]. Since [image: there is no content], we can convert the above sum into an integral: writing [image: there is no content],


Ψ(z)=1π∫-π/2π/2dθz-2isinθ=14+z2



(44)







The above result is the same as Equation (17).



The asymptotic results Equations (16) and (17) were obtained by taking the [image: there is no content] limit first on the hypersurface. What is shown in Section 4 is that the same results are also obtained from finite N solutions for [image: there is no content].





5. Ergodicity of Dynamical Variable [image: there is no content]


If A is a variable of a Hermitian system of N particles, [image: there is no content], it is possible to determine whether it is ergodic. According to the ergometric theory of the ergodic hypothesis [31], A is ergodic if [image: there is no content] or ∞, where:


WA=∫0∞rA(t)dt



(45)




where [image: there is no content], the autocorrelation function of A. By Equation (12),


[image: there is no content]



(46)







If [image: there is no content] as [image: there is no content], which is the case of HC, [image: there is no content] on Equation (11) yields an infinite product of the following form:


WA=Δ2×Δ4×...Δ2nΔ1×Δ3×...Δ2n+1,n→∞



(47)







Ordinarily, infinite products are difficult to evaluate, as they seem to require product rules that differ from those for finite products. However, they can be determined by Equation (45) or Equation (46) as illustrated below.



5.1. Infinite Harmonic Chain


If [image: there is no content] of HC, we can determine whether A is ergodic by evaluating Equations (45)–(47). If [image: there is no content], [image: there is no content] (see (16)), and [image: there is no content] (see Equation (18)). Hence, by Equation (45), [image: there is no content].



It was shown that [image: there is no content]; see Equation (17). Hence, by Equation (46), [image: there is no content]. Finally, by σ, we can write down the infinite product:


[image: there is no content]



(48)




in agreement with the previous results. As noted above, computing infinite products is a delicate matter. The order of terms in an infinite product may not be altered, nor the terms themselves. In Equation (48), such a nicety did not enter since all elements are one but one. Compare with another example in Section 5.2 below.




5.2. Infinite Harmonic Chain with One End Attached to a Wall


We shall now change HC defined by Equation (13) slightly. Let the coupling between the oscillators at [image: there is no content] and [image: there is no content] be cut. Furthermore, let the mass of the oscillator at [image: there is no content] be infinitely heavy, so that the oscillator at [image: there is no content] is attached as if to a wall. The rest of the chain is unchanged. The oscillators in this new configuration are labeled [image: there is no content], with one end attached to a wall and the other end free. Finally, let [image: there is no content].



If [image: there is no content], the recurrants are found to have the following form [27,32]:



Δ1=2/1,Δ3=3/2,Δ5=4/3,..Δ2=1/2,Δ4=2/3,Δ6=3/4,...



Evidently, they may be put in the form: [image: there is no content] and Δ2n=n/(n+1),n=1,2,3,... These recurrants imply that for [image: there is no content] [27,32],


[image: there is no content]



(49)






a˜0(z)=1/(z2+4)[1-1/16(z2+4-z)4]



(50)







By Equation (47),


WA=1/2×2/3×3/4×...×n/(n+1)2/1×3/2×4/3×...×(n+1)/n,n→∞



(51)







Each term in the numerator is less than one, while each term in the denominator greater than one. If the terms and the order are preserved, [image: there is no content]. By Equations (45) and (46), it may be tested using Equations (49) and (50). In both cases, we obtain [image: there is no content] verifying the infinite product.



Since [image: there is no content], [image: there is no content] is not ergodic in this chain. For this variable, the phase space is not transitive. If mass at Site 0 is slightly perturbed, the perturbed energy is not delocalized everywhere [33].





6. Harmonic Chain and Logistic Map


The logistic map (LM) is sometimes called the Ising model of chaos for being possibly the simplest model exhibiting chaos [34]. If x is a real number in an interval (0,1), the map is defined by:


f(x)=ax(1-x),x=(0,1)



(52)




where a is a control parameter, a real number limited to [image: there is no content]. Thus, the map is real and bounded as x. If there exists [image: there is no content], such that [image: there is no content], it is termed a fixed point of [image: there is no content]. If [image: there is no content] is an n-fold nested function of f, i.e., [image: there is no content], with [image: there is no content], there may be fixed points for [image: there is no content]. The values of the fixed points and the number of the fixed points will depend on the size of the control parameter a.



If [image: there is no content], there is only one fixed point for any n. There is a remarkable theorem due to Sharkovskii [35] on [image: there is no content] continuous maps on the interval, such as LM. As applied to this map, this theorem says that if [image: there is no content], there are infinitely many fixed points as [image: there is no content]. This implies that a trajectory starting from almost any point in (0,1) is chaotic. At [image: there is no content] (the largest possible value), the fixed points fill the interval [image: there is no content] densely with a unique distribution [image: there is no content], [image: there is no content]. This distribution is known as the invariant density of fixed points, first deduced by Ulam [36,37]:


ρx=1πx(1-x),0<x<1



(53)







The invariant density refers to the spectrum of fixed points in (0,1). The square-root singularity in Equation (53), a branch cut from 0–1, indicates that the spectrum is dense. If μ is a Lebesgue measure, [image: there is no content]. Hence, [image: there is no content].



We wish to see whether [image: there is no content], a distribution of fixed points, bears a relationship to [image: there is no content], the power spectrum of frequencies in HC. For this purpose, consider the following transformations of variables:


x=1/2+1/4ω



(54)







and:


[image: there is no content]



(55)







By substituting Equation (54) in (53), we obtain by Equation (55):


ρω=1π4-ω2,-2<ω<2=0 if otherwise.



(56)







For an infinite HC, [image: there is no content]. By Equation (17), or Equation (44), the rhs of Equation (56) is precisely the power spectrum for [image: there is no content]. Equation (56) shows that the fixed points of LM at [image: there is no content][image: there is no content] correspond to the frequencies of HC.



Since the frequencies in the power spectrum are positive quantities, let us express Equation (54) as:


ω=2|1-2x|,0<x<1



(57)







For [image: there is no content],


[image: there is no content]



(58)






y/2=l/(2N+1),l=1,2..,N



(59)







y being the pre-fixed points of x the fixed points. If Equation (59) is substituted in Equation (57) and y replaced by [image: there is no content]:


[image: there is no content]



(60)







The above is identical to Equation (37), the dispersion relation for HC. In the limit [image: there is no content], both ν and y lie in the same interval [image: there is no content]. This property shows that the pre-fixed points of [image: there is no content] also correspond to the wave vectors of HC.



The correspondence between x and ω and also between y and ν indicate that the iteration dynamics of [image: there is no content] and the time evolution in HC are isomorphic in their local variables. This implies that if a variable in HC is ergodic, a corresponding variable in [image: there is no content] is also ergodic. If the trajectory of an initial value in [image: there is no content] is chaotic, we must also conclude that the trajectory of a local variable in HC must also be chaotic.



Chaos in HC? Let us first examine chaos in [image: there is no content]. According to Sharkovskii, chaos is implied where there are infinitely many periods. By our work, they form a set of uncountable pre-fixed points of Lebesgue measure 1. This results in an aleph cycle, which can never return to the initial point [34]. In an infinite HC, there are also infinitely many periods. See Equation (40). Thus, the HC has the necessary and possibly sufficient property for chaos.



In an infinite HC attached to a wall (see Section 5.2), there is chaos also, as there are infinitely many periods. However, as was already shown, its variables are not ergodic. This indicates that ergodicity is a subtler property than chaos. In a continuous map, there may be chaos, but not ergodicity.




7. Concluding Remarks


In this work, we have dwelt with the dynamics of a monatomic chain with which to illustrate some of the finer points of the dynamics contained in it. This simplest of harmonic chains can be made richer in a variety of ways. One can make one oscillator to have a different mass than its neighbors [25]. It would be a model for an impurity or a defect. One could make it a periodic diatomic chain [8] or even an aperiodic diatomic chain [8]. We are providing a list of recent advances made by the method of recurrence relations on others [38,39,40,41,42,43,44]. For related studies on HC by Fokker–Planck dynamics and non-exponential decay, see [7,45,46].
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