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Abstract: Being able to formally test for symmetry hypotheses is an important topic in many fields,
including environmental and physical sciences. In this paper, one concentrates on a large family of
nonparametric tests of symmetry based on Cramér–von Mises statistics computed from empirical
distribution and characteristic functions. These tests possess the highly desirable property of being
universally consistent in the sense that they detect any kind of departure from symmetry as the
sample size becomes large. The asymptotic behaviour of these test statistics under symmetry
is deduced from the theory of first-order degenerate V-statistics. The issue of computing valid
p-values is tackled using the multiplier bootstrap method suitably adapted to V-statistics, yielding
elegant, easy-to-compute and quick procedures for testing symmetry. A special focus is put on
tests of univariate symmetry, bivariate exchangeability and reflected symmetry; a simulation study
indicates the good sampling properties of these tests. Finally, a framework for testing general
symmetry hypotheses is introduced.

Keywords: characteristic function; Cramér–von Mises functional; exchangeability; multiplier
bootstrap; reflected symmetry; V-statistics

1. Introduction

In many scientific fields, a natural or experimentally-controlled phenomenon is observed and
a dataset is collected. From these observations, one may be interested in testing basic assumptions
with respect to some theoretical model. One of these assumptions that often appears in physical
models is the so-called symmetry hypothesis; see, for example, [1]. In order to validate a model
under investigation, one typically wants to thoroughly test these kinds of hypotheses with the help
of a statistical method.

There are various types of symmetry that need to be distinguished first. The most common
concerns random variables taking values in the space R of real numbers. In this context, a random

variable X ∈ R is said to be symmetric around the origin if X d
= −X, where here and in the sequel, d

=

means equality in distribution. More generally, X is symmetric around a ∈ R if and only if X − a d
=

a− X. For a pair (X, Y) of random variables taking values in R2, many types of symmetry have been

proposed in the literature. The pair (X, Y) is said to be exchangeable if and only if (X, Y) d
= (Y, X).

This definition entails that X and Y have the same distribution. Another notion is reflected symmetry:

(X, Y) is reflection symmetric around (a, b) ∈ R2 if and only if (X − a, Y − b) d
= (a− X, b− Y). This

definition entails in particular the symmetry of X around a and the symmetry of Y around b. While
this paper focuses on the two above-mentioned notions of bivariate symmetry, other definitions have
been proposed, e.g., joint symmetry and spherical symmetry.

In the statistics and probability literature, there are two main ways to characterize the stochastic
behaviour of random variables and random vectors. The most widely used is the distribution
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function approach. In that case, one works with the function P(X ≤ x) in the univariate case and
with the joint distribution P(X ≤ x, Y ≤ y) in the bivariate case. An alternative, yet less popular
approach, uses the so-called characteristic functions associated with random variables and random
vectors. Since one can recover the distribution function of a random variable (or vector) from its
characteristic function, and vice versa, the various hypotheses of symmetry described previously can
equivalently be stated in terms of distribution functions or using characteristic functions. As will be
seen, these two approaches lead to different and competing statistical procedures.

This paper focuses on consistent nonparametric tests of symmetry based on Cramér–von Mises
functionals of empirical distribution and characteristic functions. These tests are attractive since
they do not require any assumptions on the form of the underlying distribution and provide
universally-consistent procedures. In addition, as will be seen, these test statistics for symmetry
can be expressed as V-statistics. This representation allows for the derivation of their asymptotic
behaviour and, most importantly, suggests a resampling method based on the multiplier bootstrap
for the computation of p-values. Compared to permutation methods, which are generally employed
when testing symmetry, this strategy is substantially quicker and provides elegant formulas that
make the tests easy to implement. The main features of this work are the following:

(i) Describe a general family of Cramér–von Mises test statistics for symmetry hypotheses based
on empirical distributions and characteristic functions. In the case of univariate symmetry,
exchangeability and reflected symmetry, some of these statistics have already been proposed
in the literature.

(ii) Deduce the asymptotic behaviour of these test statistics under the null hypothesis upon noting
that they are related to degenerate V-statistics.

(iii) Suggest an efficient alternative to the use of permutations based on the multiplier bootstrap
method adapted to V-statistics.

(iv) Present the results of a simulation study that investigates the properties of the tests under the
null hypothesis, as well as under violations of symmetry hypotheses.

(v) Develop a general framework for testing a broad class of symmetry hypotheses.

The paper is organized as follows. Section 2 provides some results on degenerate V-statistics
and their multiplier versions that will prove useful throughout the paper. Section 3 focuses on tests
of symmetry for random variables, while Section 4 is devoted to tests of bivariate exchangeability
and reflected symmetry. The results of an extensive simulation study are presented and discussed
in Section 5. A unified framework that contains as special cases the univariate and bivariate tests of
symmetry encountered in Sections 3 and 4, but also many other types of symmetry, is developed in
Section 6. Technical arguments are relegated to the Appendix.

2. Some Preliminaries on V-statistics

All of the test statistics for symmetry that will be encountered in this work are related to
first-order degenerate V-statistics. Therefore, their asymptotic behaviour can be derived using results
that one can find, for instance, in the books by [2] and [3]. In what follows, X1, . . . , Xn are identically
distributed independent observations in Rp. Some of the test statistics that will be described are of
the form:

Vn =
1
n

n

∑
j,j′=1

ψ
(

Xj, Xj′
)

(1)

where ψ : Rp×p → R is a symmetric kernel of degree two that is first-order degenerate in the sense
that E{ψ(x1, X2)} = 0 for all x1 ∈ Rp. In that case,

Vn = U(1)
n +

(
n− 1

n

)
n U(2)

n
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where U(1)
n and U(2)

n are the U-statistics:

U(1)
n =

1
n

n

∑
j=1

ψ
(
Xj, Xj

)
and U(2)

n =

(
n
2

)−1

∑
j<j′

ψ
(

Xj, Xj′
)

The following result is a straightforward consequence of Theorem 1, p. 79, in [2].

Proposition 1. If E{ψ2(X1, X2)} < ∞, the statistic Vn converges in distribution to:

E {ψ (X1, X1)}+
∞

∑
κ=1

λκ

(
Z2

κ − 1
)

where (Zκ)∞
κ=1 are independent N(0, 1) random variables and (λκ)∞

κ=1 are the eigenvalues of the mapping
η 7→ E{ψ(·, X2) η(X2)}.

Now, consider the statistic:

Wn =
1
n2

n

∑
j,j′ ,k=1

φ
(

Xj, Xj′ , Xk

)
(2)

where φ : Rp×p×p → R is a kernel of degree three that satisfies the following assumptions:

A1. φ(x1, x2, x3) = φ(x2, x1, x3) for all (x1, x2, x3) ∈ Rp×p×p, i.e., φ is symmetric with respect to its
first two components;

A2. E{φ(x1, X2, x3)} = 0 for all (x1, x3) ∈ Rp×p.

The large-sample behaviour of Wn is stated as a proposition whose proof is deferred to
the Appendix.

Proposition 2. The test statistic Wn is asymptotically equivalent to the V-statistic with degenerate bivariate
kernel Φ(x1, x2) = E{φ(x1, x2, X3)}, i.e.,

Wn =
1
n

n

∑
j,j′=1

Φ
(

Xj, Xj′
)
+ oP(1) (3)

As a consequence, if E{Φ2(X1, X2)} < ∞, then Wn converges in distribution to:

W = E {Φ(X1, X1)}+
∞

∑
κ=1

ζκ

(
Z2

κ − 1
)

where (Zκ)∞
κ=1 are independent N(0, 1) random variables and (ζκ)∞

κ=1 are the eigenvalues of the mapping
η 7→ E{Φ(·, X2) η(X2)}.

As mentioned in the Introduction, the proposed methodology for the computation of p-values
will be based on the multiplier bootstrap. Specifically, a multiplier sample is obtained by generating,
independently of the data, a random sample ξ1, . . . , ξn of independent and identically distributed
random variables, such that E(ξ j) = 0 and var(ξ j) = 1. The suggested multiplier versions of Vn and
Wn are given, respectively, by:

V̂n =
1
n

n

∑
j,j′=1

ξ j ξ j′ ψ
(

Xj, Xj′
)

Ŵn =
1
n2

n

∑
j,j′ ,k=1

ξ j ξ j′ φ
(

Xj, Xj′ , Xk

)
=

1
n

n

∑
j,j′=1

ξ j ξ j′

{
1
n

n

∑
k=1

φ
(

Xj, Xj′ , Xk

)}
(4)
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From a slight adaptation of Theorem 3.1 in [4], which applies to first-order degenerate
U-statistics, one obtains that V̂n is a valid replicate of Vn asymptotically. For Wn, one could show
using arguments similar as those in the proof of Proposition 2 that Ŵn is asymptotically equivalent to:

Ŵ?
n =

1
n

n

∑
j,j′=1

ξ j ξ j′ Φ
(

Xj, Xj′
)

so that the validity of Ŵn to replicate Wn asymptotically can be deduced, as well.
For computational purposes, define the matrices A, A? ∈ Rn×n, such that:

Ajj′ = ψ
(

Xj, Xj′
)

and A?
jj′ =

1
n

n

∑
k=1

φ
(

Xj, Xj′ , Xk

)
Letting 1 = (1, . . . , 1) ∈ Rn and ξ = (ξ1, . . . , ξn), one can then write:

Vn =
1
n

1 A 1>, V̂n =
1
n

ξ A ξ>, Wn =
1
n

1 A? 1> and Ŵn =
1
n

ξ A? ξ>

In practice, the multiplier procedure is repeated B times by generating independent vectors
ξ(1), . . . , ξ(B) of multiplier random variables, i.e., for each b ∈ {1, . . . , B}, ξ(b) = (ξ

(b)
1 , . . . , ξ

(b)
n ). Then,

one computes Vn, V̂(1)
n , . . . , V̂(B)

n and Wn, Ŵ(1)
n , . . . , Ŵ(B)

n using the above formulas. These replicates of
Vn and Wn are very quick to compute since the matrices A and A? need to be evaluated only once
from the data.

3. Tests of Univariate Symmetry

Many tests of univariate symmetry have been proposed over the years. An early contribution
is that of [5] based on a Cramér–von Mises statistic. Tests of symmetry about an unspecified point
have been studied by [6,7]; see also the more recent contribution by [8], where invariant tests based
on the empirical characteristic function are proposed. Extensions of these tests are investigated by [9].
Tests based on kernel density estimation have been investigated by [10,11], where the computation of
p-values relies on the bootstrap. Data-driven smooth tests of symmetry have been proposed by [12].

Here, one focuses on consistent tests based on distribution and characteristic functions in the case
of a known center of symmetry. To this end, let X1, . . . , Xn be independent and identically distributed
copies of a continuous random variable X. For x ∈ R, let P(X ≤ x) = F(x) be the distribution
function of X, and for t ∈ R, let c(t) = E(eitX) =

∫
R eitxdF(x) be its characteristic function. Here

and in the sequel, i2 = −1, and E is the expectation operator. The goal in this section is to describe

test procedures for the null hypothesis Huniv
0 : X − a d

= a− X. One can focus on the case a = 0 only,

i.e., Huniv
0 : X d

= −X. Indeed, the methodology extends easily to the case a 6= 0 by observing that

Huniv
0 : X − a d

= a− X is equivalent to Huniv
0 : X̃ d

= −X̃, where X̃ = X − a, and by working with the
sample of transformed data X̃1, . . . , X̃n, where X̃j = Xj − a for each j ∈ {1, . . . , n}.

The first step is to note that one can write the null hypothesis Huniv
0 : X d

= −X from a distribution
function or a characteristic function point-of-view. If Huniv

0 is true, then F(−x) = P(X ≤ −x) =

P(−X ≤ −x) = P(X ≥ x) = 1 − F(x−) for all x ∈ R and c(t) = E
(
eitX) = E

(
eit(−X)

)
=

E
(

ei(−t)X
)
= c(−t) for all t ∈ R. Hence, the null hypothesis can be written equivalently as:

Huniv
0 : F(−x) = 1− F(x−) ∀x ∈ R;

Huniv
0 : c(t) = c(−t) ∀t ∈ R.
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As a consequence, consistent test statistics can be based either on the empirical version of F or
on the empirical version of c given, respectively, by:

Fn(x) =
1
n

n

∑
j=1

I
(
Xj ≤ x

)
and cn(t) =

1
n

n

∑
j=1

eitXj

Here and in the sequel, I(s) = 1 if the statement s is true and zero otherwise. Natural test
statistics for univariate symmetry are therefore given by:

Vuniv
n = n

∫
R

{
Fn(−x) + Fn(x−)− 1

}2 dx

Wuniv
n = n

∫
R

{
Fn(−x) + Fn(x−)− 1

}2 dFn(x)

Vuniv
n (ω) = n

∫
R
|cn(t)− cn(−t)|2 ω(t)dt

where Fn(x−) = (1/n)∑n
j=1 I(Xj < x) and |z| denotes the modulus of the complex number z. In

the definition of the Cramér–von Mises statistic Wuniv
n , dFn puts mass 1/n at each element of the

sample. This statistic is a special case of the one proposed by [13] when X is continuous. An
asymptotically-equivalent version of this test statistic has been investigated by [14]; see also [5].
According to the author’s knowledge, Vuniv

n has not been investigated yet. The test statistic Vuniv
n (ω)

uses the characteristic function point-of-view and is based on a nonnegative weight function ω

that must be specified by the experimenter. Some examples of weight functions are described in
Section 5.2. The following lemma provides formulas for the computation of these test statistics.

Lemma 3. One has:

Vuniv
n =

1
n

n

∑
j,j′=1

ψuniv
(

Xj, Xj′
)

Wuniv
n =

1
n2

n

∑
j,j′ ,k=1

φuniv
(

Xj, Xj′ , Xk

)
Vuniv

n (ω) =
1
n ∑

j,j′=1
ψuniv

ω

(
Xj, Xj′

)
where ψuniv(x1, x2) = 2 sign(x1) sign(x2) min(|x1|, |x2|),

φuniv(x1, x2, x3) = I {x3 ≤ min(−x1,−x2)} − I {x3 ≤ min(x1,−x2)}
− I {x3 ≤ min(−x1, x2)}+ I {x3 ≤ min(x1, x2)}

and ψuniv
ω (x1, x2) = 4

∫
R sin(tx1) sin(tx2)ω(t)dt.

Since ψuniv(x1,−x2) = −ψuniv(x1, x2) and ψuniv
ω (x1,−x2) = −ψuniv

ω (x1, x2), the fact that X d
= −X

under the null hypothesis entails E{ψuniv(x1, X2)} = 0 and E{ψuniv
ω (x1, X2)} = 0. As a consequence,

Vuniv
n and Vuniv

n (ω) are V-statistics of order two with first-order degeneracy, and their large-sample
behaviour follows from Proposition 1. Note, however, that an additional requirement on ψuniv is
necessary in order that E{ψuniv(X1, X2)

2} < ∞. In particular, it will hold true if the moment of order
two exists.

Since φuniv is symmetric with respect to its first two components and from the fact that
φuniv(x1,−x2, x3) = −φuniv(x1, x2, x3), which entails E{φuniv(x1, X2, x3)} = 0 for all (x1, x3) ∈ R2,
the asymptotic behaviour of Wuniv

n is deduced from Proposition 2. Finally, the multiplier versions of
Vuniv

n , Wuniv
n and Vuniv

n (ω) are derived from the formulas in (4).
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4. Tests of Bivariate Symmetry

While less popular than the univariate symmetry hypothesis, many tests of bivariate symmetry
have been proposed. The earliest contributions come from [15,16], where nonparametric tests were
developed; these tests have been reconsidered by [17]. A test using the empirical distribution function
has been suggested by [18]. An investigation comparing some tests of bivariate symmetry was done
by [19]. Extensions to tests of multivariate symmetry were considered by [20].

In this section, the focus is put on bivariate exchangeability and reflected symmetry. In the
sequel, (X1, Y1), . . . , (Xn, Yn) are independent and identically distributed copies of a continuous
random pair (X, Y). For (x, y) ∈ R2, the joint distribution of (X, Y) is P(X ≤ x, Y ≤ y) = H(x, y),
and for (s, t) ∈ R2, its characteristic function is C(s, t) = E(ei(sX+tY)) =

∫
R2 ei(sx+ty) dH(x, y).

The proposed test statistics will be based on the sample versions of H and C, namely:

Hn(x, y) =
1
n

n

∑
j=1

I
(
Xj ≤ x, Yj ≤ y

)
and Cn(s, t) =

1
n

n

∑
j=1

ei(sXj+tYj) (5)

4.1. Exchangeability

The goal here is to test for the null hypothesis Hexch
0 : (X, Y) d

= (Y, X). When Hexch
0 is

true, H(x, y) = P(X ≤ x, Y ≤ y) = P(Y ≤ x, X ≤ y) = P(X ≤ y, Y ≤ x) = H(y, x) and
C(s, t) = E

(
ei(sX+tY)

)
= E

(
ei(sY+tX)

)
= E

(
ei(tX+sY)

)
= C(t, s). Hence, the null hypothesis can

be written equivalently as:

Hexch
0 : H(x, y) = H(y, x) ∀(x, y) ∈ R2;

Hexch
0 : C(s, t) = C(t, s) ∀(s, t) ∈ R2.

In view of these two characterizations of the null hypothesis, consider:

Wexch
n = n

∫
R2
{Hn(x, y)− Hn(y, x)}2 dHn(x, y)

Vexch
n (Ω) = n

∫
R2
|Cn(s, t)− Cn(t, s)|2 Ω(s, t)ds dt

where Ω is a nonnegative and integrable weight function. The test statistic Wexch
n was introduced

by [16], where a test of symmetry is performed using an approximation of the distribution under
Hexch

0 . Because the latter is inaccurate under high levels of dependence, an alternative procedure was
proposed by [21]. Explicit formulas for Wexch

n and Vexch
n (Ω) are provided in the next lemma.

Lemma 4. One has:

Wexch
n =

1
n2

n

∑
j,j′ ,k=1

φexch
{
(Xj, Yj), (Xj′ , Yj′), (Xk, Yk)

}
where:

φexch {(x1, y1), (x2, y2), (x3, y3)} = I {x3 ≥ max(x1, x2), y3 ≥ max(y1, y2)}
− I {x3 ≥ max(x1, y2), y3 ≥ max(y1, x2)}
− I {x3 ≥ max(y1, x2), y3 ≥ max(x1, y2)}
+ I {x3 ≥ max(y1, y2), y3 ≥ max(x1, x2)}

and:

Vexch
n (Ω) =

1
n

n

∑
j,j′=1

ψexch
Ω

{
(Xj, Yj), (Xj′ , Yj′)

}
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where for ψ̃exch
Ω (x, y) =

∫
R2 cos(s x + t y)Ω(s, t)ds dt,

ψexch
Ω {(x1, y1), (x2, y2)} = ψ̃exch

Ω (x1 − x2, y1 − y2)− ψ̃exch
Ω (x1 − y2, y1 − x2)

− ψ̃exch
Ω (y1 − x2, x1 − y2) + ψ̃exch

Ω (y1 − y2, x1 − x2)

The kernel φexch is symmetric with respect to its first two components.
In addition, E

[
φexch {(x1, y1), (X2, Y2), (x3, y3)}

]
= 0 under the null hypothesis, because

φexch{(x1, y1), (y2, x2), (x3, y3)} = −φexch{(x1, y1), (x2, y2), (x3, y3)}. The asymptotic behaviour
of Wexch

n can then be deduced from Proposition 2. Similarly, ψexch
Ω {(x1, y1), (y2, x2)} =

−ψexch
Ω {(x1, y1), (x2, y2)}, so that E

[
ψexch

Ω {(x1, y1), (X2, Y2)}
]

= 0 and Vexch
n (Ω) is a V-statistic

with first-order degeneracy. Its large-sample behaviour then follows from Proposition 1. Multiplier
versions of Wexch

n and Vexch
n (Ω) derive from formulas in Equation (4).

4.2. Reflected Symmetry

As mentioned in the Introduction, the null hypothesis of reflected symmetry around (a, b) ∈ R2

is Hrefl
0 : (X − a, Y − b) d

= (a − X, b − Y). For simplicity, one assumes that a = b = 0, so that the

focus is put on Hrefl
0 : (X, Y) d

= (−X,−Y). The extension to arbitrary (a, b) ∈ R2 is straightforward

upon noting that the null hypothesis Hrefl
0 : (X − a, Y − b) d

= (a − X, b − Y) is equivalent to Hrefl
0 :

(X̃, Ỹ) d
= (−X̃,−Ỹ), where X̃ = X − a and Ỹ = Y − b. Hence, one would only have to consider

the sample of transformed data (X̃1, Ỹ1), . . . , (X̃n, Ỹn), where X̃j = Xj − a and Ỹj = Yj − b for each
j ∈ {1, . . . , n}.

When Hrefl
0 : (X, Y) d

= (−X,−Y) is true, H(x, y) = P(−X ≤ x,−Y ≤ y) = P(X ≥ −x, Y ≥ −y)
and C(s, t) = E(ei(s(−X)+t(−Y))) = E(ei((−s)X+(−t)Y)) = C(−s,−t). Letting H̄(x, y) = P(X ≥ x,
Y ≥ y), the distribution function and characteristic function versions of Hrefl

0 are then respectively:

Hrefl
0 : H(x, y) = H̄(−x,−y) ∀(x, y) ∈ R2;

Hrefl
0 : C(s, t) = C(−s,−t) ∀(s, t) ∈ R2.

Letting H̄n(x, y) = (1/n)∑n
j=1 I(Xj ≥ x, Yj ≥ y), consider the test statistics:

Wrefl
n = n

∫
R2
{Hn(x, y)− H̄n(−x,−y)}2 dHn(x, y)

Vrefl
n (Ω) = n

∫
R2
|Cn(s, t)− Cn(−s,−t)|2 Ω(s, t)ds dt

Explicit formulas are given next.

Lemma 5. One has:

Wrefl
n =

1
n2

n

∑
j,j′ ,k=1

φrefl
{
(Xj, Yj), (Xj′ , Yj′), (Xk, Yk)

}
where:

φrefl {(x1, y1), (x2, y2), (x3, y3)} = I {x3 ≥ max(x1, x2), y3 ≥ max(y1, y2)}
− I {x3 ≥ max(x1,−x2), y3 ≥ max(y1,−y2)}
− I {x3 ≥ max(−x1, x2), y3 ≥ max(−y1, y2)}
+ I {x3 ≥ max(−x1,−x2), y3 ≥ max(−y1,−y2)}

and:

Vrefl
n (Ω) =

1
n

n

∑
j,j′=1

ψrefl
Ω

{
(Xj, Yj), (Xj′ , Yj′)

}
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where ψrefl
Ω {(x1, y1), (x2, y2)} = 4

∫
R2 sin (sx1 + ty1) sin (sx2 + ty2)Ω(s, t)ds dt.

Proceeding similarly as with φexch, one can show that E
[
φrefl {(x1, y1), (X2, Y2), (x3, y3)}

]
=

0. Thus, since φrefl is symmetric with respect to its first two components, the asymptotic
behaviour of Wrefl

n follows from Proposition 2. Furthermore, since ψrefl
Ω {(x1, y1), (−x2,−y2)} =

−ψrefl
Ω {(x1, y1), (x2, y2)}, one deduces E{ψrefl

Ω {(x1, y1), (X2, Y2)}} = 0, and Vrefl
n (Ω) is a first-order

degenerate V-statistic whose large-sample behaviour follows from Proposition 1. Multiplier versions
of Wrefl

n and Vrefl
n (Ω) are derived from Equation (4).

4.3. A Note on Copula Symmetry

A class of bivariate symmetries, yet less known than exchangeability and reflected symmetry, is
based on copulas. The latter allows one to shed new light on the understanding of bivariate symmetry.
The starting point is a theorem by [22] that states that there exists a function D : [0, 1]2 → [0, 1]
called a copula, such that P(X ≤ x, Y ≤ y) = D{P(X ≤ x), P(Y ≤ y)} for all (x, y) ∈ R2.
If the marginal distributions FX(x) = P(X ≤ x) and FY(y) = P(Y ≤ y) are continuous, then D
is unique. As a consequence, D completely characterizes the dependence between X and Y when
(X, Y) is continuous.

Because Sklar’s representation entails that the random pair (U, V) = (FX(X), FY(Y)) is
distributed as D, exchangeability and reflected symmetry can be reformulated as follows:

(i) The pair (X, Y) is exchangeable if and only if X d
= Y and (U, V)

d
= (V, U);

(ii) The pair (X, Y) is reflection symmetric around (a, b) ∈ R2 if and only if X − a d
= a − X,

Y− b d
= b−Y and (Ũ, Ṽ)

d
= (−Ũ,−Ṽ), where Ũ = U − 1/2 and Ṽ = V − 1/2.

The reader is referred to [23] for more details on the general theory of copulas.
Assuming the availability of independent random copies (U1, V1), . . . , (Un, Vn) of (U, V), one

can test for the exchangeability and reflected symmetry of the copula only. This setup is equivalent
in assuming that the marginal distributions FX and FY are known, so that a random sample
(X1, Y1), . . . , (Xn, Yn) can be transformed to the copula scale by letting (Uj, Vj) = (FX(Xj), FY(Yj))

for each j ∈ {1, . . . , n}. For copula exchangeability, the method described in Subsection 3.2 can be
applied directly; for copula reflected symmetry, this corresponds to the case a = b = 1/2, and then,
the methodology in Subsection 3.2 may be used with (Ũ1, Ṽ1), . . . , (Ũn, Ṽn), where Ũj = Uj − 1/2 and
Ṽj = Vj − 1/2.

The marginal distributions FX and FY are generally unknown. In that case, it is suggested to work
instead with (Û1, V̂1), . . . , (Ûn, V̂n), where (Ûj, V̂j) = (F̂X(Xj), F̂Y(Yj)) and F̂X , F̂Y are the empirical
distribution functions. However, doing so results in much more complicated limit distributions and
calls for suitably-adapted multiplier methods. See the works by [24] on copula exchangeability and
by [25] on copula reflected symmetry (called radial symmetry in that case) for details.

5. Monte Carlo Study of the Sampling Properties of the Tests

5.1. Parameters of the Simulations

This section explores the sample properties of the tests for the three null hypotheses considered
in Sections 3 and 4, namely Huniv

0 , Hexch
0 and Hrefl

0 . Specifically, the ability of the tests to keep their
5% nominal level under the null hypothesis and their power against alternative hypotheses will be
investigated with the help of simulated datasets. The probability of rejection of the null hypothesis
will be estimated from 1000 replicates under each scenario. The computation of p-values will be
based on B = 1000 bootstrap samples using a version of the multiplier method called the Bayesian
bootstrap. In that case, ξ1, . . . , ξn are replaced by (γj/γ̄) − 1, j ∈ {1, . . . , n}, where γ1, . . . , γn are
independent and identically distributed from the exponential law with mean one; see [26] for details.
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Many other choices are possible for the stochastic structure of the multiplier variables, but from the
author’s experience, it has little influence on the performance of the tests.

5.2. Size and Power of the Tests of Univariate Symmetry

This subsection investigates the properties of the tests based on Vuniv
n , Wuniv

n and Vuniv
n (ω) for

testing the null hypothesis of univariate symmetry Huniv
0 : X d

= −X. The computation of Vuniv
n (ω)

calls for the choice of a weight function ω. For the simulation results that will be presented, one
considers ωλ

1 (t) = e−λ|t| and ωλ
2 (t) = e−λ2t2/2 for λ ∈ {1, 2}. One can show that for x+ = x1 + x2

and x− = x1 − x2,

ψuniv
ωλ

1
(x1, x2) ∝

x1x2(
λ2 + x2

−
) (

λ2 + x2
+

) and ψuniv
ωλ

1
(x1, x2) ∝ φ

( x−
λ

)
− φ

( x+
λ

)
where φ(x) = e−x2/2/

√
2π is the density of the standard univariate normal distribution.

In order to investigate the ability of the tests to reject the null hypothesis of univariate symmetry
around zero, one considers the general family of skew-asymmetric densities, as defined by [27].
Specifically, for a given symmetric density f and a given absolutely continuous distribution function
G, such that G′ is a symmetric density around zero, a skew-asymmetric density is defined for δ ∈ R
by gδ(x) = 2 f (x) G(δx). The case δ = 0 corresponds to a situation under the null hypothesis. When
f and G are respectively the density and the cumulative distribution function of the standard normal
distribution, one recovers the skew-normal family as introduced by [28]. For the simulation results
that are reported in Table 1, one also considers the skew-T distribution with three degrees of freedom
and the skew-Cauchy distribution (which is indeed the skew-T with one degree of freedom). Since
gδ(x)/ f (x) ≤ 2 for all x ∈ R, datasets from gδ can be generated using the rejection method; see [29]
for more details. The idea is to simulate repeatedly X from f and U from the uniform distribution on
(0, 1) until U ≤ gδ(X)/2 f (X); then X ∼ gδ.

Looking at Table 1, one can say that the six tests are very good at keeping their 5% nominal level
under the null hypothesis, even when n = 50. An exception occurs for Vuniv

n under the Cauchy
distribution, where the test is too conservative. This behaviour is explained by the fact that the
requirement E{ψuniv(X1, X2)

2} < ∞ is not satisfied in that case. As expected, the power of these tests
increases as a function of the sample size, as expected from their theoretical consistency. The power
also increases as a function of the parameter δ that controls the level of asymmetry. Note that
departures from Huniv

0 based on skew-Student and skew-Cauchy alternatives are more easily detected
than those from the skew-normal distribution. Overall, the best tests are those based on Vuniv

n and
Wuniv

n , as well as on the characteristic function statistics Vuniv
n (ω2

1) and Vuniv
n (ω2

2).

5.3. Size and Power of the Tests of Exchangeability

The test statistics Wexch
n and Vexch

n (Ω) are investigated here for testing the null hypothesis Hexch
0

of exchangeability. Two weight functions are considered for Vexch
n (Ω), namely:

Ωλ
1 (s, t) = e−λ(|s|+|t|) and Ωλ

2 (s, t) = e−λ2(s2+t2)/2

One can show that:

ψexch
Ωλ

1
{(x1, y1), (x2, y2)} ∝

1
{λ2 + (x1 − x2)2} {λ2 + (y1 − y2)2}

− 1
{λ2 + (x1 − y2)2} {λ2 + (y1 − x2)2}

ψexch
Ωλ

2
{(x1, y1), (x2, y2)} ∝ φ

(
x1 − x2

λ

)
φ

(
y1 − y2

λ

)
− φ

(
x1 − y2

λ

)
φ

(
y1 − x2

λ

)
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Table 1. Probability of the rejection of the null hypothesis of univariate symmetry, as estimated from
1000 replicates, for the tests based on Vuniv

n , Wuniv
n and Vuniv

n (ω) under skew-normal, skew-T and
skew-Cauchy alternatives.

Law δ n Vuniv
n Wuniv

n Vuniv
n (ω1

1) Vuniv
n (ω2

1) Vuniv
n (ω1

2) Vuniv
n (ω2

2)

Skew-Normal

50 5.8 6.3 6.4 6.8 6.1 6.1
0 100 5.2 5.0 5.5 5.6 5.1 5.5

200 5.3 4.7 5.7 5.4 6.2 5.6

50 9.5 11.1 8.6 9.4 9.3 10.8
0.1 100 13.6 14.9 12.1 12.7 13.9 14.5

200 21.3 20.5 17.7 18.9 19.9 21.4

50 28.8 30.2 25.7 26.6 28.5 29.5
0.25 100 47.8 50.9 40.6 41.7 45.8 48.3

200 79.1 77.7 71.3 72.8 76.5 79.6

50 74.6 74.4 67.9 70.3 73.0 75.2
0.5 100 96.3 95.3 93.5 94.2 95.7 96.2

200 100.0 100.0 99.8 99.8 99.8 100.0

Skew-T

50 4.4 7.2 4.4 5.0 4.7 5.2
0 100 4.2 7.1 4.8 5.1 5.1 5.3

200 4.5 5.7 5.4 5.4 4.5 4.4

50 11.6 14.3 8.3 8.5 10.5 10.6
0.1 100 17.6 19.5 11.7 11.8 13.9 15.2

200 30.9 29.0 18.9 19.0 22.5 24.3

50 43.1 39.4 27.5 27.7 33.4 36.2
0.25 100 66.4 66.2 43.1 43.5 55.5 59.5

200 94.0 92.3 78.9 78.5 86.9 89.7

50 85.5 85.1 66.8 67.6 77.5 80.7
0.5 100 98.9 99.0 94.4 94.4 97.6 98.2

200 100.0 100.0 99.9 99.9 100.0 100.0

Skew-Cauchy

50 3.3 6.2 5.7 5.9 5.3 5.6
0 100 3.4 6.4 5.1 5.0 5.4 5.2

200 2.9 6.2 5.6 5.4 6.1 6.3

50 23.9 28.5 9.8 9.6 11.7 11.9
0.1 100 47.0 46.6 11.8 12.1 16.4 16.8

200 76.8 73.4 17.5 16.5 29.0 29.6

50 56.9 67.1 24.7 23.9 35.1 35.6
0.25 100 83.3 91.1 45.4 42.7 61.1 61.5

200 93.8 99.6 76.1 71.5 89.8 90.2

50 81.3 93.5 57.8 56.4 74.0 75.0
0.5 100 94.1 99.7 89.4 87.8 96.0 96.3

200 97.8 100.0 99.6 99.5 100.0 100.0

As enlightened in Subsection 4.3, the hypothesis of exchangeability of a pair (X, Y) requires that

X d
= Y and that (U, V)

d
= (V, U). For the simulation results that will be presented, one assumes a

N(0, 1) distribution for both X and Y, so that the asymmetry will be controlled solely by the form of
the copula. Here, one considers a general class of asymmetric bivariate distributions of the form:

HD,δ(x, y) = {Φ(x)}δ D
{
{Φ(x)}1−δ , Φ(y)

}
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where Φ is the cumulative distribution function of the N(0, 1) law
and D is a symmetric copula, i.e., D(u, v) = D(v, u) for all
(u, v) ∈ [0, 1]2. The special case δ = 0 corresponds to a scenario under the null hypothesis of
exchangeability. This construction is based on a proposal by [30]. For the results in Table 2, the
copula D belongs either to the normal or the Gumbel–Hougaard family of symmetric models, i.e.,

D(u, v) =
∫ Φ−1(u)

−∞

∫ Φ−1(v)

−∞
φ$(x, y)dy dx and D(u, v) = exp

{
− |log uv|1/(1−θ)

}
where φ$ is the bivariate standard normal density with correlation $ ∈ [−1, 1] and θ ∈ [0, 1]. These
parameters are taken so that they match a Kendall’s tau of 0.75, i.e., $ = 0.924 and θ = 0.75. The
values of the asymmetry parameter are δ ∈ {0, 0.25, 0.50, 0.75}.

Table 2. Probability of the rejection of the null hypothesis of exchangeability, as estimated from
1000 replicates, for the tests based on Wexch

n and Vexch
n (Ω) under the copula-based distribution HD,δ.

Copula D δ n Wexch
n Vexch

n (Ω1/4
1 ) Vexch

n (Ω1/4
2 ) Vexch

n (Ω1/2
1 ) Vexch

n (Ω1/2
2 )

Normal

50 2.3 1.5 2.5 3.1 4.2
0 100 4.6 3.6 4.2 4.3 5.3

200 4.5 2.9 3.7 2.8 3.7

50 9.8 8.4 16.7 15.6 22.4
0.25 100 16.7 32.1 44.0 37.9 48.1

200 37.5 73.2 82.4 76.7 85.5

50 13.8 18.7 26.3 29.6 37.8
0.5 100 29.3 57.4 66.8 60.1 69.5

200 48.1 94.6 97.0 94.0 98.7

50 9.3 4.6 7.3 10.8 16.1
0.75 100 12.7 18.8 19.4 23.9 33.4

200 24.0 48.1 54.7 54.4 66.4

Gumbel–Hougaard

50 2.3 1.5 3.2 3.9 4.2
0 100 4.4 2.5 3.7 4.3 6.1

200 4.1 5.0 6.0 5.4 5.2

50 11.2 11.7 20.0 16.7 25.6
0.25 100 23.1 47.2 60.7 47.6 57.5

200 41.6 90.0 94.8 87.9 93.2

50 17.0 26.7 39.7 32.9 45.0
0.5 100 29.6 70.8 85.5 72.1 83.9

200 56.4 98.1 99.0 98.0 99.1

50 11.6 10.5 14.2 18.6 27.0
0.75 100 20.5 31.6 38.7 38.3 49.1

200 25.2 64.8 74.4 68.2 80.8

In light of simulations not presented here, the values λ ∈ {1/4, 1/2} offer the best performance
for the test statistics Vexch

n (Ωλ
1 ) and Vexch

n (Ωλ
2 ). From the entries in Table 2, one can see that the five

tests are rather good at keeping their size under Hexch
0 , having in mind the fact that the multiplier

method is valid asymptotically as n → ∞. As expected, the power of the tests increases with the
sample size. Here, the level of asymmetry is not necessarily monotone in δ. Indeed, the highest
level of asymmetry occurs for values of δ around 0.5 when it is measured for example by the
index introduced by [31]; the simulation results concord with this fact, where the highest power are
observed when δ = 0.5. Here, the test based on the empirical distribution function statistic Wexch

n is
significantly less powerful than those based on the empirical characteristic function; a similar feature
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has been documented by [32] when testing for copula symmetry. The best tests overall are those
based on Vexch

n (Ωλ
2 ). Finally, note that asymmetries based on the Gumbel–Hougaard copula are better

detected than those based on the normal copula.

5.4. Size and Power of the Tests of Reflected Symmetry

For the same weight functions Ωλ
1 and Ωλ

2 considered in the preceding subsection for testing
exchangeability, one can show that:

ψrefl
Ωλ

1
{(x1, y1), (x2, y2)} ∝

x1 x2
(
λ2 + y2

1 + y2
2
)
+ y1 y2

(
λ2 + x2

1 + x2
2
)

(λ2 + x2
−)(λ

2 + x2
+)(λ

2 + y2
−)(λ

2 + y2
+)

ψrefl
Ωλ

2
{(x1, y1), (x2, y2)} ∝ φ

( x−
λ

)
φ
(y−

λ

)
− φ

( x+
λ

)
φ
(y+

λ

)
where x− = x1 − x2, x+ = x1 + x2, y− = y1 − y2 and y+ = y1 + y2.

Following [33], reflected asymmetric bivariate densities can be built from a generalization
of skew asymmetric univariate densities. Specifically, consider a density f , such that f (x, y) =

f (−x,−y), and a one-dimensional distribution function G, such that its density G′ is symmetric
around zero. Then, gδ(x, y) = 2 f (x, y) G{δ(x + y)} is a skew asymmetric bivariate density. In
the special case when f = φ$ and G = Φ is the cumulative distribution function of the N(0, 1)
distribution, one recovers the so-called skew-normal distribution with correlation coefficient $ ∈
[−1, 1], namely:

gN
δ (x, y) = 2 φ$(x, y)Φ {δ(x + y)}

For the results in Table 3, $ ∈ {1/3, 2/3} and δ ∈ {0, 0.25, 0.5}. Results not presented here with
δ = 0.75 show that the power is one, even for a sample size as low as n = 50. Here, similar comments
as for the tests of exchangeability apply for the ability of the tests to keep their nominal level and for
their power as n increases. Comparing to the results in Table 2, however, one sees that the estimated
probabilities of rejection are higher here. It can be explained, at least in part, by the fact that the
asymmetry in the bivariate skew asymmetric model gδ affects both the marginal distributions and
the copula. Here, reflected asymmetry increases as a function of δ, resulting in power results that
increase with δ. Overall, the test based on Wrefl

n performs well under all of the scenarios that were
considered. The characteristic function statistics are also doing well, the best being Vrefl

n (Ω2
1). Finally,

note that the power is higher when $ = 1/3 compared to $ = 2/3.

6. Unification into a General Framework

The hypotheses considered so far can be treated somewhat simultaneously by taking a general
group of transformations. To this end, take a random vector X = (X1, . . . , Xp) in Rp with joint
distribution function F(x) = P(X ≤ x), x = (x1, . . . , xp) and p-variate characteristic function

C(t) = E(eit>X), t = (t1, . . . , tp). Then, letM ∈ Rp×p be a symmetric matrix, such thatMM = Ip

and consider testing the null hypothesis HM0 : X d
= MX against HM1 : X

d
6= MX. When p = 1 and

M = −1, one recovers the univariate symmetry encountered in Section 3. In the case p = 2, the
exchangeability and reflected symmetry hypotheses treated in Section 4 correspond respectively to:

M =

(
0 1
1 0

)
and M =

(
−1 0
0 −1

)

Letting FM(x) = P(MX ≤ x) and upon noting that CM(t) = E(eit>MX) = C(M>t), the null

hypothesis HM0 : X d
=MX can be written equivalently as:

HM0 : F(x) = FM(x) ∀x ∈ Rp;
HM0 : C(t) = C(M>t) ∀t ∈ Rp.
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Table 3. Probability of the rejection of the null hypothesis of reflected symmetry, as estimated from
1000 replicates, for the tests based on Wrefl

n and Vrefl
n (Ω) under the skew-normal distribution.

$ δ n W refl
n V refl

n (Ω1
1) V refl

n (Ω1
2) V refl

n (Ω2
1) V refl

n (Ω2
2)

1/3

50 8.3 7.5 7.1 8.6 7.1
0 100 6.0 4.6 4.6 4.5 4.6

200 3.3 5.4 4.8 3.6 4.9

50 35.4 28.1 28.5 35.1 28.5
0.25 100 65.1 55.0 55.9 63.3 55.8

200 92.2 83.1 84.4 89.6 84.3

50 94.5 89.9 91.1 94.6 90.9
0.5 100 100.0 99.1 99.2 99.5 99.1

200 100.0 100.0 100.0 100.0 100.0

2/3

50 6.7 4.8 5.4 6.2 5.4
0 100 6.8 6.3 6.7 6.1 6.7

200 5.3 4.3 4.1 4.2 4.1

50 30.4 28.1 28.1 33.8 28.1
0.25 100 58.7 47.5 48.2 57.3 48.2

200 84.2 75.6 76.7 82.4 76.9

50 88.9 83.3 84.2 89.7 84.1
0.5 100 99.6 98.4 98.6 99.5 98.5

200 100.0 100.0 100.0 100.0 100.0

From a sample X1, . . . , Xn of independent copies of X, define the empirical versions of F and C
respectively by:

Fn(x) =
1
n

n

∑
j=1

I
(
Xj ≤ x

)
and Cn(x) =

1
n

n

∑
j=1

eit>Xj

A Cramér–von Mises statistic based on the sample distribution function is:

WMn = n
∫
Rp
{Fn(x)− Fn,M(x)}2 dFn(x)

where Fn,M is the distribution function ofMX1, . . . ,MXn. Taking Ω to be a nonnegative integrable
weight function defined on Rp, a characteristic-function statistic is:

VMn (Ω) = n
∫
Rp

∣∣∣Cn(t)− Cn(M>t)
∣∣∣2 Ω(t)dt

From computations similar to those in Lemmas 3–5, one can show that:

WMn =
1
n2

n

∑
j,j′ ,k=1

φM(Xj, Xj′ , Xk) and VMn (Ω) =
1
n

n

∑
j,j′=1

ψMΩ (Xj, Xj′)

where for x1, x2, x3 ∈ Rp,

φM(x1, x2, x3) = I {x3 ≥ max(x1, x2)} − I {x3 ≥ max(x1,Mx2)}
− I {x3 ≥ max(Mx1, x2)}+ I {x3 ≥ max(Mx1,Mx2)}

and for ψ̃MΩ (x) =
∫
Rp cos(t>x)Ω(t)dt,

ψMΩ (x1, x2) = ψ̃MΩ (x1 − x2)− ψ̃MΩ (x1 −Mx2)− ψ̃MΩ (Mx1 − x2) + ψ̃MΩ (Mx1 −Mx2)
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Since φM(x1,Mx2, x3) = −φM(x1, x2, x3), it follows that E{φM(x1, X2, x3)} = 0 under HM0 :

X d
=MX. Since in addition, φM is symmetric with respect to its first two components, the asymptotic

distribution of WMn under the null hypothesis can be deduced from Proposition 2. One also has
E{ψMΩ (x1, X2)} = 0, and then, VMn (Ω) is a first-order degenerate V-statistic with bivariate kernel ψMΩ
whose asymptotic distribution follows from Proposition 1. The multiplier versions of these statistics
follow from the formulas in Equation (4).

To close this section, note that many symmetry hypotheses are related to a group of
transformations rather than to a single transformation matrixM. This situation has been considered
by [34] from a distribution function point-of-view using a bootstrap method for the computation of
p-values. In order to handle this case under the framework of the current paper, let G be a set of p× p

symmetric matrices and consider the null hypothesis HG0 : X d
= MX for all M ∈ G. For example,

spherical symmetry corresponds to G being the set of all orthogonal transformations in Rp, while
multivariate exchangeability occurs when G is the set of all permutation matrices in Rp.

The key here is to work with a combination matrix L ∈ Rq×|G|, such that for z ∈ R|G|,
L z = 0q ∈ Rq if and only if z is a constant vector. Then, define FG = (FM1 , . . . , FM|G|) and

CG = (CM1 , . . . , CM|G|) and note that under the null hypothesis HG0 , FG and CG are |G|-dimensional
vectors of identical functions in Rp. With this in hand, the null hypothesis can be re-written
either as HG0 : L FG(x) = 0q ∀x ∈ Rp or HG0 : LCG(t) = 0q ∀t ∈ Rp. Hence, letting
Fn,G = (Fn,M1 , . . . , Fn,M|G|) and Cn,G = (Cn,M1 , . . . , Cn,M|G|), with Cn,Mj(t) = Cn(M>

j t), test statistics
are given by:

WGn = n
∫
Rp
{L Fn,G(x)}2 dFn(x) and VGn (Ω) = n

∫
Rp
|LCn,G(t)|2 Ω(t)dt

It can be shown that WGn is of the form required in Proposition 2, while VGn (Ω) is a V-statistic
with a bivariate kernel having a first-order degeneracy, hence falling under the requirements of
Proposition 1.
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Appendix A. Proofs of Proposition 2, Lemma 3, Lemma 4 and Lemma 5

Appendix A.1. Proof of Proposition 2

First, define the symmetric kernel:

φ̃(x1, x2, x3) =
φ(x1, x2, x3) + φ(x1, x3, x2) + φ(x2, x3, x1)

3

and note that:

Wn =
1
n2

n

∑
j,j′ ,k=1

φ̃
(

Xj, X′j, Xk

)
The fact that E{φ(x1, X2, x3)} = 0 entails E{φ̃(x1, X2, X3)} = 0 for all x1 ∈ Rp, so Wn is

a first-order degenerate V-statistic. In that case, it follows from Example 2, p. 185, in [2] and
the H-decomposition of U-statistics (see, e.g., Section 3.3.2, p. 78 in [2]) that for Φ̃(x1, x2) =

3 E{φ̃(x1, x2, X3)},
Wn = E

{
Φ̃ (X1, X1)

}
+ n U(2)

n + oP(1)
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where:

U(2)
n =

(
n
2

)−1 ∞

∑
j<j′=1

Φ̃
(

Xj, Xj′
)

The representation of Wn in Equation (3) follows by noting that:

Φ̃(x1, x2) = E {φ(x1, x2, X3) + φ(x1, X3, x2) + φ(x2, X3, x1)}
= E {φ(x1, x2, X3)}
= Φ(x1, x2)

Finally, the asymptotic representation of Wn is a consequence of Proposition 1 with ψ = Φ.

Appendix A.2. Proof of Lemma 3

First, note that:

Vuniv
n = 2 n

∫ ∞

0

{
Fn(−x) + Fn(x−)− 1

}2 dx

When x > 0, one has I(Xj ≤ −x) + I(Xj < x)− 1 = − sign(Xj) I(x ≤ |Xj|), so that:

{
Fn(−x) + Fn(x−)− 1

}2
=

{
− 1

n

n

∑
j=1

sign(Xj) I(x ≤ |Xj|)
}2

=
1
n2

n

∑
j,j′=1

sign(Xj) sign(Xj′) I
{

x ≤ min(|Xj|, |Xj′)
}

It then follows that:

Vuniv
n =

1
n

n

∑
j,j′=1

2 sign(Xj) sign(Xj′) min
(
|Xj|, |Xj′ |

)
=

1
n

n

∑
j,j′=1

ψuniv
(

Xj, Xj′
)

Upon noting that dFn(x) puts mass 1/n at X1, . . . , Xn, one also has:

Wuniv
n =

n

∑
k=1

{
Fn(−Xk) + Fn(X−k )− 1

}2

=
n

∑
k=1

[
1
n

n

∑
j=1

{
I(Xj ≤ −Xk) + I(Xj < Xk)− 1

}]2

=
n

∑
k=1

[
1
n

n

∑
j=1

{
I(Xk ≤ −Xj)− I(Xk ≤ Xj)

}]2

=
1
n2

n

∑
j,j′ ,k=1

{
I(Xk ≤ −Xj)− I(Xk ≤ Xj)

} {
I(Xk ≤ −Xj′)− I(Xk ≤ Xj′)

}
=

1
n2

n

∑
j,j′ ,k=1

[
I
{

Xk ≤ min(−Xj,−Xj′)
}
− I

{
Xk ≤ min(Xj,−Xj′)

}
− I
{

Xk ≤ min(−Xj, Xj′)
}
+ I

{
Xk ≤ min(Xj, Xj′)

}]
=

1
n2

n

∑
j,j′ ,k=1

φuniv(Xj, X′j, Xk)
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For Vuniv
n (ω), the fact that:

cn(t)− cn(−t) = i

{
2
n

n

∑
j=1

sin(tXj)

}

entails:

|cn(t)− cn(−t)|2 =
4
n2

{
n

∑
j=1

sin(tXj)

}2

=
4
n2

n

∑
j,j′=1

sin(tXj) sin(tXj′)

Integrating this last expression with respect to ω yields:

Vuniv
n (ω) =

1
n

n

∑
j,j′=1

4
∫
R

sin(tXj) sin(tXj′)ω(t)dt =
1
n

n

∑
j,j′=1

ψuniv
ω (Xj, Xj′)

Appendix A.3. Proof of Lemma 4

For the test statistic Wexch
n , one has:

Hn(Xk, Yk)− Hn(Yk, Xk) =
1
n

n

∑
j=1

{
I
(
Xk ≥ Xj, Yk ≥ Yj

)
− I

(
Xk ≥ Yj, Yk ≥ Xj

)}
so that:

{Hn(Xk, Yk)− Hn(Yk, Xk)}2 =
1
n2

n

∑
j,j′=1

I
{

Xk ≥ max(Xj, Xj′), Yk ≥ max(Yj, Yj′)
}

− 1
n2

n

∑
j,j′=1

I
{

Xk ≥ max(Xj, Yj′), Yk ≥ max(Yj, Xj′)
}

− 1
n2

n

∑
j,j′=1

I
{

Xk ≥ max(Yj, Xj′), Yk ≥ max(Xj, Yj′)
}

+
1
n2

n

∑
j,j′=1

I
{

Xk ≥ max(Yj, Yj′), Yk ≥ max(Xj, Xj′)
}

It is then a straightforward exercise to show that:

Wexch
n =

n

∑
k=1
{Hn(Xk, Yk)− Hn(Yk, Xk)}2 =

1
n2

n

∑
j,j′ ,k=1

φexch
{
(Xj, Yj), (Xj′ , Yj′), (Xk, Yk)

}

For the test statistic Vexch
n (Ω), first note that:

Cn(s, t)− Cn(t, s) =
1
n

n

∑
j=1

{
cos(s Xj + t Yj)− cos(t Xj + s Yj)

}
+ i

1
n

n

∑
j=1

{
sin(s Xj + t Yj)− sin(t Xj + s Yj)

}
Hence,

|Cn(s, t)− Cn(t, s)|2 =
1
n2

n

∑
j,j′=1

{
cos(s Xj + t Yj)− cos(t Xj + s Yj)

} {
cos(s Xj′ + t Yj′)− cos(t Xj′ + s Yj′)

}
+

1
n2

n

∑
j,j′=1

{
sin(s Xj + t Yj)− sin(t Xj + s Yj)

} {
sin(s Xj′ + t Yj′)− sin(t Xj′ + s Yj′)

}
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Using the trigonometric identity cos a cos b + sin a sin b = cos(a − b), one obtains after
straightforward computations that:

|Cn(s, t)− Cn(t, s)|2 =
1
n2

n

∑
j,j′=1

cos
{

s(Xj − Xj′) + t(Yj −Yj′)
}

− 1
n2

n

∑
j,j′=1

cos
{

s(Xj −Yj′) + t(Yj − Xj′)
}

− 1
n2

n

∑
j,j′=1

cos
{

s(Yj − Xj′) + t(Xj −Yj′)
}

+
1
n2

n

∑
j,j′=1

cos
{

s(Yj −Yj′) + t(Xj − Xj′)
}

Integrating this last expression with respect to Ω(s, t) yields:

Vexch
n (Ω) =

1
n

n

∑
j,j′=1

ψexch
Ω

{
(Xj, Yj), (Xj′ , Yj′)

}
Appendix A.4. Proof of Lemma 5

Proceeding as in the proof of Lemma 4, note that:

{Hn(Xk, Yk)− H̄n(−Xk,−Yk)}
2 =

[
1
n

n

∑
j=1

{
I
(
Xk ≥ Xj, Yk ≥ Yj

)
− I

(
Xk ≥ −Xj, Yk ≥ −Yj

)}]2

=
1
n2

n

∑
j,j′=1

I
{

Xk ≥ max(Xj, Xj′), Yk ≥ max(Yj, Yj′)
}

− 1
n2

n

∑
j,j′=1

I
{

Xk ≥ max(Xj,−Xj′), Yk ≥ max(Yj,−Yj′)
}

− 1
n2

n

∑
j,j′=1

I
{

Xk ≥ max(−Xj, Xj′), Yk ≥ max(−Yj, Yj′)
}

+
1
n2

n

∑
j,j′=1

I
{

Xk ≥ max(−Xj,−Xj′), Yk ≥ max(−Yj,−Yj′)
}

It then follows that:

Wrefl
n =

n

∑
k=1
{Hn(Xk, Yk)− H̄n(−Xk,−Yk)}

2 =
1
n2

n

∑
j,j′ ,k=1

φrefl
{
(Xj, Yj), (Xj′ , Yj′), (Xk, Yk)

}

For Vrefl
n (Ω), the fact that:

Cn(s, t)− Cn(−s,−t) = i

{
2
n

n

∑
j=1

sin
(
sXj + tYj

)}

entails:

|Cn(s, t)− Cn(−s,−t)|2 =
4
n2

n

∑
j,j′=1

sin
(
sXj + tYj

)
sin
(

sXj′ + tYj′
)
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Integrating this expression with respect to Ω(s, t) yields:

Vrefl
n (Ω) =

1
n

n

∑
j,j′=1

ψrefl
Ω

{
(Xj, Yj), (Xj′ , Yj′)

}
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