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1. Introduction


The eikonal equations in spaces of different dimensions and different types have many applications in the geometric optics, acoustics of inhomogeneous media, theoretical physics, etc. The details on this theme can be found in [1,2,3,4,5,6,7] (see also the references therein).



Sheng, Guha and Gonzalez (see [8,9] and the references therein) proposed new effective methods for solving many problems of computational optics.



The complete group classification of the eikonal equations for a two- and three-dimensional nonhomogeneous medium is carried out in [1,2,3,4]. In those papers the exact solutions for equations under investigation are also obtained.



In [5], a group classification of generalized eikonal equations was performed. The paper contains a list of all non-equivalent (with respect to equivalence group) equations with symmetry extensions of the kernel. New nonlinear equations of first-order with wide symmetry groups are found.



In [6], the method of propagating waves in multidimensional media is studied in order to find cases of integrability in an explicit form of the eikonal equation.



Many important results conserning symmetry, reduction, and exact solutions of the eikonal equations can be found in the monograph of Fushchych, Shtelen, and Serov [10].



In this paper, we consider the eikonal equation of the form as follows:


[image: there is no content]



(1)




where u=u(x),x=(x0,x1,x2,x3)∈M(1,3).



In 1982, Fushchych and Shtelen [11] proved that the maximally extensive local (in sense of Lie) invariance group of Equation (1) was the conformal group [image: there is no content] of the [image: there is no content] -dimensional Poincaré-Minkowski space with the metric


s2=x02−x12−x22−x32−u2,x4=u



(2)







Some exact multiparametrical solutions of Equation (1) are obtained. A procedure of generating new exact solutions from the known ones is also presented.



In [12], using subalgebras of rank 3 of the Lie algebra of the group [image: there is no content] the ansatzes, which reduce the eikonal equation to ODEs, were constructed. Taking into account the solutions of the reduced equations, wide classes of exact solutions of the eikonal equation were found.



The Lie algebra of the group [image: there is no content] contains, as subalgebras, the Lie algebras of the following groups: Poincaré group [image: there is no content] extended Poincaré group [image: there is no content], and the optical group [image: there is no content] [13,14].



In [15], the subalgebras of rank 3 of the Lie algebra of the group [image: there is no content], which are nonequivalent to subalgebras of the Lie algebra of the group [image: there is no content] were used for symmetry reduction of the Equation (1) to ODEs.



In [13], the symmetry reduction was made and some exact solutions for the eikonal equation were constructed using subalgebras of the Lie algebra of the group [image: there is no content].



In the papers [16,17,18,19,20,21,22], we studied the eikonal equation using the subgroup structure of the proper orthochronous group [image: there is no content]. By using nonconjugate subalgebras of ranks 1, 2, and 3, we performed the symmetry reduction of the Equation (1) to differential equations with less a number of independent variables. Taking into account the solutions of the reduced equations, some invariant solutions of the eikonal equation were constructed.



However, it turned out that the reduced equations, obtained with the help of nonconjugate subalgebras of the Lie algebra of the group [image: there is no content] of the given rank, were of different types. Let us present some examples.



It is known that if we reduce nonlinear partial differential equations (PDEs) we obtain, as a rule, nonlinear reduced equations. But, in the cases of the eikonal equation, Euler-Lagrange-Born-Infeld equation, and Monge-Ampere equation in the space [image: there is no content] we obtained, in some cases, linear ODEs instead of the nonlinear ODEs [16,21,22]. Here, and in what follows, [image: there is no content] is a real number axis of the dependent variable u.



It is also known (see, for example [23,24]) that if we reduce PDEs using the nonconjugate subalgebras with a given rank of the Lie algebras of their symmetry groups, we obtain, as a rule, reduced equations with the same number of independent variables. However, in the case of symmetry reduction of the nonlinear wave equation in the space [image: there is no content] we obtained, in some cases, functional equations, ODEs, two- and three-dimensional PDEs instead of ODEs, two-, three- and four-dimensional reduced PDEs, correspondingly [16,25].



Grundland, Harnad, and Winternitz [26] were the first to point out and investigate the similar phenomenon.



Recently, Nikitin and Kuriksha [27,28] used the three-dimensional nonconjugate subalgebras of the Lie algebra of the Poincaré group [image: there is no content] for symmetry reductions of equations of axion electrodynamics. They obtained four types of reductions. The results obtained cannot be explained in the usual approach (using only the ranks or dimensions of the considered subalgebras).



It means that using only the rank of nonconjugate subalgebras of the Lie algebras of the symmetry groups of the above mentioned equations under investigation, we cannot explain differences in the properties of their reduced equations.



It is known that the nonconjugate subalgebras of the Lie algebra of the group [image: there is no content] of the same rank may have different structural properties. Therefore, in order to try to explain some of the differences in the properties of the above mentioned reduced equations, we suggest to try to investigate the relationship between structural properties of nonconjugate subalgebras of the same rank of the Lie algebra of the group [image: there is no content] and the properties of the reduced equations corresponding to them.



In the present paper, we plan to present some of the results concerning the relationship between the structural properties of three-dimensional nonconjugate subalgebras of the Lie algebra of the group [image: there is no content] and the types of symmetry reduction of the eikonal equation to ODEs.




2. The Lie Algebra of the Group [image: there is no content] and Its Nonconjugate Subalgebras


The group [image: there is no content] is a group of rotations and translations of the five-dimensional Minkowski space [image: there is no content] This group has many applications in the theoretical and mathematical physics (see, for example, [29,30]).



The Lie algebra of the group [image: there is no content] is given by the 15 basis elements Mμν=−Mνμ(μ,ν=0,1,2,3,4) and [image: there is no content] satisfying the commutation relations


Pμ,Pν=0,Mμν,Pσ=gνσPμ−gμσPν



(3)






[image: there is no content]



(4)




where [image: there is no content][image: there is no content] if [image: there is no content]



In the following, we will use new basis elements


G=M04,L1=M23,L2=−M13,L3=M12



(5)






Pa=Ma4−M0a,Ca=Ma4+M0a,(a=1,2,3)



(6)






X0=12P0−P4,Xk=Pk(k=1,2,3),X4=12P0+P4



(7)







Let us consider the following representation for the Lie algebra of the group [image: there is no content]


P0=∂∂x0,P1=−∂∂x1,P2=−∂∂x2,P3=−∂∂x3



(8)






P4=−∂∂u,Mμν=xμPν−xνPμ,x4≡u



(9)







It means that the group [image: there is no content] acts on the space [image: there is no content]. More details about this type of representations can be found in [10,31,32].



In order to describe nonconjugate subalgebras of the Lie algebra of the group [image: there is no content], we used a method proposed by Patera, Winternitz, and Zassenhaus in [33].



The subgroup structure of the group [image: there is no content] was studied in [34,35,36,37,38]. One of the nontrivial consequences of the description of the non-conjugate subalgebras of the Lie algebra of the group [image: there is no content] is that the Lie algebra of the group [image: there is no content] contains, as subalgebras, the Lie algebra of the Poincaré group [image: there is no content] and the Lie algebra of the extended Galilei group [image: there is no content] [39], i.e., it naturally unites the Lie algebras of the symmetry groups of relativistic and non-relativistic physics.



In the present work, we use the complete list of nonconjugate (up to [image: there is no content] -conjugation) subalgebras of the Lie algebra of the group [image: there is no content] as given by Fushchich, Barannik, and Barannik in [40].



Taking into account the complete classification of real structures of Lie algebras of a dimension less or equal four obtained by Mubarakzyanov in [41], we classify all the three-dimensional nonconjugate subalgebras of the Lie algebra of the group [image: there is no content] into classes of isomorphic subalgebras (see, [42]).




3. Results


In this section, we present the results obtained while studying the relationship between the structural properties of the three-dimensional nonconjugate subalgebras of the Lie algebra of the group [image: there is no content] and those obtained through the symmetry reduction of the eikonal equation to ODEs.



In the paper, the symbol [image: there is no content] denotes the jth Lie algebra of dimension r and a is a continuous parameter for the algebra. It should be indicate that the notation [image: there is no content] corresponds to those used in the paper by Patera et al. [43]. In what follows, for the given specific Lie algebra, we write only nonzero commutation relations [41,43].



3.1. Lie Algebras of the Type [image: there is no content]


By [image: there is no content] we denote the real Lie algebra of dimension three [44]. The Lie algebras of the type [image: there is no content] are Abelian.



The Lie algebra of the group [image: there is no content] contains 31 nonconjugate subalgebras of the type [image: there is no content]. Below, we present the results obtained for those subalgebras.



3.1.1. Reductions to Algebraic Equations


The invariants of five subalgebras allow us to construct the ansatzes, which reduce the eikonal equation to algebraic equations.



	(1)

	
[image: there is no content]



Ansatz:


x3(x0+u)2−(γx1+x2δ−x3)(x0+u)−γx1=φ(ω),ω=x0+u



(10)







Reduced equation:


[image: there is no content]



(11)







Solution of the eikonal equation:


[image: there is no content]



(12)








	(2)

	
[image: there is no content]



Ansatz:


x3(x0+u)2−(γx1−x3)(x0+u)−γx1=φ(ω),ω=x0+u



(13)







Reduced equation:


[image: there is no content]



(14)







Solutions of the eikonal equation:


u=−1−x0,(x0+u)2+γ2=0



(15)








	(3)

	
[image: there is no content]



Ansatz:


x3(x0+u)−x2δ+x3=φ(ω),ω=x0+u



(16)







Reduced equation:


[image: there is no content]



(17)







Solution of the eikonal equation:


[image: there is no content]



(18)







As we see, the left hand sides of the Ansatzes (1)–(3) are polinomials in invariant [image: there is no content]. The reduced equations are also polinomials in ω, but with the constant coefficients. The solutions of the eikonal equation are also polinomials in variable [image: there is no content] with the constant coefficients.




	(4)

	
[image: there is no content]



Ansatz:


x3−x1x0+u=φ(ω),ω=x0+u



(19)







Reduced equation:


[image: there is no content]



(20)







Solutions of the reduced equation:


1+ω2=0,ω=0



(21)







Solutions of the eikonal equation:


1+(x0+u)2=0,u=−x0



(22)








	(5)

	
[image: there is no content]



Ansatz:


x2−x3x0+u=φ(ω),ω=x0+u



(23)







Reduced equation:


[image: there is no content]



(24)







Solutions of the reduced equation:


ω2+1=0,ω=0



(25)







Solutions of the eikonal equation:


(x0+u)2+1=0,u=−x0



(26)












3.1.2. Reductions to Linear ODEs


The invariants of six subalgebras allow us to construct the ansatzes, which reduce the eikonal equation to linear ODEs.



	(1)

	
[image: there is no content]



Ansatz:


x02−x12−x22−u2=φ(ω),ω=x0+u



(27)







Reduced equation:


[image: there is no content]



(28)







Solution of the reduced equation:


[image: there is no content]



(29)







Solution of the eikonal equation:


[image: there is no content]



(30)








	(2)

	
[image: there is no content]



Ansatz:


x02−x32−u2=φ(ω),ω=x0+u



(31)







Reduced equation:


[image: there is no content]



(32)







Solution of the reduced equation:


[image: there is no content]



(33)







Solution of the eikonal equation:


[image: there is no content]



(34)








	(3)

	
[image: there is no content]



Ansatz:


x02−x12−x22−x32−u2=φ(ω),ω=x0+u



(35)







Reduced equation:


[image: there is no content]



(36)







Solution of the reduced equation:


[image: there is no content]



(37)







Solution of the eikonal equation:


[image: there is no content]



(38)







Let us note, that in the cases (1)–(3) we obtained the same reduced equations.




	(4)

	
[image: there is no content]



Ansatz:


x02−x12−u2x0+u−x22x0+u+1=φ(ω),ω=x0+u



(39)







Reduced equation:


[image: there is no content]



(40)







Solutions of the reduced equation:


φ(ω)=c1,ω+1=0,ω=0



(41)







Solutions of the eikonal equation:


x02−x12−u2x0+u−x22x0+u+1=c1,u=−1−x0,u=−x0



(42)








	(5)

	
[image: there is no content]



Ansatz:


2u+x12x0+u+x22x0+u+α+x32x0+u+γ=φ(ω),ω=x0+u



(43)







The reduced equation:


[image: there is no content]



(44)







Solutions of the reduced equation:


ω=0,ω+γ=0,ω+α=0,φ(ω)=ω+c



(45)







Solutions on the eikonal equation:


u=−x0,u=−x0−γ,u=−x0−α



(46)






[image: there is no content]



(47)








	(6)

	
[image: there is no content]



Ansatz:


2u+x12+x32x0+u+x22x0+u+α=φ(ω),ω=x0+u



(48)







The reduced equation:


[image: there is no content]



(49)







Solutions of the reduced equation:


ω=0,ω+α=0,φ(ω)=ω+c



(50)







Solutions on the eikonal equation:


u=−x0,u=−x0−α,2u+x12+x32x0+u+x22x0+u+α=x0+u+c



(51)












3.1.3. Reductions to Equations, Which Can Be Split on Two Linear ODEs


Taking into account the invariants of nine nonconjugate subalgebras, we constructed the ansatzes, which reduced the eikonal equation to those, which could be split on two linear ODEs.



	(1)

	
[image: there is no content]



Ansatz:


x0+u=φ(ω),ω=x3



(52)







Reduced equation:


[image: there is no content]



(53)







Solution of the reduced equation:


[image: there is no content]



(54)







Solution of the eikonal equation:


[image: there is no content]



(55)








	(2)

	
[image: there is no content]



Ansatz:


x0+u=φ(ω),ω=x3



(56)







Reduced equation:


[image: there is no content]



(57)







Solution of the reduced equation:


[image: there is no content]



(58)







Solution of the eikonal equation:


[image: there is no content]



(59)








	(3)

	
[image: there is no content]



Ansatz:


x0+u=φ(ω),ω=(x12+x22)1/2



(60)







Reduced equation:


[image: there is no content]



(61)







Solution of the reduced equation:


[image: there is no content]



(62)







Solution of the eikonal equation:


[image: there is no content]



(63)








	(4)

	
[image: there is no content]



Ansatz:


x0+u=φ(ω),ω=x2



(64)







Reduced equation:


[image: there is no content]



(65)







Solution of the reduced equation:


[image: there is no content]



(66)







Solution of the eikonal equation:


[image: there is no content]



(67)








	(5)

	
[image: there is no content]



Ansatz:


x0+u=φ(ω),ω=(x12+x22)1/2



(68)







Reduced equation:


[image: there is no content]



(69)







Solution of the reduced equation:


[image: there is no content]



(70)







Solution of the eikonal equation:


[image: there is no content]



(71)








	(6)

	
[image: there is no content]



Ansatz:


x0+u=φ(ω),ω=x3



(72)







Reduced equation:


[image: there is no content]



(73)







Solution of the reduced equation:


[image: there is no content]



(74)







Solution of the eikonal equation:


[image: there is no content]



(75)







Let us note that, in the cases (1)–(6), we obtained the same reduced equations. The solutions of the eikonal equation are also the same.




	(7)

	
[image: there is no content]



Ansatz:


(x02−u2)1/2=φ(ω),ω=x3



(76)







Reduced equation:


[image: there is no content]



(77)







Solutions of the reduced equation:


φ(ω)=εω+c1,ε=±1



(78)







Solutions of the eikonal equation:


(x02−u2)1/2=εx3+c1,ε=±1



(79)








	(8)

	
[image: there is no content]



Ansatz:


(x02−u2)1/2=φ(ω),ω=(x12+x22)1/2



(80)







Reduced equation:


[image: there is no content]



(81)







Solutions of the reduced equation:


φ(ω)=εω+c1,ε=±1



(82)







Solutions of the eikonal equation:


(x02−u2)1/2=ε(x12+x22)1/2+c1,ε=±1



(83)








	(9)

	
[image: there is no content]



Ansatz:


16(x0+u)3+x3(x0+u)+x0−u=φ(ω),ω=(x0+u)2+4x3



(84)







Reduced equation:


[image: there is no content]



(85)







Solutions of the reduced equation:


φ(ω)=ε6ω3/2+c1,ε=±1



(86)







Solutions of the eikonal equation:


16(x0+u)3+x3(x0+u)+x0−u=ε6(x0+u)2+4x33/2+c1,ε=±1



(87)












3.1.4. Reductions to Nonlinear ODEs


From the invariants of five nonconjugate subalgebras we constructed the ansatzes, which reduced the eikonal equation to nonlinear ODEs.



	(1)

	
[image: there is no content]



Ansatz:


x3−αln(x0+u)=φ(ω),ω=x02−u2



(88)







Reduced equation:


[image: there is no content]



(89)







Solutions of the reduced equation:


φ(ω)=ε(α2+ω)1/2−εαartanh(α2+ω)1/2α−α2ln(ω)+c1,ε=±1



(90)







Solutions of the eikonal equation:


x3−αln(x0+u)=ε(α2+x02−u2)1/2−εαartanh(α2+x02−u2)1/2α−α2ln(x02−u2)+c1,ε=±1



(91)








	(2)

	
[image: there is no content]



Ansatz:


(x32+u2)1/2=φ(ω),ω=(x12+x22)1/2



(92)







Reduced equation:


[image: there is no content]



(93)







Solutions of the reduced equation:


φ(ω)=iεω+c1,ε=±1;φ=0



(94)







Solutions of the eikonal equation:


(x32+u2)1/2=iε(x12+x22)1/2+c1,ε=±1;x32+u2=0



(95)








	(3)

	
[image: there is no content]



Ansatz:


x0+u+αarctanx2x1=φ(ω),ω=(x12+x22)1/2



(96)







Reduced equation:


[image: there is no content]



(97)







Solutions of the reduced equation:


φ(ω)=iεαln(ω)+c1,ε=±1



(98)







Solutions of the eikonal equation:


x0+u+αarctanx2x1=iεα2ln(x12+x22)+c1,ε=±1



(99)








	(4)

	
[image: there is no content]



Ansatz:


(x0+u)2+4x3=φ(ω),ω=x2



(100)







Reduced equation:


[image: there is no content]



(101)







Solutions of the reduced equation:


φ(ω)=4iεω+c1,ε=±1



(102)







Solutions of the eikonal equation:


(x0+u)2+4x3=4iεx2+c1,ε=±1



(103)








	(5)

	
[image: there is no content]



Ansatz:


(x0+u)2+4x3=φ(ω),ω=(x12+x22)1/2



(104)







Reduced equation:


[image: there is no content]



(105)







Solutions of the reduced equation:


[image: there is no content]



(106)







Solutions of the eikonal equation:


(x0+u)2+4x3=4iε(x12+x22)1/2+c1,ε=±1



(107)












3.1.5. There Are No Reductions


From the invariants of remaining six nonconjugate subalgebras, it is impossible to construct the ansatzes, which reduce the eikonal equation.



Below, we present those subalgebras as well as their invariants.



	(1)

	
⟨L3⟩⊕⟨X4−X0⟩⊕⟨X3⟩:x0,(x12+x22)1/2;




	(2)

	
⟨L3⟩⊕⟨X0+X4⟩⊕⟨X4−X0⟩:x3,(x12+x22)1/2;




	(3)

	
⟨X1⟩⊕⟨X2⟩⊕⟨X4−X0⟩:x0,x3;




	(4)

	
⟨X0⟩⊕⟨X1⟩⊕⟨X4⟩:x2,x3;




	(5)

	
⟨L3+α(X0+X4),α>0⟩⊕⟨X3⟩⊕⟨X4−X0⟩:(x12+x22)1/2,x0+αarctanx2x1;




	(6)

	
⟨L3+αX3,α>0⟩⊕⟨X0+X4⟩⊕⟨X4−X0⟩:(x12+x22)1/2,x3+αarctanx1x2.









3.2. Lie Algebras of the Type [image: there is no content]




[image: there is no content]



(108)







By [image: there is no content] we denote the real Lie algebra of dimension one [44]. It is known that there are only two different types of the real two-dimensional Lie algebras: decomposable [image: there is no content] and indecomposable [image: there is no content] [41]. The Lie algebras of the type [image: there is no content] are Abelian. Bases elements ([image: there is no content] and [image: there is no content] ) of the Lie algebras of type [image: there is no content] satisfy the commutation relations: [image: there is no content] [43]. The Lie algebras of the type [image: there is no content] are solvable ([41,43]).



The Lie algebra of the group [image: there is no content] contains 10 nonconjugate subalgebras of the Type [image: there is no content]. Below, we present the results obtained for those subalgebras.



3.2.1. Reductions to Equations, Which Can Be Split on Two Linear ODEs


Taking into account the invariants of two nonconjugate subalgebras, we constructed the ansatzes, which reduced the eikonal equation to those, which could be split on two linear ODEs.



	(1)

	
⟨−G,P3⟩⊕⟨X1⟩.



Ansatz:


(x02−x32−u2)1/2=φ(ω),ω=x2



(109)







Reduced equation:


[image: there is no content]



(110)







Solutions of the reduced equation:


φ(ω)=εω+c1,φ=0,ε=±1



(111)







Solutions of the eikonal equation:


(x02−x32−u2)1/2=εx2+c1,x02−x32−u2=0,ε=±1



(112)








	(2)

	
⟨−G,P3⟩⊕⟨L3⟩.



Ansatz:


(x02−x32−u2)1/2=φ(ω),ω=(x12+x22)1/2



(113)







Reduced equation:


[image: there is no content]



(114)







Solutions of the reduced equation:


φ(ω)=εω+c1,φ=0,ε=±1



(115)







Solutions of the eikonal equation:


(x02−x32−u2)1/2=ε(x12+x22)1/2+c1,x02−x32−u2=0,ε=±1



(116)












3.2.2. Reductions to Nonlinear ODEs


From the invariants of five nonconjugate subalgebras we constructed the ansatzes, which reduced the eikonal equation to non-linear ODEs.



	(1)

	
⟨−G+αX2,P3,α>0⟩⊕⟨X1⟩.



Ansatz:


x2−αln(x0+u)=φ(ω),ω=(x02−x32−u2)1/2



(117)







Reduced equation:


[image: there is no content]



(118)







Solutions of the reduced equation:


ω=0,φ(ω)=ε(α2+ω2)1/2−εαartanhα(α2+ω2)1/2−αln(ω)+c1,ε=±1



(119)







Solutions of the eikonal equation:


[image: there is no content]



(120)






x2−αln(x0+u)=ε(x02−x32−u2+α2)1/2−εαartanhα(x02−x32−u2+α2)1/2−α2ln(x02−x32−u2)+c1










[image: there is no content]



(121)








	(2)

	
⟨−1λL3−G,2X4,λ>0⟩⊕⟨X3⟩.



Ansatz:


ln(x0+u)+λarctanx1x2=φ(ω),ω=(x12+x22)1/2



(122)







Reduced equation:


[image: there is no content]



(123)







Solutions of the reduced equation:


φ(ω)=iελln(ω)+c1,ε=±1



(124)







Solutions of the eikonal equation:


ln(x0+u)+λarctanx1x2=iελ2ln(x12+x22)+c1,ε=±1



(125)








	(3)

	
⟨−G+αX2,X4,α>0⟩⊕⟨X1⟩.



Ansatz:


x2−αln(x0+u)=φ(ω),ω=x3



(126)







Reduced equation:


[image: there is no content]



(127)







Solutions of the reduced equation:


φ(ω)=iεω+c1,ε=±1



(128)







Solutions of the eikonal equation:


x2−αln(x0+u)=iεx3+c1,ε=±1



(129)








	(4)

	
⟨−G+αX3,X4,α>0⟩⊕⟨L3+βX3,β>0⟩.



Ansatz:


x3−αln(x0+u)+βarctanx1x2=φ(ω),ω=(x12+x22)1/2



(130)







Reduced equation:


[image: there is no content]



(131)







Solutions of the reduced equation:


φ(ω)=iε(ω2+β2)1/2−iεβartanhβ(ω2+β2)1/2+c1,ε=±1



(132)







Solutions of the eikonal equation:


[image: there is no content]



(133)






[image: there is no content]



(134)








	(5)

	
⟨−G+αX3,X4,α>0⟩⊕⟨L3⟩.



Ansatz:


x3−αln(x0+u)=φ(ω),ω=(x12+x22)1/2



(135)







Reduced equation:


[image: there is no content]



(136)







Solutions of the reduced equation:


φ(ω)=iεω+c1,ε=±1



(137)







Solutions of the eikonal equation:


x3−αln(x0+u)=iε(x12+x22)1/2+c1,ε=±1



(138)












3.2.3. There Are No Reductions


From the invariants of remaining three nonconjugate subalgebras, it is impossible to construct the ansatzes, which reduce the eikonal equation.



Below, we present those subalgebras as well as their invariants.



	(1)

	
⟨−G,X4⟩⊕⟨X1⟩:x2,x3;




	(2)

	
⟨−G,X4⟩⊕⟨L3⟩:x3,(x12+x22)1/2;




	(3)

	
⟨−G,X4⟩⊕⟨L3+αX3,α>0⟩:(x12+x22)1/2,x3+αarctanx1x2.









3.3. Lie Algebras of the Type [image: there is no content]




[image: there is no content]



(139)







Lie algebras of the type [image: there is no content] are nilpotent [43].



The Lie algebra of the group [image: there is no content] contains 17 nonconjugate subalgebras of the type [image: there is no content]. Below, we present the results obtained for those subalgebras.



3.3.1. Reductions to Algebraic Equations


Taking into account the invariants of seven nonconjugate subalgebras, we constructed the ansatzes, which reduced the eikonal equation to algebraic equations.



	(1)

	
⟨4X4,P1−X2−γX3,P2+X1−μX2−δX3,γ>0,δ≠0,μ>0⟩.



Ansatz:


x3(x0+u)2−(γx1+x2δ−μx3)(x0+u)+(δ−γμ)x1−x2γ+x3=φ(ω),ω=x0+u



(140)







Reduced equation:


[image: there is no content]



(141)







Solution of the eikonal equation:


[image: there is no content]



(142)








	(2)

	
⟨4X4,P1−X2−γX3,P2+X1−μX2,γ>0,μ>0⟩.



Ansatz:


x3(x0+u)2−(γx1−μx3)(x0+u)−γμx1−x2γ+x3=φ(ω),ω=x0+u



(143)







Reduced equation:


[image: there is no content]



(144)







Solution of the eikonal equation:


[image: there is no content]



(145)








	(3)

	
⟨4X4,P1−X2,P2+X1−μX2−δX3,δ>0,μ≠0⟩.



Ansatz:


x3(x0+u)2−(x2δ−μx3)(x0+u)+δx1+x3=φ(ω),ω=x0+u



(146)







Reduced equation:


[image: there is no content]



(147)







Solution of the eikonal equation:


[image: there is no content]



(148)








	(4)

	
⟨4X4,P1−X2,P2+X1−δX3,δ>0⟩.



Ansatz:


x3(x0+u)2−x2δ(x0+u)+δx1+x3=φ(ω),ω=x0+u



(149)







Reduced equation:


[image: there is no content]



(150)







Solutions of the eikonal equation:


(x0+u)2+1=0,(x0+u)2+δ2+1=0



(151)








	(5)

	
⟨4X4,P1−X2−βX3,P2+X1,β>0⟩.



Ansatz:


x3(x0+u)2−βx1(x0+u)−βx2+x3=φ(ω),ω=x0+u



(152)







Reduced equation:


[image: there is no content]



(153)







Solutions of the eikonal equation:


(x0+u)2+1=0,(x0+u)2+β2+1=0



(154)







As we see, the left hand sides of the Ansatzes (1)–(5) are polinomials in invariant [image: there is no content]. The reduced equations are also polinomials in variable ω, but with the constant coefficients. The solutions of the eikonal equation are also polinomials in variable [image: there is no content] with the constant coefficients.




	(6)

	
⟨4X4,P1−X2,P2+X1−μX2,μ≠0⟩.



Ansatz:


x3(x0+u)2+μx3(x0+u)+x3=φ(ω),ω=x0+u



(155)







Reduced equation:


[image: there is no content]



(156)







Solution of the eikonal equation:


[image: there is no content]



(157)








	(7)

	
⟨2μX4,P3−X2,X1+μX3,μ>0⟩.



Ansatz:


x2−x3−μx1x0+u=φ(ω),ω=x0+u



(158)







Reduced equation:


[image: there is no content]



(159)







Solutions of the reduced equation:


ω=0,ω2+μ2+1=0



(160)







Solutions of the eikonal equation:


u=−x0,(x0+u)2+μ2+1=0



(161)












3.3.2. Reductions to Equations, Which Can Be Split on Two Linear ODEs


Taking into account the invariants of five nonconjugate subalgebras, we constructed the ansatzes, which reduced the eikonal equation to those, which could be split on two linear ODEs.



	(1)

	
⟨2μX4,P3,X1+μX3,μ>0⟩.



Ansatz:


x0+u=φ(ω),ω=x2



(162)







Reduced equation:


[image: there is no content]



(163)







Solution of the reduced equation:


[image: there is no content]



(164)







Solution of the eikonal equation:


[image: there is no content]



(165)








	(2)

	
⟨2X4,P3−L3,X3⟩.



Ansatz:


x0+u=φ(ω),ω=(x12+x22)1/2



(166)







Reduced equation:


[image: there is no content]



(167)







Solution of the reduced equation:


[image: there is no content]



(168)







Solution of the eikonal equation:


[image: there is no content]



(169)








	(3)

	
⟨2X4,P3−X1,X3⟩.



Ansatz:


x0+u=φ(ω),ω=x2



(170)







Reduced equation:


[image: there is no content]



(171)







Solution of the reduced equation:


[image: there is no content]



(172)







Solution of the eikonal equation:


[image: there is no content]



(173)








	(4)

	
⟨−2αX4,L3+αX3,P3,α>0⟩.



Ansatz:


x0+u=φ(ω),ω=(x12+x22)1/2



(174)







Reduced equation:


[image: there is no content]



(175)







Solution of the reduced equation:


[image: there is no content]



(176)







Solution of the eikonal equation:


[image: there is no content]



(177)








	(5)

	
⟨4X4,P1−X2,P2+X1⟩.



Ansatz:


x0+u=φ(ω),ω=x3



(178)







Reduced equation:


[image: there is no content]



(179)







Solution of the reduced equation:


[image: there is no content]



(180)







Solution of the eikonal equation:


[image: there is no content]



(181)











Let us note that, in the cases (1)–(5), we obtained the same reduced equation. The solutions of the eikonal equation are also the same.




3.3.3. Reductions to Nonlinear ODEs


From the invariants of four nonconjugate subalgebras, we constructed the ansatzes, which reduced the eikonal equation to nonlinear ODEs.



	(1)

	
⟨2μX4,P3−2X0,X1+μX3,μ>0⟩.



Ansatz:


(x0+u)2+4x3−4μx1=φ(ω),ω=x2



(182)







Reduced equation:


[image: there is no content]



(183)







Solutions of the reduced equation:


φ(ω)=4iε(μ2+1)1/2ω+c1,ε=±1



(184)







Solutions of the eikonal equation:


u=2iεx2μ2+1+μx1−x3+c11/2−x0,ε=±1



(185)








	(2)

	
⟨2X4,P3−L3−2αX0,X3,α>0⟩.



Ansatz:


2αarctanx1x2−x0−u=φ(ω),ω=(x12+x22)1/2



(186)







Reduced equation:


[image: there is no content]



(187)







Solutions of the reduced equation:


φ(ω)=2iεαln(ω)+c1,ε=±1



(188)







Solutions of the eikonal equation:


u=2αarctanx1x2+iεαln(x12+x22)−x0+c1,ε=±1



(189)








	(3)

	
⟨−2βX4,L3+βX3,P3−2X0,β>0⟩.



Ansatz:


βarctanx1x2+14(x0+u)2+x3=φ(ω),ω=(x12+x22)1/2



(190)







Reduced equation:


[image: there is no content]



(191)







Solutions of the reduced equation:


φ(ω)=iεω2+β2−iεβartanhβω2+β2+c1,ε=±1



(192)







Solutions of the eikonal equation:


βarctanx1x2+14(x0+u)2=iεx12+x22+β2−iεβartanhβx12+x22+β2−x3+c1,ε=±1



(193)








	(4)

	
⟨2X4,P3,X3⟩.



Ansatz:


x2=φ(ω1,ω2),ω1=x0+u,ω2=x1.



(194)







Reduced equation:


[image: there is no content]



(195)







Solution of the reduced equation:


[image: there is no content]



(196)




where f is an arbitrary function.



Solution of the eikonal equation:


[image: there is no content]



(197)




where f is an arbitrary function.








3.3.4. There Are No Reductions


From the invariants of remaining one nonconjugate subalgebra, it is impossible to construct the ansatz, which reduces the eikonal equation.



Below, we present the subalgebra as well as its invariants.


⟨2X4,P3−2X0,X3⟩:x1,x2



(198)









3.4. Lie Algebras of the Type [image: there is no content]




[image: there is no content]



(199)







The Lie algebras of the type [image: there is no content] are solvable [41,43].



The Lie algebra of the group [image: there is no content] contains three nonconjugate subalgebras of the type [image: there is no content]. Below, we present the results obtained for those subalgebras.



3.4.1. Reductions to Nonlinear ODEs


From the invariants of two nonconjugate subalgebras, we constructed the ansatzes, which reduced the eikonal equation to nonlinear ODEs.



	(1)

	
⟨2βX4,P3,G+αX1+βX3,α>0,β>0⟩.



Ansatz:


x1−αln(x0+u)=φ(ω),ω=x2



(200)







Reduced equation:


[image: there is no content]



(201)







Solutions of the reduced equation:


φ(ω)=iεω+c1,ε=±1



(202)







Solutions of the eikonal equation:


x1−αln(x0+u)=iεx2+c1,ε=±1



(203)








	(2)

	
⟨2αX4,λP3,1λL3+G+αλX3,α>0,λ>0⟩.



Ansatz:


ln(x0+u)+λarctanx1x2=φ(ω),ω=(x12+x22)1/2



(204)







Reduced equation:


[image: there is no content]



(205)







Solutions of the reduced equation:


φ(ω)=iελln(ω)+c1,ε=±1



(206)







Solutions of the eikonal equation:


ln(x0+u)+λarctanx1x2=iελ2ln(x12+x22)+c1,ε=±1



(207)












3.4.2. There Are No Reductions


From the invariants of remaining one nonconjugate subalgebra, it is impossible to construct the ansatz, which reduces the eikonal equation.



Below, we present the subalgebra as well as its invariants.


⟨2αX4,P3,G+αX3,α>0⟩:x1,x2



(208)









3.5. Lie Algebras of the Type [image: there is no content]




[image: there is no content]



(209)







The Lie algebras of the type [image: there is no content] are solvable [41,43].



The Lie algebra of the group [image: there is no content] contains five nonconjugate subalgebras of the type [image: there is no content]. Below, we present the results obtained for those subalgebras.



3.5.1. Reductions to Equations, Which Can Be Split on Two Linear ODEs


Taking into account the invariants of one nonconjugate subalgebra, we constructed the ansatz, which reduced the eikonal equation to those, which could be split on two linear ODEs.


⟨P1,P2,G⟩



(210)







Ansatz:


(x02−x12−x22−u2)1/2=φ(ω),ω=x3



(211)







Reduced equation:


[image: there is no content]



(212)







Solutions of the reduced equation:


φ(ω)=εω+c,ε=±1,φ=0



(213)







Solutions of the eikonal equation:


(x02−x12−x22−u2)1/2=εx3+c1,ε=±1,x02−x12−x22−u2=0



(214)








3.5.2. Reductions to Nonlinear ODEs


From the invariants of three subalgebras, we constructed the ansatzes, which reduced the eikonal equation to nonlinear ODEs.



	(1)

	
⟨P1,P2,G+αX3,α>0⟩.



Ansatz:


x3−αln(x0+u)=φ(ω),ω=x02−x12−x22−u2



(215)







The reduced equation:


[image: there is no content]



(216)







Solutions of the reduced equation:


φ(ω)=ε(α2+ω)1/2−iεαarctan(α2+ω)1/2iα−α2lnω+c,ε=±1



(217)







Solutions of the eikonal equation:


x3−αln(x0+u)=ε(x02−x12−x22−u2+α2)1/2−iεαarctan(x02−x12−x22−u2+α2)1/2iα−−α2ln(x02−x12−x22−u2)+c,ε=±1












	(2)

	
⟨P3,X4,1λL3+G,λ>0⟩.



Ansatz:


ln(x0+u)+λarctanx1x2=φ(ω),ω=(x12+x22)1/2



(218)







Reduced equation:


[image: there is no content]



(219)







Solutions of the reduced equation:


φ(ω)=iελln(ω)+c,ε=±1



(220)







Solutions of the eikonal equation:


ln(x0+u)+λarctanx1x2=iελ2ln(x12+x22)+c,ε=±1



(221)








	(3)

	
⟨P3,X4,G+αX1,α>0⟩.



Ansatz:


x1−αln(x0+u)=φ(ω),ω=x2



(222)







Reduced equation:


[image: there is no content]



(223)







Solutions of the reduced equation:


φ(ω)=iεω+c,ε=±1



(224)







Solutions of the eikonal equation:


x1−αln(x0+u)=iεx2+c1,ε=±1



(225)












3.5.3. There Are No Reductions


From the invariants of remaining one nonconjugate subalgebra, it is impossible to construct the ansatz, which reduces the eikonal equation.



Below, we present the subalgebra as well as its invariants.


⟨P3,X4,G⟩:x1,x2



(226)









3.6. Lie Algebras of the Type [image: there is no content]




[image: there is no content]



(227)







The Lie algebras of the type [image: there is no content] are solvable [41,43].



The Lie algebra of the group [image: there is no content] contains four nonconjugate subalgebras of the type [image: there is no content].



3.6.1. There Are No Reductions


From the invariants of all four nonconjugate subalgebras, it is impossible to construct the ansatzes, which reduce the eikonal equation.



Below, we present those subalgebras as well as their invariants.



	(1)

	
⟨X4,X0,G⟩: x1,x2,x3;




	(2)

	
⟨X0,−X4,−1λL3−G,λ>0⟩: x3,(x12+x22)1/2;




	(3)

	
⟨X0,X4,−G+αX1,α>0⟩: x2,x3;




	(4)

	
⟨X0,X4,−L3λ−G−αλX3,α>0,λ>0⟩:(x12+x22)1/2,x3+αarctanx1x2.









3.7. Lie Algebras of the Type [image: there is no content]




[image: there is no content]



(228)







The Lie algebra of the group [image: there is no content] contains no nonconjugate subalgebras of the type [image: there is no content].




3.8. Lie Algebras of the Type [image: there is no content]




[image: there is no content]



(229)







The Lie algebras of the type [image: there is no content] are solvable [41,43].



The Lie algebra of the group [image: there is no content] contains 18 nonconjugate subalgebras of the type [image: there is no content].



Below, we present the results obtained for those subalgebras.



3.8.1. Reductions to Linear ODEs


The invariants of four subalgebras allow us to construct the ansatzes, which reduce the eikonal equation to linear ODEs.



	(1)

	
⟨P1−X1,P2−X2,−P3+L3⟩.



Ansatz:


x12+x22x0+u+1+x32x0+u+2u=φ(ω),ω=x0+u



(230)







Reduced equation:


[image: there is no content]



(231)







Solutions of the reduced equation:


ω+1=0,ω=0,φ(ω)=ω+c1



(232)







Solutions of the eikonal equation:


u=−1−x0,u=−x0,x12+x22x0+u+1+x32x0+u+2u=x0+u+c1



(233)








	(2)

	
⟨P1,−P2,−L3+αX3,α>0⟩.



Ansatz:


x02−x12−x22−u2=φ(ω),ω=x0+u



(234)







Reduced equation:


[image: there is no content]



(235)







Solution of the reduced equation:


[image: there is no content]



(236)







Solution of the eikonal equation:


[image: there is no content]



(237)








	(3)

	
⟨X1,−X2,P3−L3⟩.



Ansatz:


x02−x32−u2=φ(ω),ω=x0+u



(238)







Reduced equation:


[image: there is no content]



(239)







Solution of the reduced equation:


[image: there is no content]



(240)







Solution of the eikonal equation:


[image: there is no content]



(241)








	(4)

	
⟨P1,P2,−P3+L3⟩.



Ansatz:


x02−x12−x22−x32−u2=φ(ω),ω=x0+u



(242)







Reduced equation:


[image: there is no content]



(243)







Solution of the reduced equation:


[image: there is no content]



(244)







Solution of the eikonal equation:


[image: there is no content]



(245)












3.8.2. Reductions to Equations, Which Can Be Split on Two Linear ODEs


Taking into account the invariants of seven nonconjugate subalgebras, we constructed the ansatzes, which reduced the eikonal equation to those, which could be split on two linear ODEs.



	(1)

	
⟨X1,−X2,−L3+2X4⟩.



Ansatz:


x0+u=φ(ω),ω=x3



(246)







Reduced equation:


[image: there is no content]



(247)







Solution of the reduced equation:


[image: there is no content]



(248)







Solution of the eikonal equation:


[image: there is no content]



(249)








	(2)

	
⟨P1,P2,L3+2X4⟩.



Ansatz:


x0+u=φ(ω),ω=x3



(250)







Reduced equation:


[image: there is no content]



(251)







Solution of the reduced equation:


[image: there is no content]



(252)







Solution of the eikonal equation:


[image: there is no content]



(253)








	(3)

	
⟨X1,X2,L3+12P3+C3⟩.



Ansatz:


(x32+u2)1/2=φ(ω),ω=x0



(254)







Reduced equation:


[image: there is no content]



(255)







Solutions of the reduced equation:


φ(ω)=εω+c1,ε=±1,φ=0



(256)







Solutions of the eikonal equation:


(x32+u2)1/2=εx0+c,ε=±1,x32+u2=0



(257)








	(4)

	
⟨−X1,X2,−L3−λ2(P3+C3),0<λ<1⟩.



Ansatz:


(x32+u2)1/2=φ(ω),ω=x0



(258)







Reduced equation:


[image: there is no content]



(259)







Solutions of the reduced equation:


φ(ω)=εω+c1,ε=±1,φ=0



(260)







Solutions of the eikonal equation:


(x32+u2)1/2=εx0+c1,ε=±1,x32+u2=0



(261)








	(5)

	
⟨−X1,X2,−L3+λG,λ>0⟩.



Ansatz:


(x02−u2)1/2=φ(ω),ω=x3



(262)







Reduced equation:


[image: there is no content]



(263)







Solutions of the reduced equation:


φ(ω)=εω+c1,ε=±1



(264)







Solutions of the eikonal equation:


(x02−u2)1/2=εx3+c1,ε=±1



(265)








	(6)

	
⟨X1,−X2,−L3+αX3,α>0⟩.



Ansatz:


u=φ(ω),ω=x0



(266)







Reduced equation:


[image: there is no content]



(267)







Solutions of the reduced equation:


φ(ω)=εω+c1,ε=±1



(268)







Solutions of the eikonal equation:


u=εx0+c1,ε=±1



(269)








	(7)

	
⟨X1,−X2,P3−L3−2αX0,α>0⟩.



Ansatz:


(x0+u)3+6αx3(x0+u)+6α2(x0−u)=φ(ω),ω=(x0+u)2+4x3α



(270)







Reduced equation:


[image: there is no content]



(271)







Solutions of the reduced equation:


φ(ω)=εω3/2+c,ε=±1



(272)







Solutions of the eikonal equation:


(x0+u)3+6αx3(x0+u)+6α2(x0−u)=ε(x0+u)2+4αx33/2+c1,ε=±1



(273)












3.8.3. Reductions to Nonlinear ODEs


From the invariants of three nonconjugate subalgebras, we constructed the ansatzes, which reduced the eikonal equation to nonlinear ODEs.



	(1)

	
⟨X1,−X2,−L3−12P3+C3−α(X0+X4),α>0⟩.



Ansatz:


αarctanx3u−x0=φ(ω),ω=(x32+u2)1/2



(274)







Reduced equation:


[image: there is no content]



(275)







Solutions of the reduced equation:


ω=0,φ(ω)=εω2−α2−iεαartanhiαω2−α2+c,ε=±1



(276)







Solutions of the eikonal equation:


x32+u2=0,αarctanx3u−x0=εx32+u2−α2−iεαartanhiαx32+u2−α2+c,ε=±1



(277)








	(2)

	
⟨X1,X2,L3+λ2(P3+C3)+α(X0+X4),α>0,0<λ<1⟩.



Ansatz:


αarctanx3u−λx0=φ(ω),ω=(x32+u2)1/2



(278)







Reduced equation:


[image: there is no content]



(279)







Solutions of the reduced equation:


ω=0,φ(ω)=ελ2ω2−α2−iεαartanhiαλ2ω2−α2+c,ε=±1



(280)







Solutions of the eikonal equation:


[image: there is no content]










ε=±1,x32+u2=0












	(3)

	
⟨X1,X2,L3+λG+αX3,α>0,λ>0⟩.



Ansatz:


λx3−αln(x0+u)=φ(ω),ω=(x02−u2)1/2



(281)







Reduced equation:


[image: there is no content]



(282)







Solutions of the reduced equation:


ω=0,φ(ω)=ελ2ω2+α2−εαartanhαλ2ω2+α2−αln(ω)+c1,ε=±1.



(283)







Solutions of the eikonal equation:


[image: there is no content]



(284)






[image: there is no content]



(285)






[image: there is no content]



(286)












3.8.4. Reductions to PDEs


From the invariants of two nonconjugate subalgebras, we constructed the ansatzes, which reduced the eikonal equation to PDEs.



	(1)

	
⟨X1,X2,L3⟩.



Ansatz:


u=φ(ω1,ω2),ω1=x0,ω2=x3



(287)







Reduced equation:


[image: there is no content]



(288)







Solutions of the reduced equation:


φ(ω1,ω2)=εc22+1ω1+c2ω2+c1+c2,ε=±1



(289)







Solutions of the eikonal equation:


u=εc22+1x0+c2x3+c1+c2,ε=±1



(290)








	(2)

	
⟨P1,P2,L3⟩.



Ansatz:


x3=φ(ω1,ω2),ω1=x0+u,ω2=x02−x12−x22−u2



(291)







The reduced equation:


[image: there is no content]



(292)







Solutions of the reduced equation:


[image: there is no content]



(293)







Solutions on the eikonal equation:


x3=c1ln(x0+u)−ε(x02−x12−x22−u2+c12)1/2+iεc1arctanx02−x12−x22−u2+c12ic1−c12ln(x02−x12−x22−u2)+c2










[image: there is no content]



(294)











As we see, in the above two cases, the reduced equations are PDEs. The reason is that the subalgebras corresponding to them have the rank two. Therefore, they have three invariants. As a rule, the ansatzes, which can be constructed with the help of those invariants, reduce the eikonal equation to PDEs.




3.8.5. There Are No Reductions


From the invariants of remaining two nonconjugate subalgebras, it is impossible to construct the ansatzes, which reduce the eikonal equation.



Below, we present those subalgebras as well as their invariants.



	(1)

	
⟨−X3,X4−X0,−L3λ−12P3+C3,0<λ<1⟩:x0,(x12+x22)1/2;




	(2)

	
⟨X3,X4−X0,L3λ+12P3+C3+αλ(X0+X4),α>0,0<λ<1⟩:(x12+x22)1/2,αarctanx1x2−x0.









3.9. Lie Algebras of the Type [image: there is no content]




[e1,e3]=ae1−e2,[e2,e3]=e1+ae2,(a>0).a=c:



(295)







The Lie algebras of the type [image: there is no content] are solvable [41,43].



The Lie algebra of the group [image: there is no content] contains two nonconjugate subalgebras of the type [image: there is no content]. Below, we present the results obtained for those subalgebras.



3.9.1. Reductions to Equations, Which Can Be Split on Two Linear ODEs


Taking into account the invariants of one nonconjugate subalgebra, we constructed the ansatz, which reduced the eikonal equation to those, which could be split on two linear ODEs.


⟨P1,P2,L3+λG,λ>0⟩



(296)







Ansatz:


(x02−x12−x22−u2)1/2=φ(ω),ω=x3



(297)







Reduced equation:


[image: there is no content]



(298)







Solutions of the reduced equation:


φ(ω)=εω+c1,ε=±1,φ=0



(299)







Solutions of the eikonal equation:


(x02−x12−x22−u2)1/2=εx3+c1,ε=±1,x02−x12−x22−u2=0



(300)








3.9.2. Reductions to Nonlinear ODEs


From the invariants of one nonconjugate subalgebra, we constructed the ansatz, which reduced the eikonal equation to nonlinear ODEs.


⟨P1,P2,L3+λG+αX3,α>0,λ>0⟩



(301)







Ansatz:


λx3−αln(x0+u)=φ(ω),ω=x02−x12−x22−u2



(302)







The reduced equation:


[image: there is no content]



(303)







Solutions of the reduced equation:


φ(ω)=ε(λ2ω+α2)1/2−iεαarctanλ2ω+α2iα−α2lnω+c,ε=±1



(304)







Solutions of the eikonal equation:


λx3−αln(x0+u)=ε(λ2(x02−x12−x22−u2)+α2)1/2−iεαarctanλ2(x02−x12−x22−u2)+α2iα−α2ln(x02−x12−x22−u2)+c










[image: there is no content]













3.10. Lie Algebras of the Type [image: there is no content]




[image: there is no content]



(305)







The Lie algebras of the type [image: there is no content] are semisimple [43].



The Lie algebra of the group [image: there is no content] contains one nonconjugate subalgebra of the type [image: there is no content]. Below, we present the results obtained for this subalgebra.



3.10.1. Reductions to PDEs


From the invariants of one nonconjugate subalgebra, we constructed the ansatz, which reduced the eikonal equation to PDEs.


⟨P3,G,−C3⟩



(306)







Ansatz:


(x02−x32−u2)1/2=φ(ω1,ω2),ω1=x1,ω2=x2



(307)







Reduced equation:


[image: there is no content]



(308)







Solutions of the reduced equation:


φ(ω1,ω2)=0,φ(ω1,ω2)=ε1−c22ω1+c2ω2+c1+c2,ε=±1



(309)







Solutions of the eikonal equation:


x02−x32−u2=0,(x02−x32−u2)1/2=ε(1−c22)1/2x1+c2x2+c1+c2,ε=±1



(310)







As we see, the reduced equation is PDEs. As above, the reason is that the corresponding subalgebra has rank two.





3.11. Lie Algebras of the Type [image: there is no content]




[image: there is no content]



(311)







The Lie algebras of the type [image: there is no content] are semisimple [43].



The Lie algebra of the group [image: there is no content] contains two nonconjugate subalgebras of the type [image: there is no content]. Below, we present the results obtained for those subalgebras.



3.11.1. Reductions to Equations, Which Can Be Split on Two Linear ODEs


Taking into account the invariants of one nonconjugate subalgebra, we constructed the ansatz, which reduced the eikonal equation to those, which could be split on two linear ODEs.


⟨−12L3+12P3+C3,12L2+12P2+C2,12L1+12P1+C1⟩



(312)







Ansatz:


(x12+x22+x32+u2)1/2=φ(ω),ω=x0



(313)







Reduced equation:


[image: there is no content]



(314)







Solutions of the reduced equation:


φ(ω)=εω+c1,ε=±1,φ=0



(315)







Solutions of the eikonal equation:


(x12+x22+x32+u2)1/2=εx0+c1,ε=±1,x12+x22+x32+u2=0



(316)








3.11.2. Reductions to PDEs


From the invariants of one nonconjugate subalgebra, we constructed the ansatz, which reduced the eikonal equation to PDEs.


⟨−L3,−L2,−L1⟩



(317)







Ansatz:


u=φ(ω1,ω2),ω1=x0,ω2=(x12+x22+x32)1/2



(318)







Reduced equation:


[image: there is no content]



(319)







Solutions of the reduced equation:


φ(ω1,ω2)=εc22+1ω1+c2ω2+c1+c2,ε=±1



(320)







Solutions of the eikonal equation:


u=ε(c22+1)1/2x0+c2(x12+x22+x32)1/2+c1+c2,ε=±1



(321)







As we see, the reduced equation is PDEs. As above, the reason is that the corresponding subalgebra has rank two.






4. Conclusions


The relationship is studied between the structural properties of three-dimensional nonconjugate subalgebras of the Lie algebra of the group [image: there is no content] and the types of the symmetry reductions of the eikonal equation to ODEs.



Below, we present some consequences resulting from that relationship.



	
Reductions to algebraic equations are induced by some subalgebras of the types [image: there is no content], [image: there is no content];



	
Reductions to linear ODEs are induced by some subalgebras of the types [image: there is no content], [image: there is no content];



	
Reductions to equations, which can be split on two linear ODEs, are induced by some subalgebras of the types [image: there is no content], [image: there is no content], [image: there is no content], [image: there is no content], [image: there is no content], [image: there is no content], [image: there is no content];



	
Reductions to nonlinear ODEs are induced by subalgebras of the type [image: there is no content] as well as by some subalgebras of the types [image: there is no content], [image: there is no content], [image: there is no content], [image: there is no content], [image: there is no content], [image: there is no content];



	
Reductions to PDEs are induced by subalgebras of the type [image: there is no content] as well as by some subalgebras of the types [image: there is no content], [image: there is no content];



	
From invariants of subalgebras of the type [image: there is no content] as well as of some subalgebras of the types [image: there is no content], [image: there is no content], [image: there is no content], [image: there is no content], [image: there is no content], [image: there is no content], we cannot construct ansatzes reducing the eikonal equation;



	
There are no nonconjugate subalgebras of the Lie algebra of the group [image: there is no content] of the type [image: there is no content].
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