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Abstract: Two measures are commonly used to describe scale-invariant complexity in images: fractal
dimension (D) and power spectrum decay rate (β). Although a relationship between these measures
has been derived mathematically, empirical validation across measurements is lacking. Here, we
determine the relationship between D and β for 1- and 2-dimensional fractals. We find that for
1-dimensional fractals, measurements of D and β obey the derived relationship. Similarly, in
2-dimensional fractals, measurements along any straight-line path across the fractal’s surface obey
the mathematically derived relationship. However, the standard approach of vision researchers is to
measure β of the surface after 2-dimensional Fourier decomposition rather than along a straight-line
path. This surface technique provides measurements of β that do not obey the mathematically derived
relationship with D. Instead, this method produces values of β that imply that the fractal’s surface is
much smoother than the measurements along the straight lines indicate. To facilitate communication
across disciplines, we provide empirically derived equations for relating each measure of β to D.
Finally, we discuss implications for future research on topics including stress reduction and the
perception of motion in the context of a generalized equation relating β to D.

Keywords: fractal patterns; scale-invariance; fractal dimension; spectral scaling; midpoint
displacement; Fourier noise; Fourier decomposition

1. Introduction

Researchers from diverse disciplines ranging from physics to psychology have converged on the
question of how to quantify the scaling symmetry of natural objects. In one camp, fractals researchers
describe objects such as clouds, coastlines, mountain ridgelines, and trees using a scale-invariant
power law to measure the rate at which structure appears as the scale of measurement decreases [1–6],
though debates continue regarding which power-laws, if any, best describe natural phenomena [7–11].
The following equation is a common example:

N ∼ L´D (1)

where N is the extent to which the fractal fills space as measured at scale L [1,4]. The power law’s
exponent D is called the fractal dimension.

Consider Figure 1a,b, which plots a fractal terrain in x, y, and z space, as a demonstration
of how D relates to the object’s Euclidean dimension E. The topological dimension of this surface
is E = 2 and it is embedded in a space of E = 3. Its fractal dimension, D(Surface), lies in the range
between these two Euclidean dimensions: 2 < D(Surface) < 3. Taking a vertical slice through this terrain
(i.e., taking its intersection with the xz or yz plane) creates a fractal “mountain” profile (see Figure 1c)
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quantified by D(Mountain Edge) = D(Surface) ´ 1. Similarly, taking a horizontal slice creates a fractal
“coastline” (see Figure 1d) with D(Coastal Edge) = D(Mountain Edge). To measure D(Surface), mathematicians
and natural scientists typically determine D(Mountain Edge) or D(Coastal Edge) (and then add 1) because the
measurements involved are easier and faster to implement than for measurements of D(Surface).
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Figure 1. Plots of a fractal terrain with D = 2.5 and its intersection with axial planes; (a) “Surface” plot
of a fractal terrain; (b) intensity “image” of the terrain; (c) “mountain edge” profile of an “xz-slice” or
“yz-slice” of the terrain; (d) “coastal edge” of an “xy-slice” of the terrain.

Vision researchers similarly use a power law to capture the scale-invariant properties of the
fractal. However, they typically focus on the power spectrum decay rate (β) of the terrain’s intensity
image [12–21]. This intensity image is generated by converting the terrain height into either grayscale
variations (high is white, black is low) to create a grayscale map (see Figure 1b) or color variations to
create a “heat map”. The following power law then characterizes the fractal structure in these maps
and has, in particular, proved useful for quantifying the spectral scaling decay rate of grayscale images
of natural scenes:

SVp f q “ 1{pc fβq (2)

where SV(f ) is the spectral density (power), f is the spatial frequency, and β and c are constants.
Voss [5] considered the Hurst exponent H, which by definition is related to D as follows:

D “ E ` 1´H (3)

where E is the Euclidean topological dimension. H and D lie in the following ranges: 0 < H < 1,
E < D < E + 1. He then derived the relationship between H and β for a fractional Brownian function:

β “ 2H + 1 (4)

where 1 < β < 3. Accordingly, Voss [5] stated that an approximation of the relationship for “the
statistically self-affine fractional Brownian function VH(x), with x in an E-dimensional Euclidian space,
which has a fractal dimension D and spectral density SV(f ) 9 1/fβ, for the fluctuations along a straight
line path in any direction in E-space” is provided by the equation

D “ E ` p3´βq{2 (5)
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However, through this definition, Voss [5] stipulates a different measure of β than that typically
used by vision researchers. The definition specifies the measure of β be taken along the intersection of
the fractal with a plane parallel to the z-axis—a mountain edge—and measuring the spectral decay
of the 1-dimensional trace—a mountain profile. Thus, β in Equations (4) and (5) are what we will
hereafter call β(Mountain Edge).

The relationship highlighted in Equation (5) between D and β(Mountain Edge) has not been observed
empirically for either 1-dimensional (E = 1, D ď 2) or 2-dimensional (E = 2, D ď 3) fractals.
To experimentally discern this relationship, we use two methods for generating fractals—namely,
midpoint displacement fractals (in which D serves as the input parameter) and fractal Fourier noise
(in which β is the input). We find that, when measured along a straight-line path, the relationship
described by Voss [5] holds for fractals with both E = 1 and 2. However, the relationship described
by Voss [5] does not extend to the observed relationship between measurements of D and β when β

is measured by the standard method of vision researchers (in a 2-dimensional Fourier space, which
we will hereafter call β(Surface)). A new equation that extends the relationship between D and β to
multi-dimensional Fourier spaces has the potential to enhance discourse among mathematicians,
who are experts in the geometry of fractals, physicists, who are experts in surfaces and textures, and
vision scientists, who are experts in animals’ sensation and perception of geometric shapes, surfaces,
and textures.

Further consideration of the relationship between D and β is both important and timely because
new studies are being performed using fractals to investigate a variety of behaviors including
aesthetics [22–27], navigation [28], object pareidolia (perceiving coherent forms in noise) [29,30],
sensitivity [24], and associated neural mechanisms [31–33]. This is especially important in aesthetics
research, where there have been claims of universality in preference for patterns of moderately low
complexity [23,26,34–37]. To test this hypothesis, it is necessary to be able to translate the units of
measurement of researchers who alternately use D [22,25,26,28,29,31,33–40], β [14,24,30,32,41–46], or,
infrequently, both [23,27]. The crux of the problem, perhaps, is that D is a general parameter that
quantifies complexity in a variety of patterns, whereas β is limited (at least in practice) in its ability
to quantify some patterns’ complexity. For example, Fourier analysis is poorly suited to describe the
complexity of patterns including strange attractors and some line fractals (e.g., dragon fractals and
Koch snowflakes), which have been used by vision researchers to study aesthetics [25,31,34,35] and
perceived complexity [47]. This provides a strong impetus to convert to D when forming general
conclusions. Still, there is a great deal of utility in presenting fractal noise patterns that are defined in
terms of β as visual stimuli, precisely because they mimic the statistics of natural scenes [12,13,15–21].
Here, we provide the basis for translation between the parameters D and β in a general equation that
follows from empirical analysis of the relationships between measures of D and β.

2. Materials and Methods

Midpoint displacement and Fourier noise fractals were generated and analyzed in MATLAB
version 2015b.

2.1. Midpoint Displacement Fractals

Sets of random midpoint displacement fractal lines (see Section 2.1.1) and images (see Section 2.1.2)
were generated using an algorithm described by Fournier, Fussel, and Carpenter [2], which allowed us
to specify D.

2.1.1. One-Dimensional Midpoint Displacement Fractals

To generate each 1-dimensional midpoint displacement fractal as a trace, a vertex, V, was added
to the midpoint of an initial set of two endpoints and displaced vertically by a value randomly selected
from a Gaussian distribution, with σ = 1, that was scaled by a factor of 2´2(3´ D)(R + 1), where D is the
fractal dimension and R is the current level of recursion. This process is shown schematically for an
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exact midpoint displacement fractal that is not affected by random perturbations in Figure 2. As in the
schematic, the scaling factor of the fractals generated for this study was held constant for each vertex
at a given level of recursion, and changed with each level of recursion. The vertices at each recursion
served as endpoints in the next level of recursion for R recursions in order to generate time-series data.
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2.1.2. Two-Dimensional Midpoint Displacement Fractals 

To generate each 2-dimensional midpoint displacement fractal as an image, a vertex, V, was 

added to the midpoint of an initial set of four edge points and displaced according to the generation 
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Figure 2. Illustration of the generation of 1-dimensional midpoint displacement fractals. (a) Cartoon
graph of a scaling plot in log–log coordinates that determines the rate of scaling of midpoint
displacements across recursions for high (solid line) and low (dashed line) D fractals; (b) Schematics of
recursions 0–2 are shown for low (dashed line) and high (solid line) D exact midpoint displacement
fractals. Gray arrows indicate displacements that occur with each recursion in (b).

We retained the random values used for vertical displacement to generate sets of fractals that
varied in D but retained the structure introduced at each level of recursion (see Figure 3).
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Figure 3. Plots of 1-dimensional statistical midpoint displacement fractals. (a–c) Fractal traces that vary
in D, such that D = 1.2, 1.5, and 1.8, are generated from a single set of random numbers that contribute
to the variable length and direction of displacement of the midpoints at each recursion.

2.1.2. Two-Dimensional Midpoint Displacement Fractals

To generate each 2-dimensional midpoint displacement fractal as an image, a vertex, V, was
added to the midpoint of an initial set of four edge points and displaced according to the generation
rules described in Section 2.1.1 (see illustration of the generation process in Figure 4). The vertices
at each recursion served as edges in the next level of recursion for n recursions in order to generate
gray-scale intensity images.
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generated from a single set of random numbers that vary in D, such that D = 1.2, 1.5, and 1.8;  

(d–f) Grayscale intensity map images of the surface plots in (a–c). 

2.2. One- and Two-Dimensional Fractal Fourier Noise 

Sets of fractal noise were generated using an algorithm described by Saupe [3], which allowed 

us to specify β. 

For an image of size x by y pixels, an x by y amplitude matrix is created in which amplitude is 

specified for each spatial frequency by applying Equation (2). Each frequency is then assigned a 

phase specified by a phase matrix of size x by y, which consists of numbers that are randomly 

selected from a Gaussian distribution. The amplitude and phase matrices are then subjected to an 

inverse Fourier transform to generate a time series (if x or y = 1) or an image (if x and y > 1). The 

resulting fractals have scaling properties defined by their respective input β values (see Figures 6 

and 7).  

As with the midpoint displacement fractals, we retained the matrices of random numbers used 

to determine the phases of each spatial frequency (see Figures 6d and 7d) to generate sets of fractal 

Figure 4. Illustration of the generation of a 2-dimensional midpoint displacement fractal as the heights
(indicated by grayscale intensity) of particular points are specified over eight recursions. (a–d) The
second, fourth, sixth, and final recursions are shown. In (a–c), white space indicates points for which
height has not yet been specified.

We retained the random values used for vertical displacement to generate sets of fractal terrains
that varied in D but retained consistent large-scale structures (see Figure 5).
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from a single set of random numbers that vary in D, such that D = 1.2, 1.5, and 1.8; (d–f) Grayscale
intensity map images of the surface plots in (a–c).
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2.2. One- and Two-Dimensional Fractal Fourier Noise

Sets of fractal noise were generated using an algorithm described by Saupe [3], which allowed us
to specify β.

For an image of size x by y pixels, an x by y amplitude matrix is created in which amplitude is
specified for each spatial frequency by applying Equation (2). Each frequency is then assigned a phase
specified by a phase matrix of size x by y, which consists of numbers that are randomly selected from
a Gaussian distribution. The amplitude and phase matrices are then subjected to an inverse Fourier
transform to generate a time series (if x or y = 1) or an image (if x and y > 1). The resulting fractals
have scaling properties defined by their respective input β values (see Figures 6 and 7).
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frequency (x-axis) for β(Input) = 2.6, 2, and 1.4; (d) Set of random phases (y-axis) as a function of
frequency (x-axis); (e–g) fractal traces resulting from the pairing of the phases in panel (d) with power
spectra from (a–c) respectively.
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frequency in xy coordinates for β(Input) = 2.6, 2, and 1.4; (d) Set of random phases (z-axis) as a function
of frequency in xy coordinates; (e–g) fractal terrains resulting from the pairing of the phases in panel
(d) with power spectra from (a–c) respectively.

As with the midpoint displacement fractals, we retained the matrices of random numbers used to
determine the phases of each spatial frequency (see Figures 6d and 7d) to generate sets of fractal noise
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images that differed only in their spectral scaling. One-dimensional fractal time series were generated
from phase maps with amplitude series that varied in the specified β, β(input) (see Figure 6e–g). Values
of β(input) were paired with phase maps to create 2-dimensional fractal images as well (see Figure 7e–g).

2.3. Measurement of the Box Counting Dimension

2.3.1. Box Counting Analysis of 1-Dimensional Fractals: D(Mountain Edge)

Box counting was performed on the intersection of 1-dimensional fractals with a horizontal line
at the trace’s median height. For the 2-dimensional fractal images, a fractal dust set was formed by
taking the intersection of the height values of each row of the image with a line intersecting the median
height. This dust set was used to compute the box counting dimension through the use of custom
Matlab scripts. Briefly, for each box size with side length L, from the length of the fractal to a single
pixel in steps of L/2 for a total of n steps, the image is covered with a set of boxes, and the number of
boxes that contain any non-zero quantity of points is counted. The box counts of pairs of neighboring
grid scales from L/(23) to L/(2n ´ 3) were averaged to compute D, while the counts from the grid scales
outside this range (the larger and smaller boxes, where n = {0, 1, 2, n ´ 2, n ´ 1, and n}), were not used.
The embedding dimension of the series of points is 1, but the embedding dimension of the fractal
mountain edge is 2, so we averaged these values of D, computed for pairs of grid sizes, and added
1 to report the fractal dimension of the 1-dimensional fractals, D(Mountain Edge), which span the range
1 < D(Mountain Edge) < 2.
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Figure 8. Edge extraction procedure for 2-dimensional midpoint displacement fractals. (a–c) Grayscale
intensity map images of fractals generated from a single set of random numbers that vary in D, such
that D = 1.2, 1.5, and 1.8; (d–f) Binary images resulting from the threshold procedure applied to the
terrains shown in (a–c); (g–i) Coastal edges extracted from the binary images shown in (d–f).
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2.3.2. Box Counting Analysis of xy Slices of 2-Dimensional Fractal Coastlines: D(Coastal Edge)

To isolate the coastal edge of a fractal terrain, the median intensity value of the intensity image
was selected as the level at which a binary threshold procedure was applied with the Matlab command
im2bw. The median, in particular, was selected because it is the level at which all of the resultant
binary images have roughly equivalent black and white regions across the range of D. The edge of the
binary images was extracted with the Matlab command bwperim. Figure 8 provides examples of the
edge extraction process. This particular luminance edge—extracted from the coastal edge images and
shown in Figure 8g–i —served as the set on which box counting was performed.

Box counting was performed on the coastal edge images as described in Section 2.3.1, with the
exception that the boxes were applied as a grid over the image. Here, the embedding dimension is 2,
so for the coastal edge images we report the measured values of D, D(Coastal Edge), which span the range
1 < D(Coastal Edge) < 2.

2.4. Fourier Decomposition and Measurement of β

2.4.1. Spectral Scaling Analysis of 1-Dimensional Fractals: β(Mountain Edge)

Fractal traces (see examples in Figures 3 and 6e–g) were decomposed with a 1-dimensional Fast
Fourier Transform. The square of the real-valued component was retained. Power was plotted against
frequency in log–log coordinates, and the slope of a least squares regression line was retained as an
empirical measure of the spectral decay rate, β(Mountain Edge), of the time series.

2.4.2. Spectral Scaling Analysis of 2-Dimensional Fractal Intensity Images: β(Surface)

Each image was decomposed with a 2-dimensional Fast Fourier Transform. The lowest frequency
components were centered, and the square of the real-valued component was retained and transformed
into polar coordinates. For each polar angle, power was plotted against frequency in log-log
coordinates, and the average was retained as an empirical measure of the spectral decay rate, β(Surface),
of the image (see Figure 9a–c).
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Figure 9. Fourier decomposition of 2-dimensional fractals. (a) Fractal surface generated with the
inverse Fourier method; (b) Power spectrum of the Fourier decomposition of the terrain shown in (a);
(c) Power spectrum shown in (b) with low spatial frequencies centered.

3. Results

3.1. Relationship between D(Mountain Edge) and β(Mountain Edge) for 1-Dimensional Fractals

We first analyzed 1-dimensional midpoint displacement and Fourier noise fractals to validate our
measures and test Voss’s approximation of the relationship between D and β for 1-dimensional
fractals. To validate our box counting measure, values of D ranging from 1 to 2 in steps
of 0.05 were used to generate 100 sets of midpoint fractals of length 220. The measurement technique
described in Section 2.3.1 over-estimates D by a progressively smaller amount as D approaches 2,
as shown in Figure 10a. This is a minor measurement error. Accordingly, the best linear fit,
D(Input) = 0.91 + 0.16 ˆ D(Mountain Edge), for which R2 = 0.97 (Figure 10a, black line), deviates from the
unity line (Figure 10a, blue line) by only a small amount.
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Figure 10. 1-dimensional fractal measurements. (a) Midpoint displacement fractals’ D(Mountain Edge)

measurements plotted against their D(Input) values; (b) Fourier noise fractals’ β(Mountain Edge)

measurements plotted against their β(Input) values; (c) Fourier noise fractals’ D(Mountain Edge)

measurements, adjusted by the linear fit from panel (a), plotted against their β(Mountain Edge)

measurements. In each panel, the best linear fit for the data is shown with a black line. In panels (a,b),
unity is represented by the blue line. In panel (c), Voss’s approximation (Equation (5)) is represented
by the red line. Data are colored to distinguish adjacent input values such that each datum's color is
determined by D(Input) in panel (a) and β(Input) in panels (b,c).

To validate our spectral scaling rate measure, values of β ranging from 1 to 3 in steps of 0.1
were used to generate 100 sets of fractal Fourier noise of length 220. The measurement technique
described in Section 2.4.1 does well at approximating β (as shown in Figure 10b), with the best linear
fit, β(Input) = 0.0003 + 0.9999 ˆ β(Mountain Edge), for which R2 = 1.00 (Figure 10b, black line), overlapped
by the unity line (Figure 10b, blue line).

These measures reliably reflect their input parameters, so we determined the extent to
which these empirical measurements are consistent with Voss’s approximation, Equation (5).
Because our box counting technique results in a small measurement error across the range of
dimension, we adjusted the measured D values of the fractal Fourier noise by substituting
D(Mountain Edge) into the experimentally determined regression equation stated above in this section and
computing the expected D(Input), which we call D(Adjusted) (as shown in Figure 10c). The best linear
fit—D(Adjusted) = 2.48 ´ 0.50 ˆ β(Mountain Edge)—for which R2 = 0.97 (Figure 10c, black line), is close to
Voss’s approximation (Equation (5)), given E = 1 (Figure 10c, red line). We conclude that Voss’s
approximation for fractals with E < D < E + 1 and 1 < β < 3 is accurate when E = 1. We also note that
the difference between Equation (5) and our regression equation is inconsequential, and both overlap
our measurements across the range of D and β.

3.2. Relation of D(Mountain Edge) and D(Coastal Edge) for 2-Dimensional Fractals

Voss [5] generalized the relationship between D and β to n-dimensional spaces in Equation (5),
so we next consider the case of E = 2, the dimensional space of our visual field. To do so, we
first generated 100 sets of midpoint displacement fractals with values of D ranging from 2 to 3
in steps of 0.05 with side length 211. For each fractal, the dimension of the mountain profile was
measured according to the technique described in Section 2.3.1. These measures of D(Mountain Edge)
were averaged together for each image. Again, this under- and over-estimates D by a progressively
larger amount as D approaches 2 and 1, respectively, as shown in Figure 11a. The best linear
fit—D(Input) = 0.38 + 0.77 ˆ D(Mountain Edge), for which R2 = 0.87 (Figure 11a, black line)—deviates from
the unity line (Figure 11a, blue line) in a manner similar to that observed for 1-dimensional fractals.
When the coastal edge of the image was measured according to the technique described in Section 2.3.2,
we observe a similar trend, with the best linear fit—D(Input) = 0.28 + 0.81 ˆ D(Coastal Edge), for which
R2 = 0.97 (Figure 11b, black line)—deviating from the unity line (Figure 11b, blue line) in a manner
similar to that observed for the dust measurement technique. These measures of D, averaged mountain
edges and coastal edge values, are reasonable approximations of each other, with the best linear fit
D(Mountain Edge) = 0.07 + 0.93 ˆ D(Coastal Edge), for which R2 = 0.86 (Figure 11c). Both of these measures
provide an accurate means by which to compute the fractal dimension of an image.
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Figure 11. 2-dimensional fractal D measurements. (a) Midpoint displacement fractals’ D(Mountain Edge)

measurements plotted against their D(Input) values; (b) Midpoint displacement fractals’ D(Coastal Edge)

measurements plotted against their D(Input) values; (c) Midpoint displacement fractals’ D(Coastal Edge)

measurements plotted against their D(Mountain Edge) measurements. In each panel, unity is represented
by the blue line, while the best linear fit for the data is represented by the black line. Data are colored to
distinguish adjacent input values such that each datum's color is determined by D(Input) in panels (a–c).

3.3. Relation of β(Mountain Edge) and β(Surface) for 2-Dimensional Fractals

Having found that our measures of D were consistent with each other, we aimed to test
their relation to β. To this end, we generated 100 sets of fractal Fourier noise images with
values of β(Input) ranging from 1 to 3, in steps of 0.1, with side length 211 pixels. Measuring the
spectral decay of a 2-dimensional Fourier analysis as described in Section 2.4.2 provides measured
β(Surface) values that are consistent with the specified input β(Input) values, with the best linear
fit β(Surface) = 0.12 + 0.95 ˆ β(Input), for which R2 = 0.9999 (see Figure 12a). Having verified the
generation process with an analysis in native space, we measured the β of these 2-dimensional fractals
along a straight line path, β(Mountain Edge). We averaged the β(Mountain Edge) measurements for each
row of each image, as described in Section 2.4.1, to allow us to follow the definition put forth by Voss [5].
We found that these values of β(Mountain Edge) differ from the specified input β values (see Figure 12b), with an
offset as evidenced by the best linear fit β(Mountain Edge) = ´0.39 + 0.82 ˆ β(Input), for which R2 = 0.998
(Figure 12b, black line).
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an arbitrary value of β(Surface), βi, is rougher (i.e., has a larger contribution of fine structure) than a 

mountain profile from a 1-dimensional fractal with β(Mountain Edge) = βi (see Figure 13). We then took 

measurements for an ensemble of 100 random phase maps around β = 0, which show that our 

measures converge when there is equal power across frequencies (see Figure 12c). An exploratory 

analysis on a new set of images with 0 ≤ β(Input) ≤ 4.5 allowed us to empirically determine that fractal 

Fourier noise terrains with β(Input) values in the range 1.8 < β(Input) < 3.8 consistently give β(Mountain Edge) 

values in the range 1 < β(Mountain Edge) < 3 (see Figure 12d). We found that β(Input) and β(Mountain Edge) are 

relatable by the regression equation β(Mountain Edge) = -0.64 + 0.93 × β(Input), for which R2 = 0.997 (Figure 12d, 

black line), across the range 1 < β(Mountain) < 3 and 1.8 < β(Input) < 3.8.  

An important validation of our analysis techniques is that β(Mountain Edge) and β(Surface) approximately 

converge at β = 0 (as expected), because for white noise, there is equal power across frequencies. This 

Figure 12. 2-dimensional fractal β measurements. (a) Fourier noise fractals’ β(Surface) measurements
plotted against their β input values; (b) Fourier noise fractals’ β(Mountain Edge) measurements plotted
against their β(Input) values; (c) Fourier noise fractals’ β(Mountain Edge) measurements plotted against
their β(Surface) measurements, showing that the measures converge at β = 0; (d) Fourier noise fractals’
β(Mountain Edge) measurements plotted against their β(Input) values. In each panel, unity is represented
by the blue line, while the best linear fit for the data is represented by the black line. Data are colored to
distinguish adjacent input values such that each datum's color is determined by β(Input) in panels (a–d).
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We visually inspected the mountain profiles to confirm that their frequency content was indeed
different from that implied by β(Input). We found that the mountain profile from a fractal terrain with
an arbitrary value of β(Surface), βi, is rougher (i.e., has a larger contribution of fine structure) than
a mountain profile from a 1-dimensional fractal with β(Mountain Edge) = βi (see Figure 13). We then
took measurements for an ensemble of 100 random phase maps around β = 0, which show that our
measures converge when there is equal power across frequencies (see Figure 12c). An exploratory
analysis on a new set of images with 0 ď β(Input) ď 4.5 allowed us to empirically determine that fractal
Fourier noise terrains with β(Input) values in the range 1.8 < β(Input) < 3.8 consistently give β(Mountain Edge)
values in the range 1 < β(Mountain Edge) < 3 (see Figure 12d). We found that β(Input) and β(Mountain Edge)
are relatable by the regression equation β(Mountain Edge) = -0.64 + 0.93 ˆ β(Input), for which R2 = 0.997
(Figure 12d, black line), across the range 1 < β(Mountain) < 3 and 1.8 < β(Input) < 3.8.
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Figure 13. Mountain profiles from 1 and 2-dimensional fractal Fourier noise. (a) 1-dimensional fractal
with β(Input) = 1.5; (b) 1-dimensional fractal with βInput = 2.5; (c) 2-dimensional fractal with β(Input) = 2.5;
(d) 1-dimensional fractal mountain edges from the terrain in (c).

An important validation of our analysis techniques is that β(Mountain Edge) and β(Surface)
approximately converge at β = 0 (as expected), because for white noise, there is equal power across
frequencies. This would be trivial if the two measures followed the unity line (Figure 12d, blue line),
but certifies that our otherwise non-equivalent measures accurately describe white noise. We note that
our β values exhibit slight measurement errors, such that classical Brownian traces (β(Mountain Edge) = 2,
β(Surface) = 3) have empirically determined means of (2.14, 2.95). In the absence of measurement error,
the empirically determined range 1.8 < β(Input) < 3.8 would be 2 < β(Surface) < 4.

3.4. Relation of β to D for 2-Dimensional Fractals

To relate the two measures of β to D, we generated another 100 sets of fractal Fourier noise with
values of β(Input) ranging from 0 to 5 in steps of 0.1 with side length 211 pixels.

3.4.1. Relation of β(Mountain Edge) to D(Coastal Edge) of 2-Dimensional Fractals

First, we investigated the extension of Voss’s [5] approximation to E = 2 by determining the
relationship between D(Coastal Edge) and β(Mountain Edge). We performed the Fourier analysis described in
Section 2.4.1 on each row of each image, and measured the rows’ fractal dimension with the technique
described in Section 2.3.2. The relationship between these measures is described by a best linear
fit—β(Mountain Edge) = 5.18 – 2.00 ˆ D(Coastal Edge), for which R2 = 0.99 (Figure 14a, black line)—which
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approximates Voss’s [5] equation (Figure 14a, red line, which is Equation (5)). This confirms Voss’s [5]
assertion that measuring along a straight-line path will provide measures of D and β that are related
by Equation (5).
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Figure 14. 2-dimensional fractal measurements of Fourier noise (a,b). (a) Fourier noise fractals’
β(Mountain Edge) measurements plotted against their D(Coastal Edge) measurements; (b) Fourier noise
fractals’ β(Surface) measurements plotted against their D(Coastal Edge) measurements. In each panel,
the best linear fit for the data within the region that was shown to exhibit fractal scaling (identified
with gray lines) is shown with a black line. In panel (a), Voss’s [5] equation (Equation (5)) is shown
with a red line. In panel (b), Spehar & Taylor’s [23] data is shown with a green line and our extension
of Voss’s [5] equation (Equation (11)) is shown with a red dashed line. Data are colored to distinguish
adjacent input values such that each datum's color is determined by β(Input) in panels (a,b).

3.4.2. Relation of β(Surface) to D(Coastal Edge) for 2-Dimensional Fractals

We next measured β using the method described in Section 2.4.2, β(Surface), which captures the radial
scaling properties of the images. When plotted against D(Coastal Edge), we observe that the relationship
between these measures is described by a best linear fit, β(Surface) = 6.24 ´ 2.14 ˆ D(Coastal Edge), for
which R2 = 0.99 (Figure 14b, black line). The observed relationship agrees with the data from a smaller
set of images previously reported by Spehar and Taylor [23] (Figure 14b, green line). Significantly, this
observed relationship between β(Surface) and D(Coastal Edge) agrees with Equation (11) which we present
below, and will allow conversion across measures of D and β in multidimensional spaces.

4. Discussion

4.1. Mathematical Relationships between Ds and βs

Our results show that Voss [5] was correct regarding Equation (5)’s extension into n-dimensional
measures of D with the limitations described therein. However, the way that β is commonly measured
in images, β(Surface), is not that which Voss [5] described. Voss’s [5] equation (Equation (5)) applies
for the measure we call β(Mountain Edge). However, vision researchers typically use β(Surface). Whereas
the difference between these two spectral decay rates is nonexistent for white noise, where β = 0,
these measures are substantially different in the range over which these noises are fractal. Before
commenting further on the different measures of β, we will first summarize the relationships for the
fractal images discussed in this paper.

For the mountain profile fractal (E = 1), the Voss relationship of Equation (5) becomes:

D(Mountain Edge) “ 1 ` p3´β(Mountain Edge)q{2 (6)

We have also shown in Section 3.3 that the Fourier spectral decay rates measured in 1- and
2-dimensional space are approximately related by:

β(Mountain Edge) “ β(Surface)´ 1 (7)
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over the range 1 < β(Mountain Edge) < 3 and 2 < β(Surface) < 4. Combining Equations (6) and (7) gives:

D(Mountain Edge) “ 1 ` p4´β(Surface)){2 (8)

The relationship between β and D(Surface) can then be obtained using:

D(Surface) “ D(Mountain Edge) ` 1 “ D(Coastal Edge) ` 1 (9)

We have not measured β(Coastal Edge) in our investigations. However, we expect that, if a coastal
edge was unraveled by the process described by Zahn & Roskies [48], its β value will equal
β(Mountain Edge) because D(Coastal Edge) is equivalent to D(Mountain Edge) and E = 1 applies to both the
mountain and coastal edges.

4.2. Distinguishing βs

Our results provide the ranges of β over which the images are fractal. As Voss [5] noted,
for D mountain (1 < D(Mountain Edge) < 2), we have 1 < β(Mountain Edge) < 3. However, we have
shown that β measured in a single variable-space (i.e., along a straight line path as β(Mountain Edge))
diverges from β measured in a two-variable space (i.e., across a plane as β(Surface)) to an extent that
is characterized by Equation (7) for the range over which 2-dimensional noise is fractal. For D
surface (2 < D(Surface) < 3), we have 2 < β(Surface) < 4 and 1 < β(Mountain Edge) < 3. The fact that the β

values measured by 1- and 2-dimensional Fourier transforms differ for fractal noises holds crucial
consequences. The fractal structure of a terrain is quantified by β(Mountain Edge). Visual inspection of
Figure 13 makes it immediately apparent that its value is significantly smaller than β(Surface) for fractals
of topological dimension E = 2. Given that β(Input) matches β(Surface) rather than β(Mountain Edge), it is
likely that many vision researchers have been misjudging the fractal content of their fractal terrains,
or adapting them by an intuitive sense of the image’s roughness. Equation (7) provides a formal
justification for adjusting the β of 2-dimensional fractals.

The basis for this conversion lies in the difference in generating 1- vs. 2-dimensional noise. A pair
of vectors can specify the phases and amplitudes of a 1-dimensional fractal noise pattern because they
have only one phase at each frequency (for illustration, see the visualization of the amplitude vectors
corresponding to three different input Betas (βis) shown in Figure 6a–c and phase matrix shown in
Figure 6d). In contrast, a 2-dimensional fractal pattern is generated from a matrix of amplitudes and
a matrix of phases (for illustration, see the visualization of the amplitude matrices corresponding to
three different input Betas (βis) shown in Figure 7a–c and phase matrix shown in Figure 7d).

For 2- and higher-dimensional fractal noises, there are an increasingly greater number of inputs
at increasingly high spatial frequencies (for illustration, see Figure 15, where the lowest frequency
components have been centered). The number of inputs increases at a rate that is related to the distance
from the lowest frequency (i.e., the radial distance in a low-spatial frequency-centered representation
of Fourier space). Changing from a 1- to 2-variable space, weighting the input function SV(f ) by f to
increase the embedding dimension by 1 (from 1 to 2) requires a subtraction of 1 from β, as denoted by
the following equation:

SVp f q ˆ f “ p f´βiq ˆ f “ 1{ f pβi ´ 1q (10)

4.3. A Generalized Equation to Relate Ds and βs

We postulate that the relationship between D and β continues to change with higher dimensional
Fourier decomposition (for 3- and higher dimensional Fourier decomposition), such that the
relationship between D and β can be described by the equation,

D “ E ` pF + 2´βq{2 (11)

where F is the dimensional space of the Fourier transform (the number of variables with which the
Fourier transform is performed), where F ě 1, and F < β < F + 2 (as examples, F = 1 for β(Mountain Edge)
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and F = 2 for β(Surface)). This new equation (Equation (11)) allows for conversion from D to both of
the Fourier measurement techniques that can describe static images, and provides an extension of
Mandelbrot’s [1,4], Voss’s [5], and Knill et al.’s [14] relationships that can describe spectral decay in
dynamic fractal Brownian stimuli generated with Fourier, midpoint displacement, and other equivalent
methods. Equation (11) extends Voss’s [5] equation (Equation (5)) by generalizing the term for β

from β(Mountain Edge).
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Figure 15. Real and imaginary frequency components of 1- and 2-dimensional fractal Fourier noise
plotted in 2- and 3-dimensional spaces with color changing with frequency, such that higher frequency
components are shown in cooler colors. (a,b) Amplitude-frequency plots of a 1-dimensional noise with
low frequency components centered such that the amplitude of the higher frequency components fall
at the edges of the plot; (c,d) Amplitude-frequency plots of 2-dimensional noise with low frequency
components centered such that larger concentric circles indicate higher frequency components.

4.4. Importance of the Relationship between D and β for Current and Future Research

In addition to allowing for easy translation across the parameters D and β in aesthetics research,
Equation (11) provides scaffolding for extension of basic vision research into questions related to visual
sensitivity and the perception of fractal motion, and has far-reaching applicability to applied topics,
including stress reduction and navigation.

To clarify the need for this new equation to allow for such forward progress, consider a
hypothetical case of therapeutic intervention using fractal movies. From Equation (5) and previous
research that suggests that low-to-moderate fractional dimensions (1.3 ď D ď 1.5) are optimal for
stress reduction [49], a therapist might generate what are intended to be soothing movies of fractal
noise with β = 2.2, thinking that β does not differ according to the number of variables with which the
Fourier transform is performed. Meanwhile, the results of our analyses imply that such a series would
be effectively space filling if β(Volume) = 2.2. This is because Equation (11) implies the optimal range of
values of β(Volume) for such an application would be 4 < β(Volume) < 4.4, because E = 3 and F = 3, where
fractal noises are in the range 3 < β(Volume) < 5.

More generally, time represents a third dimension—yet to be explored—in the perception of
fractal processes. An example would be a fractal pattern that undergoes fractal change over time.
Responses to dynamic stimuli have a long history of consideration in vision research that continues
today [50,51], though few have focused on perception of fractal motion [52,53]. Equation (11) provides
the scaffolding to extend perceptual research into the study of dynamic fractals.



Symmetry 2016, 8, 66 15 of 17

While Equation (11) supports the development of new lines of work into dynamic fractals, it
also holds value in drawing conclusions across recent research using 2-dimensional fractal patterns in
studies that have implications for aesthetics. Whereas Rainville and Kingdom [54] provide βs that are
apparently in terms of β(Mountain Edge), they cite Knill et al. [14], who provided the relationship between
D and β for surfaces. This highlights the difficulty associated with discerning the optimal range of
β in aesthetics and vision research. More problematic is that because of the relative convenience of
the respective algorithms’ implementation, others report a combination of D(Mountain Edge) and β(Surface)
values [23], for which there is no clear conversion provided in the published literature.

Finally, Equation (11) serves as a useful tool for converting between 2- and 3-dimensional
representations of space, the problem we solve whenever we use a map to navigate. The recent
work of Juliani et al. [28] asks individuals to navigate fractal environments. Under conditions such
as these, the map typically has complexity in the range 1 < D(Coastal Edge) < 2, whereas the navigated
environment has complexity in the range 2 < D(Surface) < 3, and the visually perceived scene has a
spectral decay that likely falls off at a rate in the range 2 < β(Surface) < 4. While it is mathematically
no less appropriate to describe all of these in terms of β(Mountain Edge), it is easier to interpret results
described in units that reflect the experienced dimensional space precisely and explicitly. There
is convenience to be gained by using this more general equation (Equation (11)) and its variables’
boundary conditions rather than more specialized equations, such as those which have been put
forth previously [5,14,21]. Equation (11) stems from a recognition that β varies with the number of
variables with which the Fourier transform is applied. As such, it is important that we define which
β is being used (β(Line), β(Surface), β(Volume), etc.) for easier interpretation of results and to facilitate the
communication of future endeavors in interdisciplinary fractals research.
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