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Abstract:



Optics has proved a fertile ground for the experimental simulation of quantum mechanics. Most recently, optical realizations of [image: there is no content]-symmetric quantum mechanics have been shown, both theoretically and experimentally, opening the door to international efforts aiming at the design of practical optical devices exploiting this symmetry. Here, we focus on the optical [image: there is no content]-symmetric dimer, a two-waveguide coupler where the materials show symmetric effective gain and loss, and provide a review of the linear and nonlinear optical realizations from a symmetry-based point of view. We go beyond a simple review of the literature and show that the dimer is just the smallest of a class of planar N-waveguide couplers that are the optical realization of the Lorentz group in 2 + 1 dimensions. Furthermore, we provide a formulation to describe light propagation through waveguide couplers described by non-Hermitian mode coupling matrices based on a non-Hermitian generalization of the Ehrenfest theorem.
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1. Introduction


The desire to create an optical directional coupler, a device composed of parallel optical waveguides close enough that leaked energy is transferred between them, led to the exploration of waveguide creation in semi-conductors via proton bombardment [1]. At the time, power losses played an interesting role, and the nascent mode coupling theory [2] allowed the theoretical description of linear loses in such devices [3],


[image: there is no content]



(1)




where the real numbers α and K are the effective linear loss, identical in all implanted waveguides, and the effective waveguide coupling strength, also identical for the whole system, in that order. This, to the best of our knowledge, was the first theoretical description of an experimental N-waveguide coupler including losses in the form of a Schrödinger-like equation involving a non-Hermitian Hamiltonian. Almost twenty years later, the desire to create an intensity-dependent switch working at low power levels took another team of researchers to explore twin core nonlinear couplers with gain and loss. Again, coupled mode theory allowed the description of such devices [4],
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(2)
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(3)




where we have kept the notation used before and introduce the effective real part of the refractive index, [image: there is no content], and the real function [image: there is no content] that describes an effective Kerr nonlinearity-induced change in the refractive index of the j-th core, positive for self-focusing and negative for self-defocusing materials. At this point in history, there existed experimental and theoretical work describing an optical dimer where the waveguides present effective loss and gain and a nonlinearity, but a little something was missing. A couple of years later, a theory exploring a particular type of non-Hermitian Hamiltonians with real spectra was brought forward in quantum mechanics [5]. These Hamiltonians were invariant under space-time reflection, received the name of [image: there is no content]-symmetric and opened new avenues of research in quantum mechanics, as well as other areas of physics and mathematics, cf. [6,7] and the references therein.



In optics, it took a few years more to propose two seminal ideas. The first one regarded single elements and showed, in particular, that an optical planar slab waveguide composed of two media with linear gain and loss can be described by a Schrödinger-like equation under dynamics dictated by a [image: there is no content]-symmetric Hamiltonian, where the optical refractive index played the role of quantum-like potential and propagation distance that of time [8]. The second one dealt with composite systems, where a mature mode coupling theory produced a theory of coupled optical [image: there is no content][image: there is no content]-symmetric structures [9]. In the ten years following those first proposals for an optical realization of [image: there is no content]-symmetry, work has been reported on slab waveguides [10,11], Bragg scatterers [12,13,14,15,16,17], as well as linear [18,19,20,21,22,23,24,25,26] and nonlinear [27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45] coupled waveguides, to mention just a few. Research in this field is slowly getting to information technologies applications with recent proposals of all-optical [image: there is no content]-symmetric logic gates [46] and amplitude-to-phase converters [47].



Here, we will provide a review of the optical [image: there is no content]-symmetric dimer. First, in Section 2, we will introduce a two-waveguide coupler where component waveguides show effective complex refractive indices with an identical real part. Starting from this device, we will recover the effective mode coupling differential equation set for the linear [image: there is no content]-symmetric dimer, which describes a nonunitary optical device showing symmetric effective loss and gain feasible for passive and active optical realizations. Then, we will recover the dispersion relation for the dimer that shows three regimes, one with real eigenvalues, the [image: there is no content]-symmetric regime, another with fully-degenerate eigenvalues equal to zero, the fully-degenerate regime, and a third one with purely imaginary eigenvalues, the broken symmetry regime. We will construct an analytic propagator that will show asymmetric amplifying oscillator, power amplification and exponential amplification behaviors in each of these regimes. We will also show that it is possible to uncouple the mode coupling differential equation set of the [image: there is no content]-symmetric dimer. The resulting second order differential equations and boundary conditions for the field amplitudes propagating through each waveguides take the form of nonlocal oscillators with positive potential, a free particle traveling through a nonlocal medium and nonlocal oscillators with inverted potential, in each of the regimes. In the final part of Section 2, we will bring forward the renormalized field approach that helps us cast the linear [image: there is no content]-symmetric dimer as a nonlinear dimer with imaginary Kerr nonlinearity, either in a self- or a cross-modulation scheme, and allowing us to realize an asymptotic behavior that depends just on the gain to coupling strength ratio of the device. In Section 3, we will discuss the linear [image: there is no content]-symmetric dimer when both waveguides show the same effective self-focusing Kerr nonlinearity. We will show the stable nonlinear modes of the device, discuss its dynamics in terms of the passive Kerr two-waveguide coupler that allows for coherent and localized oscillations between the waveguide field modes and show that the inclusion of symmetric gain and loss breaks these dynamics, producing localization in the gain waveguide without showing an asymptotic behavior. In Section 4, we will extend the linear [image: there is no content]-symmetric dimer to planar N-waveguide couplers using finite dimensional matrix representations of a complexified version of [image: there is no content]. We have previously shown [48] that the [image: there is no content]-symmetric dimer and its extensions to planar N-waveguide couplers possess an [image: there is no content] symmetry realized in a finite dimensional non-unitary irreducible representation. This representation is accomplished through complexification of [image: there is no content], [image: there is no content], and it allows us to provide the dispersion relation and a closed form analytic propagator, which have the same regimes and dynamics found for the dimer. We will show that the renormalized field approach provides us with an asymptotic behavior that is independent of the initial field distribution and depends just on the waveguide number and the effective gain to coupling ratio. Then, in Section 5, we will introduce a modified version of the Ehrenfest theorem suitable for non-Hermitian Hamiltonians and show how it can help us define the dynamics of an [image: there is no content]-dimensional generalized Stokes vector for the planar N-waveguide couplers discussed in Section 4. In Section 6, we will go back to the dimer, but consider the propagation of quantum fields. In the quantum regime, spontaneous generation and absorption of electromagnetic radiation should be considered when using media with linear gain or loss. We will show the solution for the quantum linear [image: there is no content]-symmetric dimer and discuss the generation of light from a vacuum due to spontaneous processes in the absence of fields impinging at the device. Finally, we will produce a brief summary and discuss future avenues regarding non-Hermitian optical systems.




2. Linear [image: there is no content]-Symmetric Dimer


A two-waveguide coupler can be described by the following differential equation system via mode coupling theory,


[image: there is no content]



(4)




where the complex numbers [image: there is no content] are the field amplitudes at each waveguide, the parameters [image: there is no content] and g, which in the most general case can be complex, are the effective refractive indices and waveguide coupling (the latter will be assumed real from now on, in that order) and the operator [image: there is no content] stands for the derivative with respect to the propagation distance z. Note that using field amplitudes of the form:


[image: there is no content]



(5)




with [image: there is no content], reduces the system to an effective mode coupling matrix,


[image: there is no content]



(6)







The mode coupling matrix has eigenvalues:


[image: there is no content]



(7)







The eigenvalues are real for the case of the identical real part of the effective refractive indices, [image: there is no content], and the imaginary part less than the value of the effective coupling, [image: there is no content]. The eigenvalues degenerate in the case [image: there is no content] and [image: there is no content]. They are purely imaginary for [image: there is no content] and [image: there is no content] and, finally, complex elsewhere. This general non-Hermitian dimer has a rich structure that deserves further attention, but right now, we are interested in just the [image: there is no content]-symmetric case.



In quantum mechanics, [image: there is no content][image: there is no content]-symmetry refers to space-time reflection symmetry [6]. In discrete optical couplers, we can consider waveguide permutation and propagation inversion as equivalent to space and time reflection, respectively. Then, in order to recover the standard linear [image: there is no content]-symmetric dimer, we need to work with waveguides that have the same effective refractive indices, [image: there is no content], such that [image: there is no content] is purely imaginary, and we can write a differential set [48],


[image: there is no content]



(8)




where the permutation of the waveguides, [image: there is no content], and propagation reversal, [image: there is no content], leaves the system invariant. Note that we have used the effective coupling parameter to scale the propagation distance, [image: there is no content], such that we deal with a single parameter given by the effective refractive index to coupling ratio, [image: there is no content] with [image: there is no content]. This mathematical model is equivalent to considering waveguides with effective pure linear loss and gain, [image: there is no content] and [image: there is no content], in that order. In optics, the linear [image: there is no content]-symmetric dimer has been experimentally demonstrated in passive lossy waveguides [49,50] (Figure 1a,b), as well as active, pumped waveguides [51] (Figure 1c) and pumped whispering-gallery mode microcavities [52,53] (Figure 1d) with linear gain. The experimental demonstration of [image: there is no content]-symmetric devices is not limited to optical resonators; they have also been realized with operational amplifiers in electronics [54].


Figure 1. Schematics of the experimental realizations of the linear [image: there is no content]-symmetric dimer. (a) Passive laser-engraved waveguides; (b) passive waveguides with metallic scatterers; (c) pumped active waveguides; (d) pumped active whispering-gallery mode microcavities.
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2.1. Quantum Mechanics, Linear Algebra Approach


Let us try to address propagation in the linear [image: there is no content]-symmetric dimer. First, note that we can cast its coupled differential equation system, Equation (8), in a vector form,


[image: there is no content]



(9)




similar to Schrödinger equation. Now, the coupling matrix takes the role of a Hamiltonian,


[image: there is no content]



(10)




where the operators [image: there is no content] with [image: there is no content] are Pauli matrices. We will keep the standard sign convention used in classical optics, although this Hamiltonian may confuse those working in quantum mechanics, as it implies that a parallel spin-field configuration is the most energetic configuration. In any given case, it is straightforward to find the propagator for this ζ-independent Schrödinger-like equation [48],


(11)U(ζ)=eiHζ(12)=cos(Ωζ)𝟙+iΩsin(Ωζ)H








such that the propagated fields through the device are given in terms of the initial field configuration,


[image: there is no content]



(13)




with the dispersion relation given by:


[image: there is no content]



(14)




which can be real for [image: there is no content], zero for [image: there is no content] or purely imaginary for [image: there is no content]. Note that the eigenvalues of the coupling matrix are given by [image: there is no content], and they become fully degenerate at [image: there is no content]. Note that this degeneracy is different from that in Hermitian systems; here, the actual dimension of the system becomes one at this point known in the theory of linear operators as the Kato exceptional point [55]. Figure 2 shows the behavior of the coupling matrix eigenvalues as a function of the gain to coupling ratio as they go from purely real, Figure 2a, degenerate to zero, Figure 2b, and become purely imaginary, Figure 2c.


Figure 2. Coupling matrix eigenvalue dynamics: (a) [image: there is no content]-symmetric regime; (b) fully-degenerate regime; and (c) broken symmetry regime. The black arrows show the direction of the eigenvalues as the gain to coupling ratio increases.
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It is straightforward to show that in the [image: there is no content]-symmetric regime, where the eigenvalues of the mode coupling matrix are real, the device behaves as an asymmetric oscillator with amplification,


U(ζ)=cos(Ωζ)𝟙+iΩsin(Ωζ)H,γ<1



(15)







Once the [image: there is no content]-symmetry is broken, we have two distinct cases, the fully-degenerate one where both eigenvalues are zero and the device shows amplification ruled by a power law,


U(ζ)=𝟙+iζH,γ=1



(16)




and the case of purely imaginary eigenvalues, where the amplification is exponential,


U(ζ)=cosh(|Ω|ζ)𝟙+i|Ω|sinh(|Ω|ζ)H,γ>1



(17)







Figure 3 shows the absolute field amplitude propagating through a [image: there is no content]-symmetric dimer when light impinges just at the first waveguide in a device with parameters in the regime with real eigenvalues, Figure 3a, fully degenerate eigenvalues, Figure 3b, and imaginary eigenvalues, Figure 3c. Now, while we find this algebraic approach short, elegant and elucidating, it is not the only available method to infer the properties of the [image: there is no content]-symmetric dimer.


Figure 3. Absolute field amplitude propagation in a coupler with effective symmetric loss, blue waveguide, and gain, red waveguide, in the: (a) [image: there is no content]-symmetric regime, [image: there is no content]; (b) fully-degenerate regime, [image: there is no content]; and (c) broken symmetry regime, [image: there is no content].
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2.2. Nonlocal Oscillator, Partial Differential Equation Approach


It is also possible to decouple the dimer differential equation set, Equation (8), into two second order differential equations that have the same form of the one-dimensional wave equation [48],


∂ζ2Ek(ζ)+Ω2Ek(ζ)=0,k=1,2



(18)







The boundary conditions are given by the initial fields impinging the device, [image: there is no content], and their first derivatives,


[image: there is no content]



(19)






[image: there is no content]



(20)




obtained from the dimer mode coupling equation, Equation (8). Note that the latter takes us far from the standard one-dimensional wave equation, because it refers to nonlocal media involving linear loss and gain. Nevertheless, we can follow the standard partial differential equation approach.



In the [image: there is no content]-symmetric case, the characteristic equation is positive, [image: there is no content], and we can write the second order differential equation as that of a standard oscillator,


[image: there is no content]



(21)




thus, we can use its well-known solution plus our particular boundary conditions to obtain the propagated fields,


[image: there is no content]



(22)






[image: there is no content]



(23)







These fields allow us to describe the dimer as an asymmetric periodic oscillator with amplification. It is not a harmonic oscillator due to the boundary condition on the first derivatives. In the fully-degenerate case, where the characteristic equation is equal to zero, [image: there is no content],


[image: there is no content]



(24)




we can think of light propagating through the dimer as a free particle through some nonlocal media with linear unitary gain and loss, which yields amplification following a power law,


[image: there is no content]



(25)






[image: there is no content]



(26)







Finally, in the broken symmetry case, the characteristic equation is negative, [image: there is no content], and we can write the second order differential equation as an inverted oscillator,


[image: there is no content]



(27)




that provides us with a device that amplifies initial fields following an exponential law,


[image: there is no content]



(28)






[image: there is no content]



(29)







All of these solutions are just the explicit form of the propagated field found earlier by a purely algebraic approach, Equations (13)–(17), and tap into the well-known one-dimensional wave equation with the difference that an effective nonlocal active medium is provided by the first derivative boundary conditions.




2.3. Nonlinear Oscillator, Renormalized Fields Approach


So far, we have managed to provide an algebraic propagator and to describe the field behavior in the three possible regimes of the linear [image: there is no content]-symmetric dimer. Now, we can bring forward a complementary view that can give us asymptotic information of the broken symmetry phases. Let us define instantaneous renormalized fields [48],


[image: there is no content]



(30)




such that the total renormalized field intensity at each propagation distance is always the unit, [image: there is no content]. In this picture, it is easier to realize that light intensity through the [image: there is no content]-symmetric device behaves like a non-harmonic oscillator, Figure 4a. Furthermore, this allows us to conduct asymptotic analysis in the broken symmetry phases. In the fully-degenerate phase, [image: there is no content], such that [image: there is no content], it is possible to calculate the asymptotic behavior of the fields’ intensity as the scaled propagation distance goes to infinity and to find out that the renormalized optical power is balanced in both waveguides, independent of the initial field distribution,


limζ→∞|E˜kζ|2=12,γ=1,Ω=0



(31)




as shown in Figure 4b. In the broken symmetry regime, where the eigenvalues are purely imaginary, the asymptotic intensity distribution depends on the effective gain to coupling ratio, and we can include the previous result,


[image: there is no content]



(32)






limζ→∞|E˜2ζ|2=12γγ+γ2−1,γ≥1



(33)






Figure 4. Renormalized field intensity propagation in the waveguides with effective loss, [image: there is no content], solid blue line, and gain, [image: there is no content], dashed red line, in the (a) [image: there is no content]-symmetric regime, [image: there is no content]; (b) fully-degenerate regime, [image: there is no content]; and (c) broken symmetry regime, [image: there is no content], for an initial field impinging just at the first waveguide.
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In other words, for a device long enough, in the broken symmetry region, the input field distribution has no effect on the output field intensity distribution. The latter is governed only by the gain to coupling ratio of the device, γ (Figure 4c).



Furthermore, this approach also allows us to show that the linear [image: there is no content]-symmetric dimmer is the irreducible form of two equivalent reducible nonlinear models, one with linear loss and gain, as well as an imaginary nonlinearity [48],


[image: there is no content]



(34)






[image: there is no content]



(35)




that has a form reminiscent of van der Pol oscillators [56] in the sense that there is a change of sign dependent on the intensity for the self-modulation of the waveguide fields. Actual [image: there is no content]-symmetric-coupled van der Pol oscillators have been implemented in the laboratory, as well as their optical realizations [57]. The other form corresponds to an imaginary cross-nonlinearity,


[image: there is no content]



(36)






[image: there is no content]



(37)







We can follow a standard approach from non-Hermitian Bose–Hubbard dimers [58,59,60,61] used to deal with optical nonlinear [image: there is no content]-symmetric dimers [28], and introduce a Stokes vector, [image: there is no content], with components given by,


S˜j(ζ)=⟨E˜(ζ)|σj|E˜(ζ)⟩,j=x,y,z



(38)







Again, the matrices [image: there is no content] are Pauli matrices; the notation [image: there is no content] is a column vector containing the renormalized field amplitudes equivalent to that defined in Section 2 for the field amplitudes; and the new conjugate transpose notation [image: there is no content] is a row vector with the conjugate renormalized field amplitudes as components. In terms of the renormalized field amplitudes,


[image: there is no content]



(39)






[image: there is no content]



(40)






[image: there is no content]



(41)







In the case at hand, where the nonlinearity is reducible, the Stokes vector norm is the unit and a constant of motion,


[image: there is no content]



(42)







The Stokes vector components verify the following set of coupled differential equations:


[image: there is no content]



(43)






∂ζS˜x(ζ)=2γS˜x(ζ)S˜z(ζ)



(44)






∂ζS˜y(ζ)=2S˜z(ζ)[1+γS˜y(ζ)]



(45)






[image: there is no content]



(46)







Note that these equations have a set of stable points only outside the [image: there is no content]-symmetric regime, [image: there is no content], given by [image: there is no content]. It is also possible to describe the asymptotic behavior of the renormalized Stokes vector components,


[image: there is no content]



(47)






[image: there is no content]



(48)






limζ→∞S˜z(ζ)=−γ2−1γ,γ≥1



(49)







The Stokes vector approach allows us to visualize the field propagation as a trajectory on a unit sphere. Any initial condition, in the fully-degenerate and broken symmetry regimes, will converge asymptotically to the same stable point on the sphere of the differential equation, [image: there is no content], in a dimer described by the gain to coupling ratio γ. Figure 5 shows the Stokes vector propagation related to the examples given in Figure 4 and an additional initial condition set to show that the asymptotic behavior is independent of the initial conditions. This asymptotical behavior suggest the use of this device as an unidirectional variable amplitude coupler.


Figure 5. Stokes vector propagation in the waveguide coupler with effective symmetric loss and gain, in the (a) [image: there is no content]-symmetric regime, [image: there is no content]; (b) fully-degenerate regime, [image: there is no content]; and (c) broken symmetry regime, [image: there is no content], for the initial conditions [image: there is no content] and [image: there is no content] in black and [image: there is no content] and [image: there is no content] in red.
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3. Nonlinear [image: there is no content]-Symmetric Dimer


Now, we will discuss a variation of the [image: there is no content]-symmetric dimer where the waveguides have an additional Kerr nonlinearity,


[image: there is no content]



(50)






[image: there is no content]



(51)







For the sake of simplicity, we will consider the effective Kerr nonlinearity to coupling strength ratio, κ, to be equal in both waveguides. Stability in this system has been formally discussed in the case of [image: there is no content], and it was found that the zero equilibrium state is neutrally stable in the [image: there is no content]-symmetric regime, [image: there is no content], and that the total light intensity at the waveguides is bounded from above by the initial intensity amplified by an exponential gain, [image: there is no content] [35]. In order to deal with the dynamics, it is possible to introduce a Stokes vector defined, now, in terms of the field amplitudes [28],


[image: there is no content]



(52)






[image: there is no content]



(53)






[image: there is no content]



(54)







Thus, the norm of the redefined Stokes vector, the total intensity at the waveguides, is no longer a constant of motion,


[image: there is no content]



(55)




and its dynamics,


[image: there is no content]



(56)






[image: there is no content]



(57)






[image: there is no content]



(58)






[image: there is no content]



(59)




will not be restricted to the unit sphere. These dynamics have been shown to be an optical simulation of a relativistic massless particle of negative charge in a pseudo-electromagnetic field [28]. Note that there is a set of stable points, [image: there is no content], for the effective gain to coupling ratio [image: there is no content],


S→s(ζ)=2κ,±2γκ1−γ2,0,±1γ(1−γ2)|Sy(ζ)|,Sy(ζ),0



(60)







All of these stable nonlinear modes are waveguide fields of the form [image: there is no content] with [image: there is no content] and phase difference constricted by the relation,


[image: there is no content]



(61)







There are no stable points outside the [image: there is no content]-symmetric regime, [image: there is no content].



In order to create intuition, let us start with the passive self-focusing two-waveguide coupler, [image: there is no content], that has two constants of motion in the form of the Stokes vector norm, [image: there is no content], such that [image: there is no content], and the Hamiltonian-like quantity,


[image: there is no content]



(62)







Note that the system is integrable, and the conservation of the Stokes vector norm allows for the parametrization Sx(ζ)=1−Sz2cosϕ(ζ) and Sy(ζ)=1−Sz2sinϕ(ζ), such that we can write a Hamilton–Jacobi model,


H=12κSz2(ζ)+21−Sz2(ζ)cosϕ(ζ),∂ζSz(ζ)=∂H∂ϕ,∂ζϕ(ζ)=−∂H∂Sz



(63)




equivalent to that of a nonrigid pendulum or a Bose–Josephson junction [62,63]. This particular configuration allows for Rabi oscillations (Figure 6a) below the critical effective Kerr nonlinearity to coupling ratio, [image: there is no content] (Figure 6b); above this critical value, the system can show both Rabi and Josephson oscillations (Figure 6c). In other words, the initial field amplitudes either coherently oscillate between the waveguides or localize at the waveguide where they were originally prepared, depending on both the initial field distribution and the effective Kerr nonlinearity of the device.


Figure 6. Stokes vector propagation in the passive two-waveguide coupler, [image: there is no content], with nonlinearities (a) below, [image: there is no content]; (b) at, [image: there is no content]; and (c) above, [image: there is no content], the critical Kerr nonlinearity to coupling strength ratio, [image: there is no content]. The figure shows: (a) stationary point; (b) trajectory infinitesimally near the stationary point; and (c) separatrix in black; (a,b) Rabi and (c) Josephson oscillations in red; and (a)–(c) Rabi oscillations in blue.



[image: Symmetry 08 00083 g006]






If we now include the symmetric gain and loss, [image: there is no content], the system is still integrable, as we can write two constants of motion [28],


[image: there is no content]



(64)






[image: there is no content]



(65)







In the literature, it has been found that the system is stable in the interval [image: there is no content] for effective nonlinearity [image: there is no content] [35], and numerical arguments have been given in the most general case [28]. Figure 7 shows how the dynamics of the passive nonlinear dimer are affected by the addition of a small effective gain to coupling ratio to the system. Below the critical nonlinearity for the passive system (Figure 7a), we can still find the coherent oscillation behavior of the linear [image: there is no content]-symmetric dimer, but the former stable point is no longer a fixed point of the system. As the nonlinearity increases, we can see how device parameters and initial conditions start having an effect on the dynamics (Figure 7b), until a point where it is possible to have unstable light localization at the waveguide where light originally impinged (Figure 7c). Here, the constant of motion plays an important role as an accuracy test for the process of numerically solving the coupled nonlinear system.


Figure 7. Renormalized Stokes vector propagation in the waveguide coupler with a fixed gain to coupling ratio [image: there is no content] and variable effective nonlinearity to coupling ratio (a) [image: there is no content]; (b) [image: there is no content]; and (c) [image: there is no content], for the same initial conditions as Figure 6.



[image: Symmetry 08 00083 g007]






Now, for a given effective Kerr nonlinearity to coupling ratio, [image: there is no content], we can approximate a critical effective gain to coupling ratio, [image: there is no content], where a change of dynamics occur. First, the reciprocity condition regarding the exchange of waveguides for a given initial field distribution breaks as we get closer to the approximate critical gain to coupling ratio (note the shift to the left in Figure 8a,b), then, after we cross the critical value, the field intensity at the gain waveguide gets localized and experiences an exponential gain, while the field in the lossy waveguide diminishes independently of the initial field amplitude distribution (Figure 8c). Note, the dynamics above the critical gain to coupling ratio do not tend to the fixed point of the system as in the linear device; the fields do not seem to show a constant behavior in the asymptotic limit. This localization with amplification in the gain waveguide suggests the use of these devices as optical diodes [28].


Figure 8. Renormalized Stokes vector propagation in the waveguides’ waveguide coupler with a fixed effective Kerr nonlinearity to coupling ratio [image: there is no content] and variable effective gain to coupling ratio (a) [image: there is no content]; (b) [image: there is no content]; and (c) [image: there is no content], for the same initial conditions as Figure 7.
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4. Linear [image: there is no content]-Symmetric Planar [image: there is no content]-Waveguide Coupler


As we said before, the linear dimer is the device with the smallest dimension showing [image: there is no content]-symmetry. Its algebraic structure, Equation (10), and the fact that Pauli matrices are the two by two scaled matrix representation of the [image: there is no content] group in dimension two, [image: there is no content], suggest that a larger class of N-waveguide devices can be constructed with higher dimensional matrix representations of [image: there is no content]. Therefore, we can construct a mode coupling equation set describing a device of N waveguides following Equation (8),


[image: there is no content]



(66)







Now, we choose to introduce a different scaled propagation, [image: there is no content], to recover a single parameter Schrödinger-like equation with the form,


i∂ξ|E(ξ)⟩=H|E(ξ)⟩,H=iγJz+Jx



(67)




where the effective refractive index to coupling ratio is the same as in the standard dimer, [image: there is no content]. This mode coupling matrix with [image: there is no content] describes planar N-waveguide couplers with identical real effective refractive indices and underlying [image: there is no content] symmetry that show harmonic oscillator behavior [64]. These devices have been used to produce perfect state transfer in both the classical [65,66,67,68] and quantum regimes [69]. In order to deal with a linear [image: there is no content]-symmetric N-waveguide coupler, we must consider pure imaginary effective refractive indices, [image: there is no content], and thus, the realization of higher finite-dimensional non-unitary representation of [image: there is no content], implemented as a complexified version of [image: there is no content], is involved. In matrix form, the group generators have the following elements,


Jxm,n=12δm−1,nn2j−n+1+δm+1,nm2j−m+1



(68)






Jym,n=i2δm−1,nn2j−n+1−δm+1,nm2j−m+1



(69)






Jzm,n=δm,nj−m+1m,n=1,2,…,N



(70)




with the Kronecker delta given by [image: there is no content] and the Bargmann parameter by [image: there is no content]. These matrices fulfill the commutation relation [image: there is no content], where [image: there is no content] is the Levi–Civita symbol, and commute with the Casimir operator [image: there is no content], [image: there is no content]. In the standard differential form, this is equivalent to the coupled mode set,


−i∂ξEk(ξ)=iγ2N−2k+1Ek(ξ)+12(k−1)(N−k−1)Ek−1(ξ)+12k(N−k)Ek+1(ξ)



(71)







Following the vector notation, we can construct a field vector as,


[image: there is no content]



(72)




where we can define the n-th element of the standard basis as:


|j,m⟩n=δj−m+1,n,m=−j,−j+1,…,j−1,j,n=1,2,…,N



(73)




such that we can define more helpful generators with their corresponding actions,


Jz|j,m⟩=m|j,m⟩



(74)






J±|j,m⟩=(m+1)(2j+1∓m)|j,m±1⟩



(75)




where we have defined the ladder operators [image: there is no content] that fulfill [image: there is no content]. Following the Gilmore–Perelomov approach for [image: there is no content] [48,64], we can find the n-th eigenvalue of the mode coupling matrix,


Ωn=(j−n+1)Ω,n=1,…,N



(76)




and obtain the same structure found for the dimer. All of the eigenvalues will be real numbers for [image: there is no content] (Figure 9a), completely degenerate and equal to zero [image: there is no content] for [image: there is no content] (Figure 9b) and imaginary for [image: there is no content] (Figure 9c). This so-called collapse of the eigenvalues is a direct consequence of the underlying symmetry [70].


Figure 9. Coupling matrix eigenvalue dynamics: (a) [image: there is no content]-symmetric regime; (b) fully-degenerate regime; and (c) broken symmetry regime. The black arrows show the direction of the eigenvalues as the gain to coupling ratio increases. Theses cases show the results for a [image: there is no content] waveguide coupler that provides a Bargmann parameter [image: there is no content].
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Furthermore, we can provide the propagation matrix elements,


U(ξ)m,n=Ω−2j2jm−12jn−1ΩcosΩ2ξ−γsinΩ2ξ2(j+1)−m−n×isinΩ2ξm+n−22F11−m,1−n,−2j,Ω2csc2Ω2ξ,γ<1



(77)






U(ξ)m,n=(−2)−2j2jm−12jn−1ξ−22(j+1)−m−niξm+n−2×2F11−m,1−n,−2j,4ξ2,γ=1



(78)






U(ξ)m,n=|Ω|−2j2jm−12jn−1|Ω|cosh|Ω|2ξ−γsinh|Ω|2ξ2(j+1)−m−n×isinh|Ω|2ξm+n−22F11−m,1−n,−2j,|Ω|2csch2|Ω|2ξ,γ>1



(79)




where the notations [image: there is no content] and F12(a,b,c,z) stand for the binomial coefficient and Gauss hypergeometric function, in that order. Again, we will have three distinct propagation behaviors as demonstrated for the dimer. These behaviors are simpler to visualize if we define renormalized field amplitudes,


[image: there is no content]



(80)







Now, we can see periodic amplified oscillations in the [image: there is no content]-symmetric regime, [image: there is no content] (Figure 10a), amplification following a power law in the fully-degenerate regime, [image: there is no content] (Figure 10b), and asymmetric amplification following an exponential law in the broken symmetry regime, [image: there is no content] (Figure 10c).


Figure 10. Renormalized field intensity propagation for a [image: there is no content] waveguide coupler, Bargmann parameter [image: there is no content], in the (a) [image: there is no content]-symmetric regime, [image: there is no content]; (b) fully-degenerate regime, [image: there is no content]; and (c) broken symmetry regime, [image: there is no content], for an initial field impinging just the first waveguide.
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Furthermore, we can derive the set of reducible coupled nonlinear equations for the renormalized field amplitudes,


−i∂E˜kξ=iγ2N−2k+1+∑p=1NN−2p+1|E˜pξ|2E˜kξ+−i∂E˜kξ=+12(k−1)(N−k−1)E˜k−1ξ+12k(N−k)E˜k+1ξ,k=1,2,…,N



(81)







It is cumbersome, but possible to show that the asymptotic response of an N-waveguide coupler in the fully-degenerate and broken symmetry regimes is independent of the input field amplitude distribution,


limξ→∞|E˜kξ|2=12γ2j2jk−1γ+γ2−12k−j−1,γ≥1



(82)




which can be seen in Figure 10b for [image: there is no content] and Figure 10c for [image: there is no content]. As expected from the mathematical description, in the fully-degenerate regime (Figure 10b), the extremal waveguides, those with major effective losses and gain, will transmit fields with smaller amplitudes than those in the central waveguides, because the asymptotic intensity distribution follows the binomial coefficient. In the broken symmetry regime (Figure 10c), the field intensity correlates with the strength of the gain or loss; the most intense field will travel through the waveguide with the larger effective gain and the less intense through the one with the larger effective loss.



The equivalent three-dimensional formulation of the Stokes vector for renormalized fields,


J˜k(ξ)=⟨E˜ξ|Jk|E˜ξ⟩,k=x,y,z



(83)




yields components of the following form,


[image: there is no content]



(84)






[image: there is no content]



(85)






[image: there is no content]



(86)







Here, the conserved variable is the Casimir operator,


[image: there is no content]



(87)




and it is important to emphasize that the norm of this three-dimensional Stokes vector is no longer a constant of motion,


[image: there is no content]



(88)







The reason behind this is that a complex vector of dimension N with unit norm can be represented as a point on the surface of a ball of unit radius in dimension [image: there is no content]. For example, the renormalized fields through a two-waveguide coupler, two-dimensional complex vector of unit norm, can be represented on the surface of a three-dimensional ball; in other words, a two-dimensional sphere, where the Stokes vector norm is a constant of motion,


J˜(ξ)=j|E˜1ξ|2+|E˜2ξ|2=12,j=12



(89)







In general, we should use the surface of a [image: there is no content]-ball of unit radius in order to describe properly the field amplitudes propagating through an N-waveguide coupler. This does not make it simpler to visualize the dynamics, so we favor a projection from [image: there is no content]-dimensional to three-dimensional space with the price of loosing the unit norm for all cases, but [image: there is no content], where we can write [image: there is no content] with [image: there is no content]. Note that this projection also allows us to derive an asymptotic expression for the z-component of the Stokes vector via Equation (82), and heuristically propose the rest,


[image: there is no content]



(90)






limξ→∞J˜yξ=−1γj



(91)






limξ→∞J˜zξ=−γ2−1γj,



(92)






[image: there is no content]



(93)




this was confirmed numerically over a random sample of initial states and gain to coupling ratios outside the [image: there is no content]-symmetric regime, [image: there is no content] and [image: there is no content]. Figure 11 shows the propagation of the renormalized Stokes vector in a six-waveguide coupler, [image: there is no content], with parameters in the [image: there is no content]-symmetric, [image: there is no content] (Figure 11a), fully-degenerate, [image: there is no content] (Figure 11b), and broken symmetry, γ=1.5 (Figure 11c), regimes for light impinging the first waveguide of the coupler in black. Furthermore, the renormalized Stokes vector propagation for an initial field amplitude distribution corresponding to the eigenstate of [image: there is no content] with eigenvalue [image: there is no content] is plotted in red to show the asymptotic behavior outside the [image: there is no content]-symmetric regime.


Figure 11. Renormalized Stokes vector propagation in a six-waveguide coupler, [image: there is no content], in the (a) [image: there is no content]-symmetric regime, [image: there is no content]; (b) fully-degenerate regime, [image: there is no content]; and (c) broken symmetry regime, [image: there is no content], for the initial conditions [image: there is no content] in black and the eigenstate of [image: there is no content] with eigenvalue [image: there is no content], [image: there is no content] in red.
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5. Non-Hermitian Ehrenfest Theorem and Generalized Stokes Vector


So far, we have studied the propagation of classical light through a class of [image: there is no content]-symmetric devices with underlying [image: there is no content] symmetry that includes the linear and nonlinear [image: there is no content]-symmetric dimer. We have seen that propagation on these linear and nonlinear devices is more involved than in the passive case, [image: there is no content], but the linear algebra approach has helped us produce closed form propagators for the lineal case, and the renormalized fields approach and its Stokes vector representation have allowed us to find stationary states and to visualize the propagation dynamics. Here, we shall try to understand the underlying reasons for this more complex propagation behavior.



As we mentioned earlier, the propagation of light through tight-binding N-waveguide couplers can be modeled by mode coupling theory in a form similar to the Schrödinger equation, Equation (9). Thus, finding a propagator, Equation (13), provides us with the information of the complex field amplitudes as they propagate through each waveguide. In quantum mechanics, we can also ask about the propagation of the expectation value, which in the optical picture translates to the following,


[image: there is no content]



(94)




for the operator [image: there is no content], which can vary with propagation. This is exactly what has been done when studying the propagation of the Stokes vector defined as the expectation value of the [image: there is no content] generators, Equations (38) and (83), with the peculiarity that we used renormalized field amplitudes instead of just the field amplitudes in the linear cases. The Ehrenfest theorem relates the variation with the propagation of the mean value with the dynamics of the model,


[image: there is no content]



(95)







In standard Hermitian quantum mechanics, the Heisenberg equation provides the equation of motion for the operator, but in our non-Hermitian model, we need to go beyond this. Any non-Hermitian operator [image: there is no content] can be decomposed,


[image: there is no content]



(96)




into Hermitian, [image: there is no content], and skew-Hermitian, [image: there is no content], parts. Thus, we can define a commutator between non-Hermitian operators,


[image: there is no content]



(97)




such that we can write a Heisenberg-like equation of motion ruled by a non-Hermitian Hamiltonian,


[image: there is no content]



(98)




and recover a non-Hermitian generalization of the Ehrenfest theorem for tight binding non-Hermitian waveguide couplers,


[image: there is no content]



(99)







Note that equivalent modified Heisenberg equations of motion have been derived following alternate methods in non-Hermitian quantum mechanics [71]. Let us consider, as an example, the N-waveguide coupler of the last section, Equation (67), where the effective mode-coupling matrix acting as the Hamiltonian has a Hermitian part, [image: there is no content], and a skew-Hermitian part, [image: there is no content]. Here, the Ehrenfest theorem can be simplified to the expression,


[image: there is no content]



(100)




where the standard commutator, [image: there is no content], and anti-commutator, [image: there is no content], have been used. We can see that the anti-commutator term in this expression will be proportional to the gain to coupling strength ratio, γ, and this is the culprit behind the more complex behavior of our general class of N-waveguide lattices with underlying complexified [image: there is no content] symmetry. Note that we can also use this result to derive the conserved quantities of the model by solving [image: there is no content].



As a practical example, let us derive the equations of motion for the Stokes vector for the linear [image: there is no content]-symmetric dimer, [image: there is no content] with [image: there is no content], where [image: there is no content] is the identity matrix, given by Equations (52)–(55). Here, the Hermitian and skew-Hermitian parts of the mode coupling matrix are [image: there is no content] and [image: there is no content]. Now, any linear Hermitian operator for this system can be written as the linear superposition of the matrices [image: there is no content],


[image: there is no content]



(101)




and the propagation of its expectation values, according to the non-Hermitian Ehrenfest theorem, are given by the following expression,


[image: there is no content]



(102)







Thus, noting that for the Stokes vectors, the coefficients are constant, [image: there is no content], we can write the evolution for the components of the Stokes vector without field renormalization,


[image: there is no content]



(103)






[image: there is no content]



(104)






[image: there is no content]



(105)






[image: there is no content]



(106)




which are in complete agreement with what we obtain from the nonlinear [image: there is no content]-symmetric dimer, Equations (56)–(59), if we kill the effective nonlinearity to coupling strength ratio, [image: there is no content]. Note that the total intensity, [image: there is no content], is not conserved as expected from non-Hermitian dynamics. Note that, in this case, the total intensity, [image: there is no content], coincides with the norm of the Stokes vector, [image: there is no content], and we can recover the renormalized Stokes vector dynamics, Equations (43)–(46), if we define a renormalized Stokes vector, [image: there is no content], and use the equations of motion found here. If we were to find a constant of motion, [image: there is no content], then its components should satisfy,


[image: there is no content]



(107)






[image: there is no content]



(108)






[image: there is no content]



(109)






[image: there is no content]



(110)







A particular solution to this set of equation is [image: there is no content] in agreement with Equation (105)



For the general case of the planar N-waveguide coupler, the situation is far more complex as we are dealing with square matrices of dimension N. In order to construct any given Hermitian operator of this dimension, we need a basis with a total of [image: there is no content] matrices; these are provided by the standard unitary group of degree N, [image: there is no content], plus the identity. This way, we will work with a set of [image: there is no content] operators where the first four elements are the representation of [image: there is no content] in dimension N plus the unity, [image: there is no content] with [image: there is no content], that form [image: there is no content],


[image: there is no content]



(111)




where we have just implicitly made the change [image: there is no content], [image: there is no content], [image: there is no content]. Thus, if we define a generalized Stokes vector for the planar N-waveguide coupler, it will have dimension [image: there is no content], and the zeroth component will be the total intensity in the system,


[image: there is no content]



(112)




but in this case, the zeroth component of the generalized Stokes vector, [image: there is no content], is still the total intensity, but does not coincide with the norm of the generalized Stokes vector, [image: there is no content]. Thus, a graphical representation on the sphere will just be a projection of the propagation dynamics occurring on a [image: there is no content]-dimensional hypersphere as mentioned before. Note that for passive devices, [image: there is no content], the propagation equations for the Stokes vectors do not involve any other functions, and the propagation dynamics is restricted to the subgroup [image: there is no content] of [image: there is no content], recovering the results of [64].




6. Quantum [image: there is no content][image: there is no content]-Symmetric Dimer


Let us turn our attention now to the propagation of nonclassical light. In the quantum regime, it is possible to describe two-waveguide couplers with the following effective Hamiltonian [72],


[image: there is no content]



(113)




where we have kept the notation for the effective refractive indices and evanescent coupling strength, [image: there is no content] with [image: there is no content] and g, in that order. At this point, we can use the Schwinger two-boson representation of [image: there is no content] [73],


Jx=12a^1†a^2+a^1a^2†,Jy=−i2a^1†a^2−a^1a^2†,Jz=12a^1†a^1−a^2†a^2



(114)




to write an effective Hamiltonian with underlying [image: there is no content] symmetry,


H=ωJz+Jx,ω=1gn1−n2



(115)




that answers to the effective Schrödinger equation,


−i∂ξ|E(ξ)⟩=H|E(ξ)⟩,ξ=2gz



(116)







In the single photon regime,


[image: there is no content]



(117)




we recover the differential equation set describing the standard two-waveguide coupler,


[image: there is no content]



(118)







This approach suffices for the analysis of ideal dimers without gain or loses, [image: there is no content], where the total photon number,


[image: there is no content]



(119)




of the initial state, [image: there is no content], determines the dimension of the [image: there is no content] representation to be used, [image: there is no content], with the eigenbasis of [image: there is no content] given by the following,


|j,m⟩=|n1,n2⟩,j=n1+n22,m=n1−n22



(120)




such that we can use the results proposed for classical waveguides’ couplers with underlying [image: there is no content] symmetry [64] to calculate relevant quantities, like the mean photon number at each waveguide.



The inclusion of linear loses and gain is not a trivial matter, and it is simpler to discuss in the Heisenberg picture [74],


[image: there is no content]



(121)




where we have accounted for the change from time to distance propagation. Let us go straight to the [image: there is no content]-symmetric dimer, with the identical real part of the refractive index and moving into a rotating frame,


[image: there is no content]



(122)




such that, again, we can define a scaled propagation, [image: there is no content], and include spontaneous processes arising from the quantum description of materials with linear loss or gain processes [74],


ddζo^1(ζ)o^2(ζ)=iHo^1(ζ)o^2(ζ)+𝟙f^1(ζ)f^2(ζ),H=iγ11−iγ



(123)




where the first term in the right-hand side is related to propagation through the quantum two-waveguide coupler with linear loss and gain, [image: there is no content], and the second term describes the Gaussian random processes of emission and absorption, a result arising from the linear materials in an equivalent treatment to that used in the quantum description of the laser [75],


⟨f^1†(ζ)f^1(ζ′)⟩=0,⟨f^1(ζ)f^1†(ζ′)⟩=2γδ(ζ−ζ′),



(124)






⟨f^2†(ζ)f^2(ζ′)⟩=2γδ(ζ−ζ′),⟨f^2(ζ)f^2†(ζ′)⟩=0



(125)







The formal solution for this differential equation yields the propagation of the annihilation operators,


[image: there is no content]



(126)




where we have obviated the common phase factor [image: there is no content] that does not play any important role. Note that we can use the propagator we already found for the classical dimer, [image: there is no content] in Equation (11), for the first term in the right-hand side.



Now, in order to realize the effect of processes induced by the linear materials, let us focus on spontaneous generation in the absence of fields in both waveguides. In the classical case, there will be no light at all propagating through the waveguides, but in the quantum case, even with an initial vacuum state, we can calculate the spontaneous generation at each waveguide [74],


[image: there is no content]



(127)






[image: there is no content]



(128)







It shows in the symmetric regime, [image: there is no content],


[image: there is no content]



(129)






[image: there is no content]



(130)




a linear increase with a periodic modulation (Figure 12a). In the fully-degenerate case, [image: there is no content], the spontaneous generation,


[image: there is no content]



(131)






[image: there is no content]



(132)




follows a cubic polynomial (Figure 12b), and in the broken symmetry regime, [image: there is no content],


[image: there is no content]



(133)






[image: there is no content]



(134)




it shows exponential amplification (Figure 12c). Further discussion regarding the effect of spontaneous processes on the propagation of diverse nonclassical fields through a linear [image: there is no content]-symmetric dimer can be found in Ref. [74].


Figure 12. Spontaneous generation of radiation in the waveguides with effective loss, [image: there is no content] solid blue line, and gain, [image: there is no content] dashed red line, in the (a) [image: there is no content]-symmetric regime, [image: there is no content]; (b) fully-degenerate regime, [image: there is no content]; and (c) broken symmetry regime, [image: there is no content], for quantum vacuum fields in both waveguides.



[image: Symmetry 08 00083 g012]







7. Conclusions


We have presented a review of the [image: there is no content]-symmetric dimer in its linear, nonlinear and quantum versions and show that it belongs to a symmetry class with underlying [image: there is no content] symmetry, realized as a complexification of the [image: there is no content] group, that allows the description of N-waveguide couplers. We have aimed to present a coherent narrative of the different approaches to the optical [image: there is no content]-symmetric dimer and relate them to the underlying symmetry of the model. In doing this, we introduce the idea of using a non-Hermitian version of the Ehrenfest theorem to approach the propagation dynamics of waveguide couplers described by non-Hermitian mode coupling matrices.



The field is young, and there still exist fundamental open questions on the subject, such as the analytic determination of critical effective nonlinearity to coupling ratios for the Kerr nonlinear [image: there is no content]-symmetric dimer; the need for a deeper understanding of the non-unitary finite dimensional representations of [image: there is no content], realized without resorting to the complexified [image: there is no content] representations; the generalization to propagation-dependent photonic systems together with the possible applications; just to mention a few that we hope to address in future work.
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The following abbreviations are used in this manuscript:







	[image: there is no content]
	
Real and imaginary parts of x, in that order





	[image: there is no content]
	
Parity-Time





	[image: there is no content], [image: there is no content], [image: there is no content]
	
Unitary group, special unitary group, special orthogonal group of degree N





	[image: there is no content]
	
Pseudo orthogonal group, Lorentz group, in 2+1 dimension.
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