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Abstract: Optics has proved a fertile ground for the experimental simulation of quantum mechanics.
Most recently, optical realizations of PT -symmetric quantum mechanics have been shown, both
theoretically and experimentally, opening the door to international efforts aiming at the design of
practical optical devices exploiting this symmetry. Here, we focus on the optical PT -symmetric
dimer, a two-waveguide coupler where the materials show symmetric effective gain and loss, and
provide a review of the linear and nonlinear optical realizations from a symmetry-based point of view.
We go beyond a simple review of the literature and show that the dimer is just the smallest of a class of
planar N-waveguide couplers that are the optical realization of the Lorentz group in 2 + 1 dimensions.
Furthermore, we provide a formulation to describe light propagation through waveguide couplers
described by non-Hermitian mode coupling matrices based on a non-Hermitian generalization of the
Ehrenfest theorem.

Keywords: PT -symmetric dimer; optical waveguide couplers; mode coupling theory;
nonlinear waveguide couplers; photonic integrated circuits

1. Introduction

The desire to create an optical directional coupler, a device composed of parallel optical
waveguides close enough that leaked energy is transferred between them, led to the exploration
of waveguide creation in semi-conductors via proton bombardment [1]. At the time, power losses
played an interesting role, and the nascent mode coupling theory [2] allowed the theoretical description
of linear loses in such devices [3],

−i
d
dz

En(z) =
iα
2

En(z) + K [En−1(z) + En+1(z)] (1)

where the real numbers α and K are the effective linear loss, identical in all implanted waveguides, and
the effective waveguide coupling strength, also identical for the whole system, in that order. This, to the
best of our knowledge, was the first theoretical description of an experimental N-waveguide coupler
including losses in the form of a Schrödinger-like equation involving a non-Hermitian Hamiltonian.
Almost twenty years later, the desire to create an intensity-dependent switch working at low power
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levels took another team of researchers to explore twin core nonlinear couplers with gain and loss.
Again, coupled mode theory allowed the description of such devices [4],

−i
d
dz

E1(z) = (β1 + iα1) E1 + ∆β1

(
|E1|2

)
E1 + KE2 (2)

−i
d
dz

E2(z) = (β2 + iα2) E2 + ∆β2

(
|E2|2

)
E2 + KE1 (3)

where we have kept the notation used before and introduce the effective real part of the
refractive index, β j, and the real function ∆β j

(
|Ej|2

)
= ±κj|Ej|2 that describes an effective Kerr

nonlinearity-induced change in the refractive index of the j-th core, positive for self-focusing and
negative for self-defocusing materials. At this point in history, there existed experimental and
theoretical work describing an optical dimer where the waveguides present effective loss and gain
and a nonlinearity, but a little something was missing. A couple of years later, a theory exploring a
particular type of non-Hermitian Hamiltonians with real spectra was brought forward in quantum
mechanics [5]. These Hamiltonians were invariant under space-time reflection, received the name of
PT -symmetric and opened new avenues of research in quantum mechanics, as well as other areas of
physics and mathematics, cf. [6,7] and the references therein.

In optics, it took a few years more to propose two seminal ideas. The first one regarded
single elements and showed, in particular, that an optical planar slab waveguide composed of two
media with linear gain and loss can be described by a Schrödinger-like equation under dynamics
dictated by a PT -symmetric Hamiltonian, where the optical refractive index played the role of
quantum-like potential and propagation distance that of time [8]. The second one dealt with composite
systems, where a mature mode coupling theory produced a theory of coupled optical PT -symmetric
structures [9]. In the ten years following those first proposals for an optical realization of PT -symmetry,
work has been reported on slab waveguides [10,11], Bragg scatterers [12–17], as well as linear [18–26]
and nonlinear [27–45] coupled waveguides, to mention just a few. Research in this field is slowly
getting to information technologies applications with recent proposals of all-optical PT -symmetric
logic gates [46] and amplitude-to-phase converters [47].

Here, we will provide a review of the optical PT -symmetric dimer. First, in Section 2, we will
introduce a two-waveguide coupler where component waveguides show effective complex refractive
indices with an identical real part. Starting from this device, we will recover the effective mode
coupling differential equation set for the linear PT -symmetric dimer, which describes a nonunitary
optical device showing symmetric effective loss and gain feasible for passive and active optical
realizations. Then, we will recover the dispersion relation for the dimer that shows three regimes, one
with real eigenvalues, the PT -symmetric regime, another with fully-degenerate eigenvalues equal
to zero, the fully-degenerate regime, and a third one with purely imaginary eigenvalues, the broken
symmetry regime. We will construct an analytic propagator that will show asymmetric amplifying
oscillator, power amplification and exponential amplification behaviors in each of these regimes.
We will also show that it is possible to uncouple the mode coupling differential equation set of the
PT -symmetric dimer. The resulting second order differential equations and boundary conditions
for the field amplitudes propagating through each waveguides take the form of nonlocal oscillators
with positive potential, a free particle traveling through a nonlocal medium and nonlocal oscillators
with inverted potential, in each of the regimes. In the final part of Section 2, we will bring forward
the renormalized field approach that helps us cast the linear PT -symmetric dimer as a nonlinear
dimer with imaginary Kerr nonlinearity, either in a self- or a cross-modulation scheme, and allowing
us to realize an asymptotic behavior that depends just on the gain to coupling strength ratio of
the device. In Section 3, we will discuss the linear PT -symmetric dimer when both waveguides
show the same effective self-focusing Kerr nonlinearity. We will show the stable nonlinear modes of
the device, discuss its dynamics in terms of the passive Kerr two-waveguide coupler that allows for
coherent and localized oscillations between the waveguide field modes and show that the inclusion of
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symmetric gain and loss breaks these dynamics, producing localization in the gain waveguide without
showing an asymptotic behavior. In Section 4, we will extend the linear PT -symmetric dimer to planar
N-waveguide couplers using finite dimensional matrix representations of a complexified version
of SU(2). We have previously shown [48] that the PT -symmetric dimer and its extensions to planar
N-waveguide couplers possess an SO(2, 1) symmetry realized in a finite dimensional non-unitary
irreducible representation. This representation is accomplished through complexification of SU(2),
{Jx,Jy,Jz} → {Jx, iJy, iJz} ≡ {Kz,Kx,Ky}, and it allows us to provide the dispersion relation
and a closed form analytic propagator, which have the same regimes and dynamics found for the
dimer. We will show that the renormalized field approach provides us with an asymptotic behavior
that is independent of the initial field distribution and depends just on the waveguide number and
the effective gain to coupling ratio. Then, in Section 5, we will introduce a modified version of the
Ehrenfest theorem suitable for non-Hermitian Hamiltonians and show how it can help us define
the dynamics of an N2-dimensional generalized Stokes vector for the planar N-waveguide couplers
discussed in Section 4. In Section 6, we will go back to the dimer, but consider the propagation of
quantum fields. In the quantum regime, spontaneous generation and absorption of electromagnetic
radiation should be considered when using media with linear gain or loss. We will show the solution
for the quantum linear PT -symmetric dimer and discuss the generation of light from a vacuum due
to spontaneous processes in the absence of fields impinging at the device. Finally, we will produce a
brief summary and discuss future avenues regarding non-Hermitian optical systems.

2. Linear PT -Symmetric Dimer

A two-waveguide coupler can be described by the following differential equation system via
mode coupling theory,

−i∂z

(
E1(z)
E2(z)

)
=

(
n1 g
g n2

)(
E1(z)
E2(z)

)
(4)

where the complex numbers Ej are the field amplitudes at each waveguide, the parameters nj and g,
which in the most general case can be complex, are the effective refractive indices and waveguide
coupling (the latter will be assumed real from now on, in that order) and the operator ∂z stands for the
derivative with respect to the propagation distance z. Note that using field amplitudes of the form:

Ej(z) = ein+zEj(z) (5)

with n± = (n1 ± n2) /2, reduces the system to an effective mode coupling matrix,

−i∂z

(
E1(z)
E2(z)

)
=

(
n− g
g −n−

)(
E1(z)
E2(z)

)
(6)

The mode coupling matrix has eigenvalues:

ε± = ±
√

g2 + n2
− (7)

The eigenvalues are real for the case of the identical real part of the effective refractive indices,
<(n−) = 0, and the imaginary part less than the value of the effective coupling, =(n−) < g.
The eigenvalues degenerate in the case <(n−) = 0 and =(n−) = g. They are purely imaginary
for <(n−) = 0 and =(n−) > g and, finally, complex elsewhere. This general non-Hermitian dimer
has a rich structure that deserves further attention, but right now, we are interested in just the
PT -symmetric case.

In quantum mechanics, PT -symmetry refers to space-time reflection symmetry [6]. In discrete
optical couplers, we can consider waveguide permutation and propagation inversion as
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equivalent to space and time reflection, respectively. Then, in order to recover the standard
linear PT -symmetric dimer, we need to work with waveguides that have the same effective refractive
indices, <(n1) = <(n2), such that n− is purely imaginary, and we can write a differential set [48],

−i∂ζ

(
E1(ζ)

E2(ζ)

)
=

(
iγ 1
1 −iγ

)(
E1(ζ)

E2(ζ)

)
(8)

where the permutation of the waveguides, ±iγ→ ∓iγ, and propagation reversal, ζ → −ζ, leaves the
system invariant. Note that we have used the effective coupling parameter to scale the propagation
distance, ζ = gz, such that we deal with a single parameter given by the effective refractive
index to coupling ratio, γ = =(n−)/g with <(n−) = 0. This mathematical model is equivalent
to considering waveguides with effective pure linear loss and gain, iγ and −iγ, in that order.
In optics, the linear PT -symmetric dimer has been experimentally demonstrated in passive lossy
waveguides [49,50] (Figure 1a,b), as well as active, pumped waveguides [51] (Figure 1c) and pumped
whispering-gallery mode microcavities [52,53] (Figure 1d) with linear gain. The experimental
demonstration of PT -symmetric devices is not limited to optical resonators; they have also been
realized with operational amplifiers in electronics [54].

(a) (b) (c) (d)

Figure 1. Schematics of the experimental realizations of the linear PT -symmetric dimer. (a) Passive
laser-engraved waveguides; (b) passive waveguides with metallic scatterers; (c) pumped active
waveguides; (d) pumped active whispering-gallery mode microcavities.

2.1. Quantum Mechanics, Linear Algebra Approach

Let us try to address propagation in the linear PT -symmetric dimer. First, note that we can cast
its coupled differential equation system, Equation (8), in a vector form,

−i∂ζ |E(ζ)〉 = H |E(ζ)〉 (9)

similar to Schrödinger equation. Now, the coupling matrix takes the role of a Hamiltonian,

H = iγσz + σx (10)

where the operators σj with j = x, y, z are Pauli matrices. We will keep the standard sign convention
used in classical optics, although this Hamiltonian may confuse those working in quantum mechanics,
as it implies that a parallel spin-field configuration is the most energetic configuration. In any given
case, it is straightforward to find the propagator for this ζ-independent Schrödinger-like equation [48],

U (ζ) = eiHζ (11)

= cos (Ωζ)1+
i

Ω
sin (Ωζ)H (12)

such that the propagated fields through the device are given in terms of the initial field configuration,

|E(ζ)〉 = U(ζ)|E(0)〉 (13)
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with the dispersion relation given by:

Ω =
√

1− γ2 (14)

which can be real for γ < 1, zero for γ = 1 or purely imaginary for γ > 1. Note that the eigenvalues
of the coupling matrix are given by ±Ω, and they become fully degenerate at γ = 1. Note that this
degeneracy is different from that in Hermitian systems; here, the actual dimension of the system
becomes one at this point known in the theory of linear operators as the Kato exceptional point [55].
Figure 2 shows the behavior of the coupling matrix eigenvalues as a function of the gain to coupling
ratio as they go from purely real, Figure 2a, degenerate to zero, Figure 2b, and become purely imaginary,
Figure 2c.

(a) (b) (c)

= 0γ

= 0.9γ

= 0.5γ
= 0.75γ

1< γ <0

0

0

)
j

(Ω�

)j(Ω�
1−

1.5−

1

1.5

0

)j(Ω�
1− 1

= 1γ

0

)j(Ω�
1− 1

= 1.1γ

= 2.0γ

= 1.25γ
= 1.5γ

1γ >

Figure 2. Coupling matrix eigenvalue dynamics: (a) PT -symmetric regime; (b) fully-degenerate
regime; and (c) broken symmetry regime. The black arrows show the direction of the eigenvalues as
the gain to coupling ratio increases.

It is straightforward to show that in the PT -symmetric regime, where the eigenvalues of the
mode coupling matrix are real, the device behaves as an asymmetric oscillator with amplification,

U (ζ) = cos (Ωζ)1+
i

Ω
sin (Ωζ)H, γ < 1 (15)

Once the PT -symmetry is broken, we have two distinct cases, the fully-degenerate one where
both eigenvalues are zero and the device shows amplification ruled by a power law,

U (ζ) = 1+ iζH, γ = 1 (16)

and the case of purely imaginary eigenvalues, where the amplification is exponential,

U (ζ) = cosh (|Ω|ζ)1+ i
|Ω| sinh (|Ω|ζ)H, γ > 1 (17)

Figure 3 shows the absolute field amplitude propagating through a PT -symmetric dimer when
light impinges just at the first waveguide in a device with parameters in the regime with real
eigenvalues, Figure 3a, fully degenerate eigenvalues, Figure 3b, and imaginary eigenvalues, Figure 3c.
Now, while we find this algebraic approach short, elegant and elucidating, it is not the only available
method to infer the properties of the PT -symmetric dimer.
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(a) (b) (c)1< γ <0 = 1γ 1γ >

ζ
k k k

1 1 1

2 2 2
0 0 0

ζΩ ζ|Ω|

π π π

|k|E |k|E |k|E

0 0 0

1 4 10

Figure 3. Absolute field amplitude propagation in a coupler with effective symmetric loss, blue
waveguide, and gain, red waveguide, in the: (a) PT -symmetric regime, γ = 0.5; (b) fully-degenerate
regime, γ = 1; and (c) broken symmetry regime, γ = 1.5.

2.2. Nonlocal Oscillator, Partial Differential Equation Approach

It is also possible to decouple the dimer differential equation set, Equation (8), into two second
order differential equations that have the same form of the one-dimensional wave equation [48],

∂2
ζEk (ζ) + Ω2Ek (ζ) = 0, k = 1, 2 (18)

The boundary conditions are given by the initial fields impinging the device, Ek(0), and their
first derivatives,

∂ζE1 (0) = −γE1 (0) + iE2 (0) (19)

∂ζE2 (0) = γE2 (0) + iE1 (0) (20)

obtained from the dimer mode coupling equation, Equation (8). Note that the latter takes us far from
the standard one-dimensional wave equation, because it refers to nonlocal media involving linear loss
and gain. Nevertheless, we can follow the standard partial differential equation approach.

In the PT -symmetric case, the characteristic equation is positive, Ω2 > 0, and we can write the
second order differential equation as that of a standard oscillator,

∂2
ζEk (ζ) + Ω2Ek (ζ) = 0 (21)

thus, we can use its well-known solution plus our particular boundary conditions to obtain the
propagated fields,

E1 (ζ) = E1 (0) cos (|Ω|ζ)− 1
|Ω| [γE1 (0)− iE2 (0)] sin (|Ω|ζ) (22)

E2 (ζ) = E2 (0) cos (|Ω|ζ) + 1
|Ω| [γE2 (0) + iE1 (0)] sin (|Ω|ζ) (23)

These fields allow us to describe the dimer as an asymmetric periodic oscillator with amplification.
It is not a harmonic oscillator due to the boundary condition on the first derivatives. In the
fully-degenerate case, where the characteristic equation is equal to zero, Ω2 = 0,

∂2
ζEk (ζ) = 0 (24)

we can think of light propagating through the dimer as a free particle through some nonlocal media
with linear unitary gain and loss, which yields amplification following a power law,

E1 (ζ) = E1 (0)− [E1 (0)− iE2 (0)] ζ (25)

E2 (ζ) = E2 (0) + [E2 (0) + iE1 (0)] ζ (26)
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Finally, in the broken symmetry case, the characteristic equation is negative, Ω2 < 0, and we can
write the second order differential equation as an inverted oscillator,

∂2
ζEk (ζ)− |Ω|2Ek (ζ) = 0 (27)

that provides us with a device that amplifies initial fields following an exponential law,

E1 (ζ) = E1 (0) cosh (|Ω|ζ)− 1
|Ω| [γE1 (0)− iE2 (0)] sinh (|Ω|ζ) (28)

E2 (ζ) = E2 (0) cosh (|Ω|ζ) + 1
|Ω| [γE2 (0) + iE1 (0)] sinh (|Ω|ζ) (29)

All of these solutions are just the explicit form of the propagated field found earlier by a purely
algebraic approach, Equations (13)–(17), and tap into the well-known one-dimensional wave equation
with the difference that an effective nonlocal active medium is provided by the first derivative
boundary conditions.

2.3. Nonlinear Oscillator, Renormalized Fields Approach

So far, we have managed to provide an algebraic propagator and to describe the field behavior
in the three possible regimes of the linear PT -symmetric dimer. Now, we can bring forward
a complementary view that can give us asymptotic information of the broken symmetry phases.
Let us define instantaneous renormalized fields [48],

Ẽk (ζ) =
Ek (ζ)√

|E1 (ζ) |2 + |E2 (ζ) |2
(30)

such that the total renormalized field intensity at each propagation distance is always the unit,
∑2

k=1 |Ẽk (ζ) |2 = 1. In this picture, it is easier to realize that light intensity through the PT -symmetric
device behaves like a non-harmonic oscillator, Figure 4a. Furthermore, this allows us to conduct
asymptotic analysis in the broken symmetry phases. In the fully-degenerate phase, γ = 1, such that
Ω = 0, it is possible to calculate the asymptotic behavior of the fields’ intensity as the scaled
propagation distance goes to infinity and to find out that the renormalized optical power is balanced
in both waveguides, independent of the initial field distribution,

lim
ζ→∞
|Ẽk (ζ) |2 =

1
2

, γ = 1, Ω = 0 (31)

as shown in Figure 4b. In the broken symmetry regime, where the eigenvalues are purely imaginary,
the asymptotic intensity distribution depends on the effective gain to coupling ratio, and we can
include the previous result,

lim
ζ→∞
|Ẽ1 (ζ) |2 =

1
2γ

(
γ +

√
γ2 − 1

)−1
(32)

lim
ζ→∞
|Ẽ2 (ζ) |2 =

1
2γ

(
γ +

√
γ2 − 1

)
, γ ≥ 1 (33)

In other words, for a device long enough, in the broken symmetry region, the input field
distribution has no effect on the output field intensity distribution. The latter is governed only
by the gain to coupling ratio of the device, γ (Figure 4c).
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π2

(a) 1< γ <0 (b) = 1γ (c) 1γ >

ζ
0

ζΩ ζ|Ω|
0

1

0 π5π50

2 |
kẼ|

Figure 4. Renormalized field intensity propagation in the waveguides with effective loss, |Ẽ1|2, solid
blue line, and gain, |Ẽ2|2, dashed red line, in the (a) PT -symmetric regime, γ = 0.5; (b) fully-degenerate
regime, γ = 1; and (c) broken symmetry regime, γ = 1.5, for an initial field impinging just at the
first waveguide.

Furthermore, this approach also allows us to show that the linear PT -symmetric dimmer is the
irreducible form of two equivalent reducible nonlinear models, one with linear loss and gain, as well
as an imaginary nonlinearity [48],

−i∂ζ Ẽ1(ζ) = Ẽ2(ζ) + 2iγ
[
1− |Ẽ1(ζ)|2

]
Ẽ1(ζ) (34)

−i∂ζ Ẽ2(z) = Ẽ1(ζ)− 2iγ
[
1− |Ẽ2(ζ)|2

]
Ẽ2(ζ) (35)

that has a form reminiscent of van der Pol oscillators [56] in the sense that there is a change
of sign dependent on the intensity for the self-modulation of the waveguide fields. Actual
PT -symmetric-coupled van der Pol oscillators have been implemented in the laboratory, as well
as their optical realizations [57]. The other form corresponds to an imaginary cross-nonlinearity,

−i∂ζ Ẽ1(ζ) = Ẽ2(ζ) + 2iγ|Ẽ2(ζ)|2Ẽ1(ζ) (36)

−i∂ζ Ẽ2(ζ) = Ẽ1(ζ)− 2iγ|Ẽ1(ζ)|2Ẽ2(ζ) (37)

We can follow a standard approach from non-Hermitian Bose–Hubbard dimers [58–61] used to
deal with optical nonlinear PT -symmetric dimers [28], and introduce a Stokes vector, ~̃S = (S̃x, S̃y, S̃z),
with components given by,

S̃j(ζ) = 〈Ẽ(ζ)|σj|Ẽ(ζ)〉, j = x, y, z (38)

Again, the matrices σj are Pauli matrices; the notation |Ẽ(ζ)〉 is a column vector containing the
renormalized field amplitudes equivalent to that defined in Section 2 for the field amplitudes; and the
new conjugate transpose notation 〈Ẽ(ζ)| =

(
|Ẽ∗(ζ)〉

)T is a row vector with the conjugate renormalized
field amplitudes as components. In terms of the renormalized field amplitudes,

S̃x(ζ) = Ẽ∗1 (ζ)Ẽ2(ζ) + Ẽ1(ζ)Ẽ∗2 (ζ) (39)

S̃y(ζ) = −i
[
Ẽ∗1 (ζ)Ẽ2(ζ)− Ẽ1(ζ)Ẽ∗2 (ζ)

]
(40)

S̃z(ζ) = |Ẽ1(ζ)|2 − |Ẽ2(ζ)|2 (41)

In the case at hand, where the nonlinearity is reducible, the Stokes vector norm is the unit and
a constant of motion,

S̃(ζ) =
√
S̃2

x(ζ) + S̃2
y (ζ) + S̃2

z (ζ) = |Ẽ1(ζ)|2 + |Ẽ2(ζ)|2 = 1 (42)
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The Stokes vector components verify the following set of coupled differential equations:

∂ζ S̃(ζ) = 0 (43)

∂ζ S̃x(ζ) = 2γS̃x(ζ) S̃z(ζ) (44)

∂ζ S̃y(ζ) = 2S̃z(ζ)
[
1 + γS̃y(ζ)

]
(45)

∂ζ S̃z(ζ) = −2
{
S̃y(ζ) + γ

[
1− S̃2

z (ζ)
]}

(46)

Note that these equations have a set of stable points only outside the PT -symmetric regime,
γ ≥ 1, given by S̃s(ζ) = (0,−γ−1,−γ−1

√
γ2 − 1). It is also possible to describe the asymptotic

behavior of the renormalized Stokes vector components,

lim
ζ→∞
S̃x(ζ) = 0 (47)

lim
ζ→∞
S̃y(ζ) = − 1

γ
(48)

lim
ζ→∞
S̃z(ζ) = −

√
γ2 − 1

γ
, γ ≥ 1 (49)

The Stokes vector approach allows us to visualize the field propagation as a trajectory on
a unit sphere. Any initial condition, in the fully-degenerate and broken symmetry regimes, will
converge asymptotically to the same stable point on the sphere of the differential equation,
limζ→∞

~̃S(ζ) = S̃s(ζ) = (0,−γ−1,−γ−1
√

γ2 − 1), in a dimer described by the gain to coupling
ratio γ. Figure 5 shows the Stokes vector propagation related to the examples given in Figure 4
and an additional initial condition set to show that the asymptotic behavior is independent of the
initial conditions. This asymptotical behavior suggest the use of this device as an unidirectional
variable amplitude coupler.

xS̃ xS̃xS̃yS̃ yS̃yS̃

(a) 1< γ <0 (b) = 1γ (c) 1γ >

1− 1− 1−1− 1− 1−

1 1 1 11 1

1

1−

zS̃

Figure 5. Stokes vector propagation in the waveguide coupler with effective symmetric loss and gain,
in the (a) PT -symmetric regime, γ = 0.5; (b) fully-degenerate regime, γ = 1; and (c) broken symmetry
regime, γ = 1.5, for the initial conditions E1(0) = 1 and E2(0) = 0 in black and E1(0) = 1/

√
3 and

E2(0) =
√

1− |E1(0)|2 in red.

3. Nonlinear PT -Symmetric Dimer

Now, we will discuss a variation of the PT -symmetric dimer where the waveguides have
an additional Kerr nonlinearity,

−i∂ζE1(ζ) =
[
iγ + κ|E1(ζ)|2

]
E1(ζ) + E2(ζ) (50)

−i∂ζE2(ζ) =
[
−iγ + κ|E2(ζ)|2

]
E2(ζ) + E1(ζ) (51)
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For the sake of simplicity, we will consider the effective Kerr nonlinearity to coupling strength
ratio, κ, to be equal in both waveguides. Stability in this system has been formally discussed in the
case of κ = 1, and it was found that the zero equilibrium state is neutrally stable in the PT -symmetric
regime, γ < 1, and that the total light intensity at the waveguides is bounded from above by the
initial intensity amplified by an exponential gain, |E1(ζ)|2 + |E2(ζ)|2 ≤

(
|E1(0)|2 + |E2(0)|2

)
e2γζ [35].

In order to deal with the dynamics, it is possible to introduce a Stokes vector defined, now, in terms of
the field amplitudes [28],

Sx(ζ) = E∗1 (ζ)E2(ζ) + E1(ζ)E∗2 (ζ) (52)

Sy(ζ) = −i [E∗1 (ζ)E2(ζ)− E1(ζ)E∗2 (ζ)] (53)

Sz(ζ) = |E1(ζ)|2 − |E2(ζ)|2 (54)

Thus, the norm of the redefined Stokes vector, the total intensity at the waveguides, is no longer
a constant of motion,

S(ζ) =
√
S2

x(ζ) + S2
y (ζ) + S2

z (ζ) = |E1(ζ)|2 + |E2(ζ)|2 (55)

and its dynamics,

∂ζS (ζ) = −2γSz (ζ) (56)

∂ζSx (ζ) = κSy (ζ) Sz (ζ) (57)

∂ζSy (ζ) = Sz (ζ) [2− κSx (ζ)] (58)

∂ζSz (ζ) = −2
[
Sy (ζ) + γS (ζ)

]
(59)

will not be restricted to the unit sphere. These dynamics have been shown to be an optical simulation
of a relativistic massless particle of negative charge in a pseudo-electromagnetic field [28]. Note that
there is a set of stable points, ∂ζ

~Ss(ζ) = 0, for the effective gain to coupling ratio γ < 1,

~Ss(ζ) =

{(
2
κ

, ± 2γ

κ
√

1− γ2
, 0

)
,
(
± 1

γ

√
(1− γ2) |Sy(ζ)| , Sy(ζ) , 0

)}
(60)

All of these stable nonlinear modes are waveguide fields of the form Ej = Aeiφj with A ≥ 0 and
phase difference constricted by the relation,

tan (φ1 − φ2) = ±
γ√

1− γ2
(61)

There are no stable points outside the PT -symmetric regime, γ ≥ 1.
In order to create intuition, let us start with the passive self-focusing two-waveguide coupler,

γ = 0, that has two constants of motion in the form of the Stokes vector norm, S(ζ) = 1, such that
∂ζ S(ζ) = 0, and the Hamiltonian-like quantity,

H =
1
2

κS2
z (ζ) + 2Sx(ζ) (62)

Note that the system is integrable, and the conservation of the Stokes vector norm allows for the
parametrization Sx(ζ) =

√
1− S2

z cos φ(ζ) and Sy(ζ) =
√

1− S2
z sin φ(ζ), such that we can write

a Hamilton–Jacobi model,

H =
1
2

κS2
z (ζ) + 2

√
1− S2

z (ζ) cos φ(ζ), ∂ζSz(ζ) =
∂H
∂φ

, ∂ζ φ(ζ) = − ∂H
∂Sz

(63)
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equivalent to that of a nonrigid pendulum or a Bose–Josephson junction [62,63]. This particular
configuration allows for Rabi oscillations (Figure 6a) below the critical effective Kerr nonlinearity
to coupling ratio, κ = 2 (Figure 6b); above this critical value, the system can show both Rabi and
Josephson oscillations (Figure 6c). In other words, the initial field amplitudes either coherently oscillate
between the waveguides or localize at the waveguide where they were originally prepared, depending
on both the initial field distribution and the effective Kerr nonlinearity of the device.

1−

1−

1−

1−

1−

1−

1

1 1 1

1 1

1

1−

2κ <= 0,γ(a) = 2κ= 0,γ(b) 2κ >= 0,γ(c)

S/xSS/xSS/xS

S/yS S/ySS/yS

S/zS

Figure 6. Stokes vector propagation in the passive two-waveguide coupler, γ = 0, with nonlinearities
(a) below, κ = 1.5; (b) at, κ = 2; and (c) above, κ = 2.5, the critical Kerr nonlinearity to coupling
strength ratio, κ = 2. The figure shows: (a) stationary point; (b) trajectory infinitesimally near the
stationary point; and (c) separatrix in black; (a,b) Rabi and (c) Josephson oscillations in red; and (a)–(c)
Rabi oscillations in blue.

If we now include the symmetric gain and loss, γ 6= 0, the system is still integrable, as we can
write two constants of motion [28],

SC (ζ) =

√
[κSx (ζ)− 2]2 +

[
κSy (ζ)

]2 (64)

SJ (ζ) = S (ζ) +
2γ

κ
arctan

[
κSx (ζ)− 2

κSy (ζ)

]
(65)

In the literature, it has been found that the system is stable in the interval 0 ≤ γ < 1 for effective
nonlinearity κ = 1 [35], and numerical arguments have been given in the most general case [28].
Figure 7 shows how the dynamics of the passive nonlinear dimer are affected by the addition of a small
effective gain to coupling ratio to the system. Below the critical nonlinearity for the passive system
(Figure 7a), we can still find the coherent oscillation behavior of the linear PT -symmetric dimer, but the
former stable point is no longer a fixed point of the system. As the nonlinearity increases, we can see
how device parameters and initial conditions start having an effect on the dynamics (Figure 7b), until
a point where it is possible to have unstable light localization at the waveguide where light originally
impinged (Figure 7c). Here, the constant of motion plays an important role as an accuracy test for the
process of numerically solving the coupled nonlinear system.

Now, for a given effective Kerr nonlinearity to coupling ratio, κ = 1, we can approximate a critical
effective gain to coupling ratio, γc ' π−1, where a change of dynamics occur. First, the reciprocity
condition regarding the exchange of waveguides for a given initial field distribution breaks as we get
closer to the approximate critical gain to coupling ratio (note the shift to the left in Figure 8a,b), then,
after we cross the critical value, the field intensity at the gain waveguide gets localized and experiences
an exponential gain, while the field in the lossy waveguide diminishes independently of the initial
field amplitude distribution (Figure 8c). Note, the dynamics above the critical gain to coupling ratio
do not tend to the fixed point of the system as in the linear device; the fields do not seem to show
a constant behavior in the asymptotic limit. This localization with amplification in the gain waveguide
suggests the use of these devices as optical diodes [28].
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1−

1−

1−

1−

1−

1−

1

1 1 1

1 1

1

1−

S/xSS/xSS/xS

S/yS S/ySS/yS

S/zS

5.= 1κ,3−= 10γ(a) = 2κ,3−= 10γ(b) 5.= 2κ,3−= 10γ(c)

Figure 7. Renormalized Stokes vector propagation in the waveguide coupler with a fixed gain to
coupling ratio γ = 0.001 and variable effective nonlinearity to coupling ratio (a) κ = 1.5; (b) κ = 2;
and (c) κ = 2.5, for the same initial conditions as Figure 6.

1−
1−

1−

1−

1−1

1 1

1

1

1

1

1−

S/xS

S/xSS/xS

S/yS
S/yS

S/yS

S/zS

1−

= 1κ2,.0−1−π=γ(a) = 1κ,1−π=γ(b) = 1κ2,.+ 01−π=γ(c)

Figure 8. Renormalized Stokes vector propagation in the waveguides’ waveguide coupler with
a fixed effective Kerr nonlinearity to coupling ratio κ = 1 and variable effective gain to coupling ratio
(a) γ = π−1− 0.2; (b) γ = π−1; and (c) γ = π−1 + 0.2, for the same initial conditions as Figure 7.

4. Linear PT -Symmetric Planar N-Waveguide Coupler

As we said before, the linear dimer is the device with the smallest dimension showing
PT -symmetry. Its algebraic structure, Equation (10), and the fact that Pauli matrices are the two by two
scaled matrix representation of the SU(2) group in dimension two, σk = 2Jk, suggest that a larger class
of N-waveguide devices can be constructed with higher dimensional matrix representations of SU(2).
Therefore, we can construct a mode coupling equation set describing a device of N waveguides
following Equation (8),

i∂z|E(z)〉 = 2 (in−Jz + gJx) |E(z)〉 (66)

Now, we choose to introduce a different scaled propagation, ξ = 2ζ = 2gz, to recover a single
parameter Schrödinger-like equation with the form,

i∂ξ |E(ξ)〉 = H|E(ξ)〉, H = iγJz + Jx (67)

where the effective refractive index to coupling ratio is the same as in the standard dimer, γ = n−/g.
This mode coupling matrix with iγ ∈ R describes planar N-waveguide couplers with identical
real effective refractive indices and underlying SU(2) symmetry that show harmonic oscillator
behavior [64]. These devices have been used to produce perfect state transfer in both the classical [65–68]
and quantum regimes [69]. In order to deal with a linear PT -symmetric N-waveguide coupler, we
must consider pure imaginary effective refractive indices, γ ∈ R, and thus, the realization of higher
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finite-dimensional non-unitary representation of SO(2, 1), implemented as a complexified version of
SU(2), is involved. In matrix form, the group generators have the following elements,

[Jx]m,n =
1
2

[
δm−1,n

√
n (2j− n + 1) + δm+1,n

√
m (2j−m + 1)

]
(68)

[
Jy
]

m,n =
i
2

[
δm−1,n

√
n (2j− n + 1) − δm+1,n

√
m (2j−m + 1)

]
(69)

[Jz]m,n = δm,n (j−m + 1) m, n = 1, 2, . . . , N (70)

with the Kronecker delta given by δm,n and the Bargmann parameter by j = (N− 1)/2. These matrices
fulfill the commutation relation

[
Ji,Jj

]
= iεijkJz, where εijk is the Levi–Civita symbol, and commute

with the Casimir operator J2 = J2
x + J

2
y + J

2
z = j(j + 1)1,

[
Jj,J2] = 0. In the standard differential

form, this is equivalent to the coupled mode set,

− i∂ξEk(ξ) =
iγ
2
(N − 2k + 1) Ek(ξ) +

1
2

√
(k− 1)(N − k− 1)Ek−1(ξ) +

1
2

√
k(N − k) Ek+1(ξ) (71)

Following the vector notation, we can construct a field vector as,

|E(ξ)〉 =
N

∑
k=1
Ek(ξ)|j, j− k + 1〉 (72)

where we can define the n-th element of the standard basis as:

[|j, m〉]n = δj−m+1,n , m = −j,−j + 1, . . . , j− 1, j, n = 1, 2, . . . , N (73)

such that we can define more helpful generators with their corresponding actions,

Jz|j, m〉 = m |j, m〉 (74)

J±|j, m〉 =
√
(m + 1)(2j + 1∓m) |j, m± 1〉 (75)

where we have defined the ladder operators J± = Jx ± iJy that fulfill [Jz,J±] = ±J±. Following the
Gilmore–Perelomov approach for SU(2) [48,64], we can find the n-th eigenvalue of the mode
coupling matrix,

Ωn = (j− n + 1) Ω, n = 1, . . . , N (76)

and obtain the same structure found for the dimer. All of the eigenvalues will be real numbers for γ < 1
(Figure 9a), completely degenerate and equal to zero Ωm = 0 for γ = 1 (Figure 9b) and imaginary for
γ > 1 (Figure 9c). This so-called collapse of the eigenvalues is a direct consequence of the underlying
symmetry [70].

Furthermore, we can provide the propagation matrix elements,

[U(ξ)]m,n = Ω−2j

√√√√( 2j
m− 1

)(
2j

n− 1

) (
Ω cos Ω

2 ξ − γ sin Ω
2 ξ
)2(j+1)−m−n

×
(

i sin Ω
2 ξ
)m+n−2

2F1

(
1−m, 1− n,−2j, Ω2 csc2 Ω

2 ξ
)

, γ < 1

(77)

[U(ξ)]m,n = (−2)−2j

√√√√( 2j
m− 1

)(
2j

n− 1

)
(ξ − 2)2(j+1)−m−n (iξ)m+n−2

× 2F1

(
1−m, 1− n,−2j, 4

ξ2

)
, γ = 1

(78)
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[U(ξ)]m,n = (|Ω|)−2j

√√√√( 2j
m− 1

)(
2j

n− 1

) (
|Ω| cosh |Ω|2 ξ − γ sinh |Ω|2 ξ

)2(j+1)−m−n

×
(

i sinh |Ω|2 ξ
)m+n−2

2F1

(
1−m, 1− n,−2j, |Ω|2csch2 |Ω|

2 ξ
)

, γ > 1

(79)

where the notations

(
a
b

)
and 2F1(a, b, c, z) stand for the binomial coefficient and Gauss

hypergeometric function, in that order. Again, we will have three distinct propagation behaviors
as demonstrated for the dimer. These behaviors are simpler to visualize if we define renormalized
field amplitudes,

Ẽk (ξ) =
Ek (ξ)√

∑N
p=1 |Ep (ξ) |2

(80)

(a) (b) (c)

= 0γ

= 0.9γ

= 0.5γ
= 0.75γ

1< γ <0

0

0

)
j

(Ω�

)j(Ω�
4.5−

4.5−
4.5

4.5

0

)j(Ω�
4.5− 4.5

= 1γ

0

)j(Ω�
4.5− 4.5

= 1.1γ

= 2.0γ

= 1.25γ
= 1.5γ

1γ >

Figure 9. Coupling matrix eigenvalue dynamics: (a) PT -symmetric regime; (b) fully-degenerate
regime; and (c) broken symmetry regime. The black arrows show the direction of the eigenvalues as
the gain to coupling ratio increases. Theses cases show the results for a N = 6 waveguide coupler that
provides a Bargmann parameter j = 5/2.

Now, we can see periodic amplified oscillations in the PT -symmetric regime, γ < 1 (Figure 10a),
amplification following a power law in the fully-degenerate regime, γ = 1 (Figure 10b), and
asymmetric amplification following an exponential law in the broken symmetry regime, γ > 1
(Figure 10c).

ξ ξ|Ω|ξΩ
π2

(a) 1< γ <0 (b) = 1γ (c) 1γ >

0
0

1

0 π5π50

2 |
kẼ|

2|1Ẽ|
2|2Ẽ|
2|3Ẽ|

2|4Ẽ|
2|5Ẽ|
2|6Ẽ|

Figure 10. Renormalized field intensity propagation for a N = 6 waveguide coupler, Bargmann
parameter j = 5/2, in the (a) PT -symmetric regime, γ = 0.5; (b) fully-degenerate regime, γ = 1;
and (c) broken symmetry regime, γ = 1.5, for an initial field impinging just the first waveguide.
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Furthermore, we can derive the set of reducible coupled nonlinear equations for the renormalized
field amplitudes,

−i∂Ẽk (ξ) =
iγ
2

[
(N − 2k + 1) + ∑N

p=1 (N − 2p + 1) |Ẽp (ξ) |2
]
Ẽk (ξ) +

+ 1
2

√
(k− 1)(N − k− 1) Ẽk−1 (ξ) +

1
2

√
k(N − k) Ẽk+1 (ξ) , k = 1, 2, . . . , N

(81)

It is cumbersome, but possible to show that the asymptotic response of an N-waveguide
coupler in the fully-degenerate and broken symmetry regimes is independent of the input field
amplitude distribution,

lim
ξ→∞
|Ẽk (ξ) |2 =

1

(2γ)2j

(
2j

k− 1

)(
γ +

√
γ2 − 1

)2(k−j−1)
, γ ≥ 1 (82)

which can be seen in Figure 10b for γ = 1 and Figure 10c for γ > 1. As expected from the mathematical
description, in the fully-degenerate regime (Figure 10b), the extremal waveguides, those with major
effective losses and gain, will transmit fields with smaller amplitudes than those in the central
waveguides, because the asymptotic intensity distribution follows the binomial coefficient. In the
broken symmetry regime (Figure 10c), the field intensity correlates with the strength of the gain or
loss; the most intense field will travel through the waveguide with the larger effective gain and the
less intense through the one with the larger effective loss.

The equivalent three-dimensional formulation of the Stokes vector for renormalized fields,

J̃k(ξ) = 〈Ẽ (ξ) |Jk|Ẽ (ξ)〉, k = x, y, z (83)

yields components of the following form,

J̃x (ξ) =
1
2

2j+1

∑
k=1

√
k(2j− k + 1)

[
Ẽ∗k+1Ẽk + Ẽ∗k Ẽk+1

]
(84)

J̃y (ξ) =
i
2

2j+1

∑
k=1

√
k(2j− k + 1)

[
Ẽ∗k+1Ẽk − Ẽ∗k Ẽk+1

]
(85)

J̃z (ξ) =
2j+1

∑
k=1

(j− k + 1) |Ẽk (ξ) |2 (86)

Here, the conserved variable is the Casimir operator,

C̃(ξ) = 〈Ẽ (ξ) |
[
J

2
x + J

2
y + J

2
z

]
|Ẽ (ξ)〉 = j(j + 1) (87)

and it is important to emphasize that the norm of this three-dimensional Stokes vector is no longer
a constant of motion,

J̃ (ξ) =
√
J̃ 2

x (ξ) + J̃ 2
y (ξ) + J̃ 2

z (ξ) (88)

The reason behind this is that a complex vector of dimension N with unit norm can be represented
as a point on the surface of a ball of unit radius in dimension N2 − 1. For example, the renormalized
fields through a two-waveguide coupler, two-dimensional complex vector of unit norm, can be
represented on the surface of a three-dimensional ball; in other words, a two-dimensional sphere,
where the Stokes vector norm is a constant of motion,

J̃ (ξ) = j
[
|Ẽ1 (ξ) |2 + |Ẽ2 (ξ) |2

]
=

1
2

, j =
1
2

(89)
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In general, we should use the surface of a (N2− 1)-ball of unit radius in order to describe properly
the field amplitudes propagating through an N-waveguide coupler. This does not make it simpler to
visualize the dynamics, so we favor a projection from (N2− 1)-dimensional to three-dimensional space
with the price of loosing the unit norm for all cases, but N = 2, where we can write J̃k(ξ/2) = 2S̃k(ζ)

with j = 1/2. Note that this projection also allows us to derive an asymptotic expression for the
z-component of the Stokes vector via Equation (82), and heuristically propose the rest,

lim
ξ→∞
J̃x (ξ) = 0 (90)

lim
ξ→∞
J̃y (ξ) = − 1

γ
j (91)

lim
ξ→∞
J̃z (ξ) = −

√
γ2 − 1

γ
j, (92)

lim
ξ→∞
J̃ (ξ) = j (93)

this was confirmed numerically over a random sample of initial states and gain to coupling ratios
outside the PT -symmetric regime, j ∈ [1/2, 10] and γ ∈ [1, 3]. Figure 11 shows the propagation
of the renormalized Stokes vector in a six-waveguide coupler, j = 5/2, with parameters in the
PT -symmetric, γ = 0.5 (Figure 11a), fully-degenerate, γ = 1 (Figure 11b), and broken symmetry,
γ = 1.5 (Figure 11c), regimes for light impinging the first waveguide of the coupler in black.
Furthermore, the renormalized Stokes vector propagation for an initial field amplitude distribution
corresponding to the eigenstate of Jx with eigenvalue −j is plotted in red to show the asymptotic
behavior outside the PT -symmetric regime.

J̃/yJ̃J̃/yJ̃

(a) 1< γ <0 (b) = 1γ (c) 1γ >

1− 1− 1−1− 1− 1−

1 1 1 11 1

1

1−

J̃/zJ̃

J̃/xJ̃ J̃/xJ̃J̃/xJ̃J̃/yJ̃

Figure 11. Renormalized Stokes vector propagation in a six-waveguide coupler, j = 5/2, in the
(a) PT -symmetric regime, γ = 0.5; (b) fully-degenerate regime, γ = 1; and (c) broken symmetry
regime, γ = 1.5, for the initial conditions Ek(0) = δk,1 in black and the eigenstate of Jx with eigenvalue
−j, Jx|E(0)〉 = −j|E(0)〉 in red.

5. Non-Hermitian Ehrenfest Theorem and Generalized Stokes Vector

So far, we have studied the propagation of classical light through a class of PT -symmetric devices
with underlying SO(2, 1) symmetry that includes the linear and nonlinear PT -symmetric dimer.
We have seen that propagation on these linear and nonlinear devices is more involved than in the
passive case, γ = 0, but the linear algebra approach has helped us produce closed form propagators
for the lineal case, and the renormalized fields approach and its Stokes vector representation have
allowed us to find stationary states and to visualize the propagation dynamics. Here, we shall try to
understand the underlying reasons for this more complex propagation behavior.

As we mentioned earlier, the propagation of light through tight-binding N-waveguide couplers
can be modeled by mode coupling theory in a form similar to the Schrödinger equation, Equation (9).
Thus, finding a propagator, Equation (13), provides us with the information of the complex field
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amplitudes as they propagate through each waveguide. In quantum mechanics, we can also ask about
the propagation of the expectation value, which in the optical picture translates to the following,

A(z) = 〈E(z)|A(z)|E(z)〉 (94)

for the operator A(z), which can vary with propagation. This is exactly what has been done when
studying the propagation of the Stokes vector defined as the expectation value of the SU(2) generators,
Equations (38) and (83), with the peculiarity that we used renormalized field amplitudes instead of
just the field amplitudes in the linear cases. The Ehrenfest theorem relates the variation with the
propagation of the mean value with the dynamics of the model,

d
dz
A(z) =

〈
d
dz
A(z)

〉
(95)

In standard Hermitian quantum mechanics, the Heisenberg equation provides the equation of motion
for the operator, but in our non-Hermitian model, we need to go beyond this. Any non-Hermitian
operatorA(z) can be decomposed,

A(z) = AH(z) +AS(z) (96)

into Hermitian,A†
H(z) = AH(z), and skew-Hermitian,A†

S(z) = −AS(z), parts. Thus, we can define a
commutator between non-Hermitian operators,

[A(z),B(z)]NH = A(z)B(z)−B†(z)A†(z) (97)

such that we can write a Heisenberg-like equation of motion ruled by a non-Hermitian Hamiltonian,

d
dz
A(z) = i [A(z),H(z)]NH +

∂

∂z
A(z) (98)

and recover a non-Hermitian generalization of the Ehrenfest theorem for tight binding non-Hermitian
waveguide couplers,

d
dz
A(z) = i 〈[A(z),H(z)]NH〉+

〈
∂

∂z
A(z)

〉
(99)

Note that equivalent modified Heisenberg equations of motion have been derived following
alternate methods in non-Hermitian quantum mechanics [71]. Let us consider, as an example, the
N-waveguide coupler of the last section, Equation (67), where the effective mode-coupling matrix
acting as the Hamiltonian has a Hermitian part, HH = Jx, and a skew-Hermitian part, HS = iγJz.
Here, the Ehrenfest theorem can be simplified to the expression,

∂ξA(ξ) = i 〈[A(ξ),HH ]〉+ i 〈{A(ξ),HS}〉+
〈
∂ξA(ξ)

〉
(100)

where the standard commutator, [A,B] = AB−BA, and anti-commutator, {A,B} = AB+BA,
have been used. We can see that the anti-commutator term in this expression will be proportional to
the gain to coupling strength ratio, γ, and this is the culprit behind the more complex behavior
of our general class of N-waveguide lattices with underlying complexified SU(2) symmetry.
Note that we can also use this result to derive the conserved quantities of the model by solving
∂ξA(ξ) = i 〈[A(ξ),HH ]〉+ i 〈{A(ξ),HS}〉+

〈
∂ξA(ξ)

〉
= 0.

As a practical example, let us derive the equations of motion for the Stokes vector for the
linear PT -symmetric dimer, Sk = 〈σk〉 with k = 0, x, y, z, where σ0 is the identity matrix, given by
Equations (52)–(55). Here, the Hermitian and skew-Hermitian parts of the mode coupling matrix are
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HH = σx and HS = iγσz. Now, any linear Hermitian operator for this system can be written as the
linear superposition of the matrices σk,

A(ζ) = ∑
k=0,x,y,z

a(A)
k (ζ)σµ (101)

and the propagation of its expectation values, according to the non-Hermitian Ehrenfest theorem, are
given by the following expression,

∂ζA(ζ) = 2
[
ay(ζ)Sz(ζ)− az(ζ)Sy(ζ)

]
− 2γ [a0(ζ)Sz(ζ) + az(ζ)S0(ζ)] + ∑

k=0,x,y,z
Sk(ζ)∂ζ ak(ζ) (102)

Thus, noting that for the Stokes vectors, the coefficients are constant, a(σl)
k (ζ) = δl,k, we can write

the evolution for the components of the Stokes vector without field renormalization,

∂ζS0(ζ) = −2γSz(ζ) (103)

∂ζSx(ζ) = 0 (104)

∂ζSy(ζ) = 2Sz(ζ) (105)

∂ζSz(ζ) = −2
[
Sy(ζ) + 2γS0(ζ)

]
(106)

which are in complete agreement with what we obtain from the nonlinear PT -symmetric dimer,
Equations (56)–(59), if we kill the effective nonlinearity to coupling strength ratio, κ = 0.
Note that the total intensity, S0(ζ), is not conserved as expected from non-Hermitian dynamics.
Note that, in this case, the total intensity, S0(ζ), coincides with the norm of the Stokes vector,

S(ζ) =
√
S2

x(ζ) + S2
y (ζ) + S2

z (ζ), and we can recover the renormalized Stokes vector dynamics,

Equations (43)–(46), if we define a renormalized Stokes vector, S̃k = Sk/S0, and use the equations of
motion found here. If we were to find a constant of motion, Sc(ζ), then its components should satisfy,

∂ζ a(Sc)
0 (ζ) = 2γaSc

z (ζ) (107)

∂ζ a(Sc)
x (ζ) = 0 (108)

∂ζ a(Sc)
y (ζ) = 2a(Sc)

z (ζ) (109)

∂ζ a(Sc)
z (ζ) = 2

[
γa(Sc)

0 (ζ)− a(SC)
y (ζ)

]
(110)

A particular solution to this set of equation is a(Sc)
k (ζ) = δk,x in agreement with Equation (105)

For the general case of the planar N-waveguide coupler, the situation is far more complex as we
are dealing with square matrices of dimension N. In order to construct any given Hermitian operator
of this dimension, we need a basis with a total of N2 matrices; these are provided by the standard
unitary group of degree N, SU(N), plus the identity. This way, we will work with a set of N2 operators
where the first four elements are the representation of SU(2) in dimension N plus the unity, Jk with
k = 0, x, y, z, that form U(N),

A(ξ) =
N2−1

∑
k=0

a(A)
k (ξ)Jk (111)

where we have just implicitly made the change Jx = J1, Jy = J2, Jz = J3. Thus, if we define
a generalized Stokes vector for the planar N-waveguide coupler, it will have dimension N2, and the
zeroth component will be the total intensity in the system,
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J0(ξ) =
N

∑
k=1
|Ek(ξ)|2 (112)

but in this case, the zeroth component of the generalized Stokes vector, J0(ζ), is still the total intensity,
but does not coincide with the norm of the generalized Stokes vector, J =

√
∑k |Jk|2. Thus, a graphical

representation on the sphere will just be a projection of the propagation dynamics occurring on
a (N2 − 1)-dimensional hypersphere as mentioned before. Note that for passive devices, γ = 0, the
propagation equations for the Stokes vectors do not involve any other functions, and the propagation
dynamics is restricted to the subgroup SU(2) of U(N), recovering the results of [64].

6. Quantum PT -Symmetric Dimer

Let us turn our attention now to the propagation of nonclassical light. In the quantum regime,
it is possible to describe two-waveguide couplers with the following effective Hamiltonian [72],

Ĥ = n1 â†
1 â1 + n2 â†

2 â2 + g
(

â†
1 â2 + â1 â†

2

)
(113)

where we have kept the notation for the effective refractive indices and evanescent coupling strength,
nj with j = 1, 2 and g, in that order. At this point, we can use the Schwinger two-boson representation
of SU(2) [73],

Jx =
1
2

(
â†

1 â2 + â1 â†
2

)
, Jy = − i

2

(
â†

1 â2 − â1 â†
2

)
, Jz =

1
2

(
â†

1 â1 − â†
2 â2

)
(114)

to write an effective Hamiltonian with underlying SU(2) symmetry,

H = ω Jz + Jx, ω =
1
g
(n1 − n2) (115)

that answers to the effective Schrödinger equation,

− i∂ξ |E(ξ)〉 = H|E(ξ)〉, ξ = 2gz (116)

In the single photon regime,

|E(ξ)〉 = E1(ξ)|1, 0〉+ E2(ξ)|0, 1〉 (117)

we recover the differential equation set describing the standard two-waveguide coupler,

−i∂ξ

(
E1(ξ)

E2(ξ)

)
=

(
ω 1
1 −ω

)(
E1(ξ)

E2(ξ)

)
(118)

This approach suffices for the analysis of ideal dimers without gain or loses, ω ∈ R, where the
total photon number,

n̂ = â†
1 â1 + â†

2 â2 (119)

of the initial state, 〈n̂〉 = 〈E(0)|n̂|E(0)〉, determines the dimension of the SU(2) representation to be
used, N = 〈n̂〉+ 1 = 2j + 1, with the eigenbasis of Jz given by the following,

|j, m〉 = |n1, n2〉, j =
n1 + n2

2
, m =

n1 − n2

2
(120)
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such that we can use the results proposed for classical waveguides’ couplers with underlying SU(2)
symmetry [64] to calculate relevant quantities, like the mean photon number at each waveguide.

The inclusion of linear loses and gain is not a trivial matter, and it is simpler to discuss in the
Heisenberg picture [74],

d
dz

Ô(z) = −i
[
Ĥ, Ô(z)

]
+ ∂zÔ(z) (121)

where we have accounted for the change from time to distance propagation. Let us go straight
to the PT -symmetric dimer, with the identical real part of the refractive index and moving into a
rotating frame, (

â1(z)
â2(z)

)
= ein+z

(
ô1(z)
ô2(z)

)
(122)

such that, again, we can define a scaled propagation, ζ = gz, and include spontaneous processes
arising from the quantum description of materials with linear loss or gain processes [74],

d
dζ

(
ô1(ζ)

ô2(ζ)

)
= i H

(
ô1(ζ)

ô2(ζ)

)
+ 1

(
f̂1(ζ)

f̂2(ζ)

)
, H =

(
iγ 1
1 −iγ

)
(123)

where the first term in the right-hand side is related to propagation through the quantum
two-waveguide coupler with linear loss and gain, γ ∈ R, and the second term describes the Gaussian
random processes of emission and absorption, a result arising from the linear materials in an equivalent
treatment to that used in the quantum description of the laser [75],

〈 f̂ †
1 (ζ) f̂1(ζ

′)〉 = 0, 〈 f̂1(ζ) f̂ †
1 (ζ
′)〉 = 2γ δ(ζ − ζ ′), (124)

〈 f̂ †
2 (ζ) f̂2(ζ

′)〉 = 2γ δ(ζ − ζ ′), 〈 f̂2(ζ) f̂ †
2 (ζ
′)〉 = 0 (125)

The formal solution for this differential equation yields the propagation of the annihilation operators,(
â1(ζ)

â2(ζ)

)
= eiHζ

(
â1(0)
â2(0)

)
+
∫ ζ

0
eiH(ζ−t)

(
f̂1(t)
f̂2(t)

)
dt, (126)

where we have obviated the common phase factor ein+ζ/g that does not play any important role.
Note that we can use the propagator we already found for the classical dimer,U = eiHζ in Equation (11),
for the first term in the right-hand side.

Now, in order to realize the effect of processes induced by the linear materials, let us focus on
spontaneous generation in the absence of fields in both waveguides. In the classical case, there will
be no light at all propagating through the waveguides, but in the quantum case, even with an initial
vacuum state, we can calculate the spontaneous generation at each waveguide [74],

S1 = 2γ
∫ ζ

0

∣∣∣[eiHt
]

12

∣∣∣2 dt, (127)

S2 = 2γ
∫ ζ

0

∣∣∣[eiHt
]

22

∣∣∣2 dt. (128)

It shows in the symmetric regime, γ < 1,

S1 =
1

4Ω3 [2Ωζ − sin (2Ωζ)] , (129)

S2 =
1

4Ω3

[
2Ωζ +

(
1− 2γ2

)
sin (2Ωζ) + 4γΩ sin2 (2Ωζ)

]
, (130)
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a linear increase with a periodic modulation (Figure 12a). In the fully-degenerate case, γ = 1,
the spontaneous generation,

S1 =
1
3

ζ3, (131)

S2 =
ζ

3

(
3 + 3ζ + ζ2

)
, (132)

follows a cubic polynomial (Figure 12b), and in the broken symmetry regime, γ > 1,

S1 =
1

4|Ω|3 [−2|Ω|ζ + sinh (2|Ω|ζ)] , (133)

S2 =
1

4|Ω|3
[
−2|Ω|ζ −

(
1− 2γ2

)
sinh (2|Ω|ζ) + 4γ|Ω| sinh2 (2|Ω|ζ)

]
, (134)

it shows exponential amplification (Figure 12c). Further discussion regarding the effect of spontaneous
processes on the propagation of diverse nonclassical fields through a linear PT -symmetric dimer can
be found in Ref. [74].

ζ|Ω|ζζΩ
π2

(a) 1< γ <0 (b) = 1γ (c) 1γ >

0
0

5

0 π2π20

2 |
kẼ|

12

110×

0

15

310×

0

Figure 12. Spontaneous generation of radiation in the waveguides with effective loss, S1 solid blue
line, and gain, S2 dashed red line, in the (a) PT -symmetric regime, γ = 0.5; (b) fully-degenerate
regime, γ = 1; and (c) broken symmetry regime, γ = 1.5, for quantum vacuum fields in
both waveguides.

7. Conclusions

We have presented a review of the PT -symmetric dimer in its linear, nonlinear and quantum
versions and show that it belongs to a symmetry class with underlying SO(2, 1) symmetry, realized as
a complexification of the SU(2) group, that allows the description of N-waveguide couplers. We have
aimed to present a coherent narrative of the different approaches to the optical PT -symmetric dimer
and relate them to the underlying symmetry of the model. In doing this, we introduce the idea of
using a non-Hermitian version of the Ehrenfest theorem to approach the propagation dynamics of
waveguide couplers described by non-Hermitian mode coupling matrices.

The field is young, and there still exist fundamental open questions on the subject, such as
the analytic determination of critical effective nonlinearity to coupling ratios for the Kerr nonlinear
PT -symmetric dimer; the need for a deeper understanding of the non-unitary finite dimensional
representations of SO(2, 1), realized without resorting to the complexified SU(2) representations; the
generalization to propagation-dependent photonic systems together with the possible applications;
just to mention a few that we hope to address in future work.
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The following abbreviations are used in this manuscript:

<(x),=(x) Real and imaginary parts of x, in that order
PT Parity-Time
U(N), SU(N), SO(N) Unitary group, special unitary group, special orthogonal group of degree N
SO(2, 1) Pseudo orthogonal group, Lorentz group, in 2+1 dimension.
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