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Abstract: In this paper, we discuss stochastic comparisons of lifetimes of series and parallel systems
with heterogeneous Fréchet components in terms of the usual stochastic order, reversed hazard rate
order and likelihood ratio order. The partial results established here extend some well-known results
in the literature of Gupta et al. Specifically, first, we generalize the result of Theorem 2 from the usual
stochastic order to the reversed hazard rate order. Second, we generalize the result of Theorem 3 from
the reversed hazard rate order to the likelihood ratio order. Last, we generalize the result of Theorem
4 from the hazard rate order to the likelihood ratio order when shape parameter 0 < α ≤ 1.

Keywords: Fréchet distribution; usual stochastic order; reversed hazard rate order; likelihood ratio
order; series system; parallel system

1. Introduction

A random variable X is said to have a Fréchet distribution if its cumulative distribution function
(cdf) is

F(x) = e−(
x−µ

θ )−α
, x > µ, α > 0, θ > 0,

where µ, θ and α are location, scale and shape parameters, respectively. We say that X ∼ Fré(µ, θ, α).
The Fréchet distribution was introduced by Fréchet [1] as one of the extreme value distribution,
and has been used in modeling and analysing several extreme events including accelerated life
testing, earthquakes, wind speeds, and so on. A lot of studied results and various applications of the
Fréchet distribution are presented in Broussard and Booth [2], Harlow [3], Kotz and Nadarajah [4],
Xapson et al. [5], Gupta et al. [6], and so on.

Let X1:n ≤ . . . ≤ Xn:n denote the order statistics corresponding to the random variables X1, . . . , Xn.
These order statistics play an important role in reliability theory, operations research, auction theory,
and many other areas; interested readers may refer to the volumes by Balakrishnan and Rao [7,8]
for relevant details. In particular, in reliability theory, the lifetime of a k-out-of-n system is then
evidently the (n− k + 1)th order statistic of a set of n random variables representing the component
lifetimes. So, a parallel (series) system is a 1(n)-out-of-n system and Xn:n (X1:n) denote its lifetime.
Stochastic comparisons of parallel and series systems with heterogeneous components have been
studied by many authors. For example, see Khaledi and Kochar [9,10], Genest et al. [11], Balakrishnan
and Zhao [12], Balakrishnan et al. [13], and Gupta et al. [6].

Gupta et al. [6] have considered the stochastic comparisons between the lifetimes of parallel/series
systems arising from independently distributed Fréchet components with respect to the usual stochastic
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order, the reversed hazard rate order and the hazard rate order based on location and scale parameters
of the Fréchet distributed components.

In this paper, we first study the usual stochastic order comparison for the lifetimes of the parallel
and series systems with independently Fréchet distributed components based on vector majorization
of shape parameters but fixed location and scale parameters. Next, we generalize the corresponding
results of Theorem 2, Theorem 3 and Theorem 4 in Gupta et al. [6]. Specifically, let X1, . . . , Xn be
independent random variables with Xi ∼ Fré(µ, θi, αi), i = 1, . . . , n, and Y1, . . . , Yn be independent
random variables with Yi ∼ Fré(µ, θ∗i , α∗i ), i = 1, . . . , n. Then:

(i) If θ1 = . . . = θn = θ∗1 = . . . = θ∗n,

(α1, . . . , αn) �m (α∗1 , . . . , α∗n) =⇒ Xn:n ≥st Yn:n and X1:n ≤st Y1:n;

(ii) If α1 = . . . = αn = α∗1 = . . . = α∗n,

(
1
θ1

, . . . ,
1
θn

) �w (
1
θ∗1

, . . . ,
1
θ∗n

) =⇒ Xn:n ≥rh Yn:n;

(iii) If α1 = . . . = αn = α∗1 = . . . = α∗n,

n

∑
i=1

θα
i ≥

n

∑
i=1

θ∗i
α =⇒ Xn:n ≥lr Yn:n;

(iv) If α1 = . . . = αn = α∗1 = . . . = α∗n, θ∗1 = . . . = θ∗n = θ,

1
θ
= (

n

∏
i=1

1
θi
)

1
n =⇒ Xn:n ≥lr Yn:n;

(v) If α1 = . . . = αn = α∗1 = . . . = α∗n, θ∗1 = . . . = θ∗n = θ∗,

θ∗α =
1
n

n

∑
i=1

θi
α or 0 < α ≤ 1, θ∗ =

1
n

n

∑
i=1

θi =⇒ X1:n ≤lr Y1:n.

2. Preliminaries

Suppose the random variables X and Y have distribution functions F(x) and G(x),
density functions f (x) and g(x), the survival functions F̄(x) = 1 − F(x) and Ḡ(x) = 1 − G(x),
the hazard rate functions rX(x) = f (x)/F̄(x) and rY(x) = g(x)/Ḡ(x), and the reversed hazard
functions r̃X(x) = f (x)/F(x) and r̃Y(x) = g(x)/G(x), respectively. Several notions of stochastic
orders, majorization and weak majorization have been discussed in Shaked and Shanthikumar [14]
and Marshall et al. [15], and below we provide a basic description that are most relevant to the
discussion here.

Definition 1. Let X and Y be two nonnegative random variables having support (0,+∞). Then:

(i) X is said to be smaller than Y in the reversed hazard rate order if r̃X(x) ≤ r̃Y(x), or equivalently, if G(x)
F(x)

is nondecreasing in x, and denoted by Y ≥rh X;
(ii) X is said to be smaller than Y in the hazard rate order if rX(x) ≥ rY(x), or equivalently, if G(x)

F(x)
is

nondecreasing in x, and denoted by Y ≥hr X;
(iii) X is said to be smaller than Y in the likelihood ratio order if g(x)

f (x) is nondecreasing in x, and denoted by
Y ≥lr X;
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(iv) X is said to be smaller than Y in the usual stochastic order if G(x) ≥ F(x), and denoted by Y ≥st X.

Definition 2. Let λ = (λ1, . . . , λn) and λ∗ = (λ∗1 , . . . , λ∗n) be two real vectors, and λ(1) ≤ . . . ≤ λ(n) and
λ∗(1) ≤ . . . ≤ λ∗(n) denote their ordered components. Then:

(1) λ∗ is said to be majorized by λ, denoted by λ �m λ∗, if

j

∑
i=1

λ(i) ≤
j

∑
i=1

λ∗(i)

for j = 1, 2, . . . , n− 1, and
n
∑

i=1
λi =

n
∑

i=1
λ∗i ;

(2) λ∗ is said to be weak upper majorized by λ, denoted by λ �w λ∗, if

j

∑
i=1

λ(i) ≤
j

∑
i=1

λ∗(i)

for j = 1, 2, . . . , n− 1, and
n
∑

i=1
λi ≤

n
∑

i=1
λ∗i .

Before we present our main results, we need the following well-known concept and four lemmas.

Definition 3. Let λ = (λ1, . . . , λn) and µ = (µ1, . . . , µn) be two real vectors. A real-valued function
φ(λ):Rn → R is said to be a Schur-concave (Schur-convex) function if for all λ �m µ, we have
φ(λ) ≤ (≥)φ(µ).

Lemma 1 (Marshall et al. [15]). A permutation-symmetric differentiable function φ(X) is Schur-concave
(Schur-convex) if and only if

(Xi − Xj)

(
∂φ(X)

∂Xi
− ∂φ(X)

∂Xj

)
≤ 0 (≥ 0)

for all i 6= j.

Lemma 2 (Marshall et al. [15]). Consider the real-valued function ψ, defined on a set A ⊆ Rn. Then, µ �w ν

implies ψ(µ) ≥ ψ(ν) if and only if ψ is nonincreasing and Schur-convex on A.

Lemma 3 (Marshall et al. [15]). If I ⊂ R is an interval and h(x):I → R is convex, then

g(X) =
n

∑
i=1

h(xi)

is Schur-convex on In, where X = (x1, . . . , xn). Consequently, Y = (y1, . . . , yn) �m X = (x1, . . . , xn) on In

implies g(Y) ≥ g(X).

Lemma 4. Let the function h:(0,+∞)× (0,+∞)→ (−∞,+∞) be defined as

h(y, t) =
y−tlny
1− ey−t .

Then, for each y > 0, h(y, t) is nonincreasing with respect to t.
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Proof. For each fixed y > 0, we have

∂h(y, t)
∂t

=
(lny)2y−t(ey−t − 1− y−tey−t

)

(1− ey−t
)2

.

It is easy to verify that the function ey−t − 1− y−tey−t
< 0 for any t > 0. So we get ∂h(y,t)

∂t < 0 for
any t > 0, which implies that h(y, t) is nonincreasing with respect to t. �

3. Results

First, we present the usual stochastic order comparison for the lifetimes of the parallel and series
systems with independently Fréchet distributed components based on vector majorization of shape
parameters but fixed location and scale parameters.

Theorem 1. Let X1, . . . , Xn be independent random variables with Xi ∼ Fré(µ, θ, αi), i = 1, . . . , n,
and Y1, . . . , Yn be independent random variables with Yi ∼ Fré(µ, θ, α∗i ), i = 1, . . . , n. If (α1, . . . , αn) �m

(α∗1 , . . . , α∗n), then Xn:n ≥st Yn:n and X1:n ≤st Y1:n.

Proof. (1) To prove that Xn:n ≥st Yn:n, it is sufficient to prove, for x > µ, that the cumulative
distribution function

FXn:n(x) =
n

∏
i=1

e−(
x−µ

θ )−αi = e−∑n
i=1(

x−µ
θ )−αi (1)

is Schur-concave with respect to (α1, . . . , αn).
We have the derivative of FXn:n(x) with respect to αi, i = 1, . . . , n, as, for x > µ,

∂FXn:n(x)
∂αi

= FXn:n(x)
(

x− µ

θ

)−αi

ln
x− µ

θ
.

Thus, we have

(αi − αj)

(
∂FXn:n(x)

∂αi
− ∂FXn:n(x)

∂αj

)
= (αi − αj)FXn:n(x)

[(
x− µ

θ

)−αi

−
(

x− µ

θ

)−αj]
ln

x− µ

θ
.

If x−µ
θ ≥ 1, then ln x−µ

θ ≥ 0 and ( x−µ
θ )−α is nonincreasing in α. So, we obtain

(αi − αj)

(
∂FXn:n (x)

∂αi
− ∂FXn:n (x)

∂αj

)
≤ 0;

If 0 < x−µ
θ < 1, then ln x−µ

θ < 0 and ( x−µ
θ )−α is nonnonincreasing in α. So, we obtain

(αi − αj)

(
∂FXn:n (x)

∂αi
− ∂FXn:n (x)

∂αj

)
≤ 0.

Thus, upon using Lemma 1, we have FXn:n(x) to be a Schur-concave function with respect to
(α1, . . . , αn), which completes the proof.

(2) To prove that X1:n ≤st Y1:n, it is sufficient to prove, for x > µ, that the survival function

F̄X1:n(x) =
n

∏
i=1

(
1− e−(

x−µ
θ )−αi

)
(2)

is Schur-concave with respect to (α1, . . . , αn).
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We have the derivative of F̄X1:n(x) with respect to αi, i = 1, . . . , n, as, for x > µ,

∂F̄X1:n(x)
∂αi

= F̄X1:n(x)
e−(

x−µ
θ )−αi ( x−µ

θ )−αi (− ln x−µ
θ )

1− e−(
x−µ

θ )−αi
.

Thus, we have

(αi − αj)

(
∂F̄X1:n(x)

∂αi
−

∂F̄X1:n(x)
∂αj

)
= (αi − αj)F̄X1:n(x)

[
( x−µ

θ )−αi ln x−µ
θ

1− e(
x−µ

θ )−αi
−

( x−u
θ )−αj ln x−µ

θ

1− e(
x−µ

θ )
−αj

]
≤ 0.

The last inequality holds according to Lemma 4, that is, F̄X1:n(x) is a Schur-concave function with
respect to (α1, . . . , αn), which completes the proof. �

Now, we discuss stochastic comparison of the lifetimes of parallel systems having independently
Fréchet distributed components with respect to the reversed hazard rate order based on vector weak
upper majorization of scale parameters but fixed location and shape parameters. The following result
generalizes the result of Theorem 2 in Gupta et al. [6].

Theorem 2. Let X1, . . . , Xn be independent random variables with Xi ∼ Fré(µ, θi, α), i = 1, . . . , n,
and Y1, . . . , Yn be independent random variables with Yi ∼ Fré(µ, θ∗i , α), i = 1, . . . , n. If ( 1

θ1
, . . . , 1

θn
) �w

( 1
θ∗1

, . . . , 1
θ∗n
), then Xn:n ≥rh Yn:n.

Proof. By equation (1), the probability density function of Xn:n, for x > µ, is

fXn:n(x) = FXn:n(x)
n

∑
i=1

α

x− µ

(
x− µ

θi

)−α

. (3)

So, the reversed hazard function of Xn:n is

r̃Xn:n(x) =
n

∑
i=1

α

x− µ

(
x− µ

θi

)−α

.

Let ti =
1
θi

, t∗i = 1
θ∗i

, then, we have

r̃Xn:n(x) =
n

∑
i=1

h(ti),

where h(t) = α
x−µ

(
t(x− µ)

)−α

.

It is obvious that the function h(t) is nonincreasing and convex in t. So, for x > µ, we have r̃Xn:n(x)
is nonincreasing and Schur-convex in (t1, . . . , tn) by Lemma 3. That is, (t1, . . . , tn) �w (t∗1 , . . . , t∗n)
implies r̃Xn:n ≥ r̃Yn:n by Lemma 2. This completes the proof of the theorem. �

Next, we present stochastic comparison of the lifetimes of parallel systems having independently
Fréchet distributed components with respect to the likelihood ratio order based on different scale
parameters but fixed location and shape parameters.
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Theorem 3. Let X1, . . . , Xn be independent random variables with Xi ∼ Fré(µ, θi, α), i = 1, . . . , n, and
Y1, . . . , Yn be independent random variables with Yi ∼ Fré(µ, θ∗i , α), i = 1, . . . , n. If ∑n

i=1 θα
i ≥ ∑n

i=1 θ∗i
α,

then Xn:n ≥lr Yn:n.

Proof. By Equations (1) and (3), the probability density function fXn:n(x), for x > µ, can be written as,

fXn:n(x) = α(x− µ)−α−1
n

∑
i=1

θα
i e−∑n

i=1 θi
α(x−µ)−α

.

Similarly, the density function of Yn:n, for x > µ, is given by

gYn:n(x) = α(x− µ)−α−1
n

∑
i=1

θ∗i
αe−∑n

i=1 θ∗i
α(x−µ)−α

.

Then, the ratio of the density functions of Xn:n and Yn:n, for x > µ, can be shown as,

fXn:n(x)
gYn:n(x)

=
∑n

i=1 θα
i

∑n
i=1 θ∗i

α e
(x−µ)−α

(
∑n

i=1 θ∗i
α−∑n

i=1 θα
i

)
.

Thus, if ∑n
i=1 θα

i ≥ ∑n
i=1 θ∗i

α, we have fXn:n (x)
gXn:n (x) is nonnonincreasing for x > µ. Hence, the theorem.

�

The following result provides the likelihood ratio order comparison between the largest order
statistics from independent heterogeneous Fréchet random variables and i.i.d. Fréchet random
variables. The established result generalizes the result of Theorem 3 in Gupta et al. [6] from the
reversed hazard rate order to the likelihood ratio order.

Theorem 4. Let X1, . . . , Xn be independent random variables with Xi ∼ Fré(µ, θi, α), i = 1, . . . , n,
and Y1, . . . , Yn be independent random variables with Yi ∼ Fré(µ, θ, α), i = 1, . . . , n. If 1

θ = (∏n
i=1

1
θi
)

1
n ,

then Xn:n ≥lr Yn:n.

Proof. It is obvious that the probability density functions of Xn:n and Yn:n, for all x > µ, can be
written as,

fXn:n(x) = FXn:n(x)
n

∑
i=1

α

x− µ

(
x− µ

θi

)−α

and

gYn:n(x) = FYn:n(x)
nα

x− µ

(
x− µ

θ

)−α

,

respectively. Therefore, the ratio of the density functions of Xn:n and Yn:n, for x > µ, is

fXn:n(x)
gYn:n(x)

=
FXn:n(x)
FYn:n(x)

∑n
i=1(

1
θi
)−α

n( 1
θ )
−α

.

From the result of Theorem 3 in Gupta et al. [6], we have
1
θ
= (∏n

i=1
1
θi
)

1
n implies Xn:n ≥rh Yn:n,

that is,
FXn:n(x)
FYn:n(x)

is nondecreasing for x > µ. So,
fXn:n(x)
gYn:n(x)

is nondecreasing for x > µ, the desired result

is obtained. �
Last, we discuss stochastic comparison of the lifetimes of two series systems, which having

independently heterogeneous Fréchet distributed components and i.i.d. Fréchet distributed
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components respectively, with respect to the likelihood ratio order based on different scale parameters
but fixed location and shape parameters. We first present another sufficient condition on stochastic
comparison of the lifetimes of series systems having independently Fréchet distributed components
with respect to the likelihood ratio order when shape parameter 0 < α ≤ 1.

Lemma 5. Let X1, . . . , Xn be independent random variables with Xi ∼ Fré(µ, θi, α), i = 1, . . . , n,
and Y1, . . . , Yn be independent random variables with Yi ∼ Fré(µ, θ∗, α), i = 1, . . . , n. If 0 < α ≤ 1
and (θ1, . . . , θn) �m (θ∗1 , . . . , θ∗n), then X1:n ≤lr Y1:n.

Proof. By Equation (2), the hazard rate function of X1:n, for all x > µ, can be written as,

rX1:n(x) =
α

x− µ

n

∑
i=1

( x−µ
θi

)−α

e(
x−µ

θi
)−α

− 1
.

According to the proof of Theorem 4 in [6], we see the function
ui

eui − 1
is nonincreasing and

convex in ui for ui ∈ (0, ∞), i = 1, . . . , n. So, the composite function ∑n
i=1

(
x− µ

θi
)−α

e
(

x−µ
θi

)−α

−1
is convex in θi

for 0 < α ≤ 1 and θi ∈ (0, ∞), i = 1, . . . , n. Thus, for x > µ, we have rX1:n(x) is Schur-convex in
(θ1, . . . , θn) by Lemma 3, that is, if (θ1, . . . , θn) �m (θ∗1 , . . . , θ∗n) implies rX1:n ≥ rY1:n by Lemma 2, which
completes the proof. �

Theorem 5. Let X1, . . . , Xn be independent random variables with Xi ∼ Fré(µ, θi, α), i = 1, . . . , n,
and Y1, . . . , Yn be independent random variables with Yi ∼ Fré(µ, θ∗, α), i = 1, . . . , n.

(1) If θ∗α = 1
n ∑n

i=1θi
α, then X1:n ≤lr Y1:n;

(2) If 0 < α ≤ 1, θ∗ = 1
n ∑n

i=1θi, then X1:n ≤lr Y1:n.

Proof. (1) By equation (2), we obtain the probability density functions of X1:n and Y1:n, for all x > µ,
can be written as,

fX1:n(x) = F̄X1:n(x)
α

x− µ

n

∑
i=1

( x−µ
θi

)−α

e(
x−µ

θi
)−α

− 1

and

gY1:n(x) = F̄Y1:n(x)
nα

x− µ

( x−µ
θ∗ )−α

e(
x−µ
θ∗ )−α − 1

,

respectively.
In order to prove that X1:n ≤lr Y1:n, it is sufficient to prove that the ratio of density functions

gY1:n(x)
fX1:n(x)

=
F̄Y1:n(x)
F̄X1:n(x)

n( x−µ
θ∗ )−α

e(
x−µ
θ∗ )−α

−1

∑n
i=1

(
x−µ

θi
)−α

e
(

x−µ
θi

)−α

−1

,
F̄Y1:n(x)
F̄X1:n(x)

η(x)

is nondecreasing in x > µ, where η(x) =

n( x−µ
θ∗ )−α

e
(

x−µ
θ∗ )−α

−1

∑n
i=1

(
x−µ

θi
)−α

e
(

x−µ
θi

)−α

−1

. Since θ∗α = 1
n ∑n

i=1θi
α implies that

(θ1
α, . . . , θn

α) �m (θ∗α, · · · , θ∗α), we have
F̄Y1:n (x)
F̄X1:n (x) to be nondecreasing in x > µ from the result
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of Theorem 4 in Gupta et al. [6]. So it suffices to show that η(x) is nondecreasing in x > µ. Without loss

of generality, taking µ = 0, then we have η(x) =
nθ∗α

eθ∗α x−α−1

∑n
i=1

θi
α

eθi
α x−α

−1

, x > 0. According to the proof of

Theorem 2 in Fang and Balakrishnan [16], we see that
nλ∗

eλ∗y−1

∑n
i=1

λi
eλiy−1

is nonincreasing in y > 0 with

λ∗ = 1
n ∑n

i=1λi. Thus, we have
nθ∗α

eθ∗αy−1

∑n
i=1

θi
α

eθi
αy−1

is nonincreasing in y > 0 with θ∗α = 1
n ∑n

i=1θi
α. Also, x−α is

a nonincreasing function in x > 0. So, the composite function η(x) is an nondecreasing function in
x > 0, and the required result then follows.

(2) Upon using Lemma 5, this proof is similar to that of Part (1), and hence is not presented here
for the sake of conciseness. �

4. Conclusions

In a process the stochastic behavior of extreme values may be charactered by using extreme
value theory. Fréchet distribution is one of the extreme value distribution, called extreme value
type-II distribution, derived by Fréchet [1] in 1927. Gupta et al. [6] have considered the stochastic
comparisons between the lifetimes of parallel/series systems arising from independently distributed
Fréchet components with respect to the usual stochastic order, the reversed hazard rate order and the
hazard rate order based on location and scale parameters of the Fréchet distributed components. In this
paper, we generalize some results established in the Gupta et al. [6]. Specifically, first, the established
result in Theorem 3 generalizes the result of Theorem 2 in Gupta et al. [6] from the usual stochastic order
to the reversed hazard rate order. Second, the established result in Theorem 4 generalizes the result of
Theorem 3 in Gupta et al. [6] from the reversed hazard rate order to the likelihood ratio order. Last, the
established result in Theorem 5 generalizes the result of Theorem 4 in Gupta et al. [6] from the hazard
rate order to the likelihood ratio order when shape parameter 0 < α ≤ 1. Since Fréchet distribution
has become one of the popular lifetime models in reliability literature and that we discuss stochastic
orderings for largest and smallest order statistics, the results established directly relate to some key
distributional properties and features of parallel and series systems, two most common coherent
systems, with Fréchet components. Furthermore, these results may also be useful in establishing some
statistical properties of estimators of the scale and shape parameters of the Fréchet distribution. We
are currently looking into this problem and hope to report the findings in a future paper.
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