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Abstract: In the Internet of Things (IoT) networking, numerous objects are connected to a network.
They sense events and deliver the sensed information to the cloud. A lot of data is generated in the IoT
network, and servers in the cloud gather the sensed data from the objects. Then, the servers analyze
the collected data and provide proper intelligent services to users through the results of the analysis.
When the server analyzes the collected data, if there exists malfunctioning data, distortional results of
the analysis will be generated. The distortional results lead to misdirection of the intelligent services,
leading to poor user experience. In the analysis for intelligent services in IoT, malfunctioning data
should be avoided because integrity of the collected data is crucial. Therefore, this paper proposes
a data-filtering system for the server in the cloud. The proposed data-filtering system is placed
in front of the server and firstly receives the sensed data from the objects. It employs the naive
Bayesian classifier and, by learning, classifies the malfunctioning data from among the collected
data. Data with integrity is delivered to the server for analysis. Because the proposed system filters
the malfunctioning data, the server can obtain accurate analysis results and reduce computing load.
The performance of the proposed data-filtering system is evaluated through computer simulation.
Through the simulation results, the efficiency of the proposed data-filtering system is shown.
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1. Introduction

Internet of Things (IoT) is recent computing paradigm and consists of many tiny objects.
The objects that surround us connect to a network and exchange information. Advances in semiconductor
and communication technologies lead to developments of tiny computing devices, and the objects get
smaller as embedded systems. They become a sensor or an actuator system. They are deployed in
various places and generate numerous data. The network, which is connected by the objects (i.e., IoT
devices), is an access network for intelligent services. It is connected to a server in the cloud through
gateways. Thus, a lot of data is delivered to the server, and the server gathers data from the objects
and then analyzes it for intelligent services. IoT intelligent services (for example, a smart factory,
a smart home, a smart city, etc.) depend on the analysis of the server. That is, based on the analyzed
information, different behaviors can be provided in the services. The intelligent services are dealt by
cyber physical systems (CPS). They approach decision making through the collected data from the
objects in a physical domain. Thus, data analysis is an important part in the IoT services.

Figure 1 shows a general architecture for IoT services. As mentioned earlier, it is composed of
the IoT access network and the Internet protocol (IP) cloud. In the IoT access network, sensors of
devices generate information. The information is transmitted to a server. Then, the server in the
cloud makes decisions by data analysis and gives commands to actuators in the access network [1-9].
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Therefore, IoT services are provided by monitoring data in the physical domain of the access network
and analyzing data in the computing domain of the IP cloud.
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loT Devices
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Figure 1. A general architecture of Internet of Things (IoT) services.

For decision making, the server analyzes a lot of data. If there exists malfunctioning data in IoT
devices, the server may make a wrong decision and service efficiency will be decreased. Because many
IoT devices have resource constraints, they can incur malfunction. When device malfunction maintains
in the network, malfunctioning data or unreliable data is continuously generated. Then, the server
turns out distortional results through the data analysis. Furthermore, injecting additional data with
wrong information can happen in the network. The data can also change decision making in the server,
and the wrong decision will decrease the user experience for services. Thus, in the server, data integrity
must be ensured. It should exploit reliable data, which originates from the correct objects [10-13].

To obtain reliable data (i.e., normal data, non-suspicious data) in the server, a data-filtering system
is necessary, and malfunctioning data should be avoided in the data analysis of the server. By filtering
the malfunctioning data, the server leads to the right decision by using reliable data. In addition,
the server can spend less energy on computing by reducing computing load in the data processing.
Because the IoT devices generate a great deal of data traffic, including malfunctioning data in the
physical sensing domain, the data-filtering system should pass the meaningful normal data among
them. Thus, the proposed data-filtering system applies learning in order to classify the normal data
and the malfunctioning data traffic. The criteria to distinguish the malfunctioning data and normal
data can be different, depending on the results of the learning process for each data traffic. For the
learning process, the naive Bayesian classifier—which is based on statistical probabilities—is exploited.
By the learning process using the naive Bayesian classifier, the proposed data-filtering system can
easily classify the malfunctioning data and the normal data from IoT devices. The server excludes the
malfunctioning data from the collected data analysis for data mining. Thus, it can avoid distortional
results of the data analysis.

The remainder of this paper is organized as follows. Section 2 describes the background of the
malfunction possibility of IoT devices and intrusion detection by the malfunctioning data. In Section 3,
malfunctioning data detection using the naive Bayesian classifier and the proposed data-filtering
system are discussed. Section 4 presents performance evaluation for the proposed method. Finally,
Section 5 concludes the paper.

2. Background

IoT devices as sensor nodes are tiny embedded systems, and they construct a wireless sensor
network to collect data for intelligent services. In general, sensor nodes have insufficient computing
capability in the wireless sensor network. In addition, they have resource constraints with respect to
energy, memory, communication, and latency in communication [11,14-19].
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e Energy constraints: Because IoT devices generally employ battery sources, energy consumption is
the most important design consideration. For a long lifetime, IoT devices should minimize energy
consumed for operations.

e  Memory limitations: IoT devices are tiny portable devices or embedded system devices. Because
the device size is small, they cannot adopt a lot of memory and storage on their electrical board.

e  Unreliable communication: IoT devices exploit wireless communication in the industrial, scientific,
and medical (ISM) frequency band for data delivery. Wireless communication has a higher channel
error than wired communication. In addition, because the ISM frequency band is used in many
wireless technologies, the wireless technologies can affect data transmission among each other.

e High latency in communication: Network congestion, processing in the intermediate nodes,
and low data rate in wireless cause high latency in data delivery.

Because of the low remaining energy, IoT devices can obtain unusual sensing data. In the
ISM frequency band, a transmission signal can be easily perverted by other wireless technologies.
Data can be damaged by high channel error from wireless systems and congestion by a lot of traffic.
These resource constraints of IoT devices can lead to total data distortion in the server that collects
data from whole IoT devices.

The malfunctioning data is related to data integrity. For data integrity in the server,
the malfunctioning data and unreliable data should be excluded from the data analysis. The server
should use the normal data originated from correct sources for decision making. To detect the
malfunctioning data or unusual data, an intrusion detection system can be exploited. The intrusion
detection system monitors suspicious data in a network [10,20]. There are two types of intrusion
detection systems: anomaly intrusion detection system and misuse intrusion detection system. In the
anomaly intrusion detection system, user profiles are defined and the system compares data traffic to
the profiles. Through the differences between the profiles and data traffic, the system detects intrusion
or malfunctioning data. Thus, the system is exploited to find new or unknown intrusion. In contrast,
the misuse intrusion detection system has signatures (i.e., descriptions) of malfunctioning data. It is
a rule-based system that uses known patterns of intrusion according to the signatures [11,12].

The misuse intrusion detection system has weakness in unknown patterns, and the anomaly
intrusion detection system should construct a model for normal operations that is defined by the user
profile. In general, the anomaly intrusion detection is preferred to the misuse intrusion detection in
order to detect intrusion data. However, to increase data integrity and to reduce computation load of
the data analysis at the server, both the intrusion data from suspicious devices and malfunctioning data
at devices in the network should be excluded in the data analysis. To do that, it is necessary to use an
adaptive detection system for suspicious data. Suspicious data filtering is classified as content-based
filtering and collaborative filtering. The content-based filtering uses domain knowledge of generated
data. The collaborative filtering does not exploit extra information [21,22]. In IoT networking, domain
knowledge for whole data cannot be maintained. Therefore, the collaborative filtering is considered for
the data-filtering system for IoT services. The collaborative filtering is categorized into a memory-based
method and a model-based method. The memory-based method finds similarity by calculation of
data correlation and filters data by the similarity. To obtain the similarity, common data is used.
According to distribution of the common data, this leads to limitation of reliable filtering. Thus, the
model-based method has been investigated. The model-based method exploits a learning algorithm
for better performance, and data filtering is performed by the learning model [21-24]. However, when
it is applied to IoT services, the existing filtering methods just determine whether data is normal or
not. In general, normal data in IoT is periodically generated. Event-driven data is different from
normal data. Although the similarity between the event-driven data and the normal data is low,
the event-driven data should not be blocked in the filtering system, but the existing filtering methods
do not process the event-driven data. Thus, the existing ways of data-filtering is not enough for
providing reliable IoT services. Therefore, in this paper, the proposed system adaptively finds the
suspicious data using learning by the naive Bayesian classifier. It includes the valid data (i.e., the
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normal data and the event-driven data) and excludes the malfunctioning data in data analysis at the
management server.

3. The Proposed Data-Filtering System

IoT services are based on collected data from IoT devices. In the IoT area, data gathering and
data analysis are occupied in major parts for IoT service implementation. Data gathering is performed
through various wireless technologies such as wireless sensor network (WSN), low-power wide area
network (LPWAN), Wi-Fi, Bluetooth, cellular network, and so on. The server deals with the gathered
data in the networks. As mentioned in Section 1, generated data in the IoT devices is transmitted to
the sever in the cloud. The server performs analysis for the gathered data and extracts meaningful
knowledge. Intelligent IoT services are provided through the meaningful knowledge.

In the environment where numerous data are concentrated on the server, data integrity is raised
as an important element in the data analysis at the server. The data integrity leads to reducing
computing load at the server when the server analyzes the collected data from IoT devices. Reducing
the computing load can cause decreased energy consumption when the server processes the data.
Therefore, a system is needed to support data integrity.

Figure 2 represents the network architecture for the proposed system to support data integrity.
Various data are generated in the IoT access networks and are delivered to the cloud through gateways.
In the cloud, data is transmitted to the management server, which manages intelligent services.
The management server stores the data to databases and then analyzes the data and extracts meaningful
knowledge for the intelligent services. For reliable data analysis, it is required to ensure data
integrity. If the data integrity is not guaranteed, the extracted knowledge is not reliable, and unreliable
knowledge leads to wrong decisions for the services. To support the data integrity, the data-filtering
system is placed in front of the management server. It monitors data incoming to the management
server. It detects the malfunctioning data and the intrusion data, and blocks them from incoming to
the management server.
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Figure 2. Network architecture for the proposed system.

3.1. Detection of the Malfunctioning Data

The data-filtering system finds the malfunctioning data and the intrusion data using learning.
Through the incoming data traffic, it performs learning to classify normal data and suspicious data.
For the learning process, the proposed data-filtering system employs the naive Bayesian classifier,
which is one of the supervised learning algorithms. Supervised learning is widely used to classify
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binomial states in computer systems or network systems [25,26]. The naive Bayesian classifier is based
on the Bayes rule, which uses statistical probabilities. That is, it obtains a priori information through
statistics about a priori events, calculates probabilities for each state using the a priori information, and
then it estimates the most possible state by comparing the probabilities. The probabilities for each state
are calculated by the Bayes rule. Then, the detection function in the proposed data-filtering system can

be represented as:

P(x|y)P(y)
P(x)

= argmanP(XW)P(]/)'

v = argmaxP(y|x) = argmax
gme (v]x) gme

)

where y means classification state. If the incoming data is suspicious data, y becomes 0; otherwise,
y becomes 1. x means attributes for classification. In the proposed system, the attributes are ranges
of sensing values of devices (x1) and frequency of the generated data (x;). The most possible state
is obtained by posterior probability, and the posterior probability is determined by P(y | x). P(y|x)
is calculated by the Bayes rule. That is, P(y | x) turns out P(x|y)P(y)/P(x). The detection function
calculates posterior probabilities for each state y and determines the state that has the larger posterior
probability as the most possible state. This can be represented as argmyaxP(x|y)P(y).

For several attributes for classification, when the attributes are conditionally independent for y,
Equation (1) becomes Equation (2) as:

v = argmaxP(x[y)P(y)
= argm;xP(xl,x2,~ -, xa|y)P(y)
= argmaxP (x1|y)P(xaly) - P(xa[y) P(y) @

= argmax ] P(xily)P(y).

The detection function predicts the suspicious data among incoming data traffic using Equation
(2). As mentioned earlier, it employs two attributes (i.e., x; and x,) for the classification, and the
attributes are measured from the incoming data traffic at the data-filtering system, as shown in the
Figure 2. The measured attributes are managed as statistical information. The detection function of the
data-filtering system can estimate the status (y) of incoming data through the statistical information.

To calculate the posterior probability, the detection function should get the a priori probabilities.
To obtain the a priori probability, the detection function counts the values of the attributes when the data
enters the system. Then, statistical information for x; and x; is made up for normal data and suspicious
data. By the statistical information, the a priori probability is calculated. That is, the detection
function can find the suspicious data through prediction by using the posterior probability by the
a priori probabilities. The counted values for the attributes are described by the indicator function
{-}. The indicator function adds 1 if the given conditions are satisfied. In m training examples as the
a priori experiences, the a priori probabilities for normal data (y = 1) and suspicious data (y = 0) are
represented as:
7 1{x) =1y (=1}

Pluly =1) = S T60-1) (3)
o, Hy=1}
P(y=1)==——,
m 1{x=1,y0) =0}
Ny = = St v
P(xjly = 0) T, 1{y0=0} 4)
o, Hy=0}
P(]/ =0) = %

If the system has no training examples, P(x | y) is 0 in Equations (3) and (4). This means the detection
function cannot classify the normal data and the suspicious data. Thus, a method to calculate the a
priori probability without a priori statistical information is needed. This is Laplace smoothing [25,26].
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The Laplace smoothing adds 1 and k to the numerator and denominator, respectively, where k is the
number of statuses in y. Because the proposed system deals with binomial states, its value is 2. Then,
Equations (2) and (4) become:

o ) =1y =1} +1

Pxjly=1) = ‘

(xily ) {21%1 1{;(]):1}+2 (5)

Y H{yV=1}+1

Ply=1)=""—0m—,

m 1 {x) =1,y0) =0} +1
) _ _ =1 i

P(xzh/ = 0) = Z}":l 1{yD=0}+2 6)

Py 1{y=0}+1

P(y=0) ="

Now, the a priori probabilities for incoming data in the system are obtained by Equations (5)
and (6). After the calculation of the a priori probabilities, the detection function calculates posterior
probabilities for each status in y. Then, it compares the posterior probabilities and determines the most
possible status using Equation (2).

3.2. Data-Filtering System

The proposed data-filtering system has the role to block the suspicious data and the
malfunctioning data. Thus, it leads to reducing the computing loads of the management server
for data analysis. The reduced computing loads by filtering the suspicious data and the malfunctioning
data can lead to low-power computing of servers in the cloud, as well as obtaining reliable results of
the data analysis. Figure 3 shows the system architecture of the proposed data-filtering system. In the
figure, the data-filtering system consists of data queue, data handler, detection function, training data,
and filtering function. It depends on two major functions: the detection function and the filtering
function. The analysis results of the detection function are exploited in the filtering function for
decision making.

Incoming

Data ‘ Detection HE Filtering

Handler Function Prediction | Function

Data Queue T
“Training
] Data Iy !
< Core Block > = | | < Decision Block >

< Data Filtering System >

Forward to
Management
Server

Figure 3. System architecture of the data-filtering system.

In the system, incoming data enters the data queue, which is a first-in first-out (FIFO) queue.
The data handler takes the data in order from the data queue. There exists heterogeneous IoT devices
in the IoT access networks, and the devices generate different types of data. Thus, the data handler is
needed in front of the detection function. It converts the data to proper data format for learning of the
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detection function. Then, the detection function predicts the data characteristics through the naive
Bayesian classifier using stored training examples. If the data is normal data in the prediction, the data
is forwarded to the management server. If the data is not normal data in the prediction, the filtering
function determines whether the data is event data or not. Thus, if it is determined to be event data,
the data is also forwarded to the management server by the filtering function. After the prediction at
the detection function, the data is stored as a training example for the next learning.

Figure 4 represents the pseudo-code of the filtering function. After the data is classified as
suspicious data by the detection function (in line 1), the filtering function should classify it again in
order to distinguish the event data and the malfunctioning data (in lines 4-14). The malfunctioning
data has error values, but the event data has valid values. In addition, because the event data is the
important information in IoT services, it should be delivered to the management server. To classify the
event data, the filtering system uses the characteristics of the event generation.

e Ifincoming data is the event data, the value of the data is placed in range of sensing levels of
IoT devices.

e Several IoT devices sense the same event. That is, when an event occurs in the environment with
many loT devices, several devices transmit similar data. Thus, correlated data is entered to the
data-filtering system.

Thus, the filtering function performs valid checking about sensing ranges of devices for the
suspicious data. The valid checking for the current DATA is operated in the isValid() (in line 5).
And then, the filtering function examines correlation among similar data in isCorrelated() (in line 6).
If the value of the incoming data is placed in valid ranges and there exist several correlated data that
enter the system, the incoming data is considered as event data (in /ine 7). To examine correlation
among similar data, k-nearest neighbors (k-NN) algorithm [25,26] can be exploited. Because the
algorithm is used to calculate Euclidian distance of data attributes, the correlation checking in the
filtering function is performed through the calculated Euclidian distance by the algorithm. If the
suspicious data is not considered as event data, it means it is malfunctioning data and it will be blocked.

FILTERING-FUNCTION (DATA)
1. y — DETECTION-FUNCTION (DATA)
If (y = 0) then
Forward DATA to the Management server
Else
5 + isValid(DATA)
C < isCorrelated(DATA)
If (S = true and C = true) then
DATA type is event data
Forward DATA to the Management server
10. Else
11. DATA type is malfunctioning data
12. Drop DATA
13. End if
14, End if

Figure 4. The pseudo-code for the filtering function.

The proposed data-filtering system—which is composed of two blocks (i.e., core block and
decision block) as shown in Figure 3—monitors incoming data, classifies incoming data, and filters the
malfunctioning data. It delivers reliable normal data for data analysis and reduces computing loads in
the management server.



Symmetry 2017, 9, 16 8of 13

4. Performance Evaluation

4.1. Simulation Model

For performance evaluations, the data-filtering system and the management server in the cloud
are modeled by MM1 queueing systems, as shown in Figure 5. The IoT network is constructed as
shown in Figure 2, and data traffic generated in the network is delivered to the simulation model of
Figure 5. Three kinds of traffic enter the data-filtering system. Those are normal data, event data, and
malfunctioning data. They are entered into the data-filtering system with incoming rates A1, A, and
A3, respectively. In the data-filtering system, the detection function predicts the characteristics of the
incoming data packets using the naive Bayesian classifier, as mentioned in Section 3.1. The learning
result (y) of the detection function is used to filter the incoming traffic in the filtering function.
The filtering system passes normal data and event data. It blocks malfunctioning data. Then, the
normal data and the event data are forwarded to the management server with the incoming rate A.
They are processed in the management server with service rate . That is, the management server
deals with the filtered data traffic by the filtering function, and the filtering function exploits the
learning result of the detection function. To evaluate the compared system (i.e., without the proposed
data-filtering system), the incoming data traffic is not processed in either the detection function or the
filtering function, and it is passed. Thus, total incoming data enters the management server.

In the management server, the computing load can be described using the queueing theory [27,28].
When the incoming rate to the server is A and the service rate of the server is y, the number of data
packets in the server (N) is represented by the ratio of A to y as:

E[N] = %, where p = 2 (7)

In addition, the number of data packets waiting in the server (Q) is represented as:

02
Then, the average number of data packets to process in the server is represented as:
E[N] - E[Q] = p. ©)

Therefore, A/ can be described as the computing load in the server.

< Detection Function >

A Ay As

< Filtering Function >

< Data filtering system > < Management server >

Figure 5. Simulation model for performance evaluation.
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4.2. Simulation Study

For the computer simulation, the simulator is implemented with simple parallel language (SMPL),
which is the C-language-based event-driven simulation library [29]. It consists of the data-filtering
system part and the management server part and is operated according to the simulation model in
Section 4.1. Total simulation time is set to 10,000 s. Data traffic is composed of normal data, event data,
and malfunctioning data. Each set of data traffic enters the data-filtering system by the exponential
distribution with means Ay, A;, and A3. The incoming rate of each data traffic (A;) is set to 100, 10,
and 10. The valid range of the data traffic is from 0 to 100. The normal data traffic usually has the
randomly selected value between 40 and 80. The event data traffic has the randomly selected value
between 0 and 50. The malfunctioning data has the randomly selected value between 90 and 300.
The value of data traffic becomes the first attribute x; for learning. The second attribute x; for learning
is the generated frequency of incoming data. The generated frequency is assumed to be the interval
between the current incoming data and the previous incoming data of the same type. For the learning
to enable prediction of suspicious data, the detection function uses 1000 recent training examples to
avoid storage problem of incoming data traffic. In addition, it is assumed that the service rate of the
management server is maintained as a constant value.

Figure 6 represents the compared graph of the amount of real suspicious data and the amount of
predicated suspicious data in the data-filtering system. When the simulation time is 5000 s, the amount
of suspicious data is 52,684 and 46,887, respectively. When the simulation is ended, the amount
of suspicious data is 107,400 and 95,925, respectively. The detection function shows about 90%
prediction accuracy. If the detection function exploits more training examples than the recent 1000,
the prediction accuracy can be further increased. By the results of the prediction in the detection
function, the incoming data is distinguished into normal data and suspicious data. The suspicious
data is determined to be malfunctioning data by the operation of the filtering function.

120,000

——— Real
—#— Prediction

100,000

80,000

60,000

40.000

Amount of suspicious data

20,000

T T T T T T T T
0 2,000 4,000 6,000 8,000 10,000
Time (s)

Figure 6. Prediction of the suspicious data in the data filtering system.

Figure 7 represents the amount of incoming data traffic at the management server. Whole data
traffic in IoT networking incomes to the management server to process for intelligent services. For the
efficiency of the management server, as mentioned earlier, unnecessary data in the data analysis for
the intelligent services should be avoided in the management server. When the proposed data-filtering
system is used, the unnecessary data is filtered as shown in the figure. In 5000 s, the incoming data
to the server side is 524,693. When the server side employs the data-filtering system, the incoming
data to the management server (i.e., the passed data in the data-filtering system) is 497,167. In 10,000 s,
the data is 1,046,705 and 990,432, respectively. That is, the computing load in the management server
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can be reduced by filtering the suspicious malfunctioning data. The management server can avoid
total data distortion by using meaningful data. As shown in the figure, the amount of incoming data
traffic at the management server means computing load of the management server. In Section 4.1,
although the computing load is defined as the ratio of the incoming data rate to the service rate of the
server, the incoming data becomes the computing load when the service rate of the server is constant.

1,200,000
| |[—=— Incoming traffic
—— without data-filtering system
1.000.000 4| o \ith data-filtering system
© 800,000 4
E
E
S 500,000 4
(1]
=
-
[=]
£ 400,000
=
o
£
< 200.000 +
04

T T T T T T y T z T
0 2.000 4,000 6.000 §.000 10.000
Time (s)

Figure 7. Amount of data traffic to enter the management server.

Figure 8 shows the average incoming rate of data in the management server. The incoming rate of
the figure represents the average of the incoming data per second. As shown in the figure, because the
data-filtering system reduces the incoming data rate in the management server, the average incoming
rate is maintained with lower values. In addition, because the unusual malfunctioning data is blocked,
the average incoming rate maintains similar values during the simulation time. As mentioned earlier,
because the proposed system provides reliable prediction results, it can be expected that the system
passes meaningful data (such as the normal data and the event data) and it blocks suspicious data
(such as the malfunctioning data).

120

100

80 4

60 -

(packets/sec)

40

20

—0O— without data-filtering system
0 —&— with data-fillering system

Avg. incoming rate at the mgmt. server

T T T T T T T T T
0 2,000 4,000 6.000 8,000 10,000

Time (s)

Figure 8. Average incoming rate in the management server.

Figure 9 represents a comparison of the proposed system and the conventional method [23],
which is introduced in Section 2. As mentioned earlier, because of the characteristics and the limitation
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of the memory-based filtering, it is difficult to directly apply for comparison. In addition, by [21,22],
the model-based filtering has better performance than the memory-based filtering. Among the
model-based filtering methods, [23] is the representative method. Thus, the proposed system is
compared to [23] as the conventional method. For the comparison, simulation is reperformed
with 5000 s simulation time. The conventional method classifies whether the data is normal or not.
As mentioned earlier, the proposed method can distinguish the normal data and the event data from
the suspicious data. Thus, as shown in Figure 9, the proposed system has more passed data from the
filtering function.

600,000 4|—0— Incoming data
—e— Passed data (proposed)
—&— Passed data (conventional)

500,000

400,000

300,000

200,000

Amount of data traffic

100,000

0 -

T T T T
0 1.000 2,000 3.000 4.000 5.000

Time (s)

Figure 9. Comparison of the proposed system and the conventional method.

By the simulation results, the proposed data-filtering system is necessary in IoT networking.
In the simulation, several sets of data traffic are exploited, but there exists a great deal of traffic in IoT
areas. The data traffic should be transmitted to the server side for processing, analyzing, and so forth.
The data also include malfunctioning data because of resource constraints of IoT devices. For efficiency
of server computing, it is required that the server processes reliable data, omitting the malfunctioning
data, and tries to reduce computing load in the data processing.

5. Conclusions

The recent computing paradigm has become the IoT, where numerous objects are connected to
a network. A lot of data is generated by the objects. The data is delivered to a management server
in cloud. Then, the management server computes whole data and finds meaningful knowledge.
Intelligent services of IoT depend on the knowledge of the management server. As mentioned
earlier, various types of data of the IoT network are transmitted to the management server. However,
the objects in the IoT network are tiny devices and have insufficient computing resources. They can
easily generate malfunctioning data by their abnormal behaviors, and the malfunctioning data increases
computing load in the management server. It is different from periodic normal data of the objects.
To reduce computing load and to deliver reliable data to the server, there is a need to filter the
malfunctioning data before it enters the server. Thus, this paper proposes the data-filtering system,
which is placed in front of the management server.

The proposed data-filtering system classifies suspicious data by learning using the naive Bayesian
classifier. It predicts the status of incoming data in the detection function. If the incoming data is
considered suspicious data, it does not forward this data to the management server from the filtering
function to achieve the goal of the proposed system. However, in the filtering function, the suspicious
data is checked again to distinguish malfunctioning data and event data. The event data also has
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different characteristics from the periodic normal data. Although it is firstly considered as suspicious
data, it must be forwarded to the management server because it includes meaningful data. Thus, the
proposed data-filtering system performs data checking one more time. Then, the management system
can avoid malfunctioning data, and this can lead to decreased computing load and reduced energy
consumption for computing in the server.
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