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Abstract: Diffusion-limited erosion is a distinct universality class of fluctuating interfaces. Although
its dynamical exponent z = 1, none of the known variants of conformal invariance can act
as its dynamical symmetry. In d = 1 spatial dimensions, its infinite-dimensional dynamic
symmetry is constructed and shown to be isomorphic to the direct sum of three loop-Virasoro
algebras. The infinitesimal generators are spatially non-local and use the Riesz-Feller fractional
derivative. Co-variant two-time response functions are derived and reproduce the exact solution of
diffusion-limited erosion. The relationship with the terrace-step-kind model of vicinal surfaces and
the integrable XXZ chain are discussed.
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1. Introduction

Symmetries have since a long time played an important role in the analysis of physical systems.
The insight gained can be either calculational, in that a recognised symmetry becomes useful in
simplifying calculations, or else conceptual, in that the identification of symmetries can lead to new
level of understanding. In the statistical physics of equilibrium second-order phase transitions in
two dimensions, conformal invariance has ever since the pioneering work of Belavin, Polyakov and
Zamolodchikov [1] created considerable progress, both computationally as well as conceptually.
It then appears natural to ask if one might find extensions of conformal invariance which apply to
time-dependent phenomena. Here, we shall inquire about dynamical symmetries of the following
stochastic Langevin equation, to be called diffusion-limited erosion (DLE) Langevin equation, which reads
in momentum space [2]

dĥ(t, q) = −ν|q|ĥ(t, q)dt + ̂(t, q)dt + (2νT)1/2 dB̂(t, q) (1)

and describes the Fourier-transformed height ĥ(t, q) = (2π)−d/2
∫
Rd dr e−iq·rh(t, r). Because of

the (Fourier-transformed) standard brownian motion B̂, with the variance 〈B̂(t, q)B̂(t′, q′)〉 =

min(t, t′)δ(q + q′), this is a stochastic process, called diffusion-limited erosion (DLE) process. Herein, ν, T
are non-negative constants and δ(q) is the Dirac distribution. Since we shall be interested in deriving
linear responses, an external infinitesimal source term ̂(t, q) is also included, to be set to zero at the
end. Inverting the Fourier transform in order to return to direct space, Equation (1) implies spatially
long-range interactions. The conformal invariance of equilibrium critical systems with long-range
interactions has been analysed recently [3]. Equation (1) arises in several distinct physical contexts.
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Example 1. For the original definition of the (DLE) process [2], one considers how an initially flat interface
is affected by the diffusive motion of corrosive particles. A single corrosive particle starts initially far away
from the interface. After having undergone diffusive motion until the particle finally arrives at the interface,
it erodes a particle from that interface. Repeating this process many times, an eroding interface forms which
is described in terms of a fluctuating height h(t, r), see Figure 1. It can be shown that this leads to the DLE

Langevin Equation (1) [2,4].
Several lattice formulations of the model [2,5–7] confirm the dynamical exponent z = 1.
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Figure 1. Schematics of the genesis of an eroding surface through the DLE process. (a) Initial state:
a diffusing particle (red path) arrives on a flat surface (full black line) and erodes a small part of it;
(b) Analogous process at a later time, when the surface has been partially eroded.

Example 2. A different physical realisation of Equation (1) invokes vicinal surfaces. Remarkably, for d = 1
space dimension, the Langevin Equation (1) has been argued [8] to be related to a system of non-interacting
fermions, conditioned to an a-typically large flux. Consider the terrace-step-kink model of a vicinal surface,
and interpret the steps as the world lines of fermions, see Figure 2. Its transfer matrix is the matrix exponential
of the quantum hamiltonian H of the asymmetric XXZ chain [8]. Use Pauli matrices σ±,z

n , attached to each site
n, such that the particle number at each site is $n = 1

2 (1 + σz
n) = 0, 1. On a chain of N sites, consider the

quantum hamiltonian [8–10]

H = −w
2

N

∑
n=1

[
2vσ+

n σ−n+1 + 2v−1σ−n σ+
n+1 + ∆

(
σz

nσz
n+1 − 1

)]
(2)

where w =
√

pq eµ, v =
√

p/q eλ and ∆ = 2
(√

p/q +
√

q/p
)

e−µ. Herein, p, q describe the left/right bias
of single-particle hopping and λ, µ are the grand-canonical parameters conjugate to the current and the mean
particle number. In the continuum limit, the particle density $n(t)→ $(t, r) = ∂rh(t, r) is related to the height
h which in turn obeys (1), with a gaussian white noise η [8]. This follows from the application of the theory of
fluctuating hydrodynamics, see [11,12] for recent reviews. The low-energy behaviour of H yields the dynamical
exponent z = 1 [8–10]. If one conditions the system to an a-typically large current, the large-time, large-distance
behaviour of (2) has very recently been shown [10] (i) to be described by a conformal field-theory with central
charge c = 1 and (ii) the time-space scaling behaviour of the stationary structure function has been worked out
explicitly, for λ→ ∞. Therefore, one may conjecture that the so simple-looking Equation (1) should furnish an
effective continuum description of the large-time, long-range properties of quite non-trivial systems, such as (2).
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Figure 2. (a) Schematic illustration of a vicinal surface, formed by terraces. Fluctuations between
terraces are described by steps and kinks; (b) Reinterpretation of the steps of a vicinal surface as
non-intersecting world lines in 1 + 1 dimensions of an ensemble of fermionic particles.

The physical realisation of Equation (1) in terms of the DLE process makes it convenient to
discuss the results in terms of the physics of the growth of interfaces [13–15], which can be viewed
as a paradigmatic example of the emergence of non-equilibrium collective phenomena [16,17].
Such an interface can be described in terms of a time-space-dependent height profile h(t, r). This profile
depends also on the eventual fluctuations of the set of initial states and on the noise in the Langevin
equation, hence h should be considered as a random variable. The degree of fluctuations can be
measured through the interface width. If the model is formulated first on a hyper-cubic lattice L ⊂ Zd

of |L | = Ld sites, the interface width is defined by

w2(t; L) :=
1
Ld ∑

r∈L

〈(
h(t, r)− h(t)

)〉2
= L2βz fw

(
tL−z) ∼ { t2β ; if tL−z � 1

L2βz ; if tL−z � 1
(3)

where the generically expected scaling form, for large times/lattice sizes t → ∞, L → ∞, is also
indicated. Physicists call this Family-Vicsek scaling [18]. Implicitly, it is assumed here that one is
not at the ‘upper critical dimension d∗’, where this power-law scaling is replaced by a logarithmic
scaling form, see also below. Herein, 〈.〉 denotes an average over many independent samples and
h(t) := L−d ∑r∈L h(t, r) is the spatially averaged height. Furthermore, β is called the growth exponent,
z > 0 is the dynamical exponent and α := βz is the roughness exponent. When tL−z � 1, one speaks of
the saturation regime and when tL−z � 1, one speaks of the growth regime. We shall focus on the growth
regime from now on.

Definition 1. On a spatially infinite substrate, an interface with a width w(t)↗ ∞ for large times t→ ∞ is
called rough. If limt→∞ w(t) is finite, the interface is called smooth.

This definition permits a first appreciation of the nature of the interface: if in (3) β > 0, the
interface is rough.

In addition, dynamical properties of the interface can be studied through the two-time correlators
and responses. In the growth regime (where effectively L→ ∞), one considers the double scaling limit
t, s→ ∞ with y := t/s > 1 fixed and expects the scaling behaviour

C(t, s; r) :=
〈(

h(t, r)−
〈

h(t)
〉) (

h(s, 0)−
〈

h(s)
〉)〉

= s−bFC

(
t
s

;
r

s1/z

)
(4a)

R(t, s; r) :=
δ
〈

h(t, r)− h(t)
〉

δj(s, 0)

∣∣∣∣∣∣
j=0

=
〈

h(t, r)h̃(s, 0)
〉

= s−1−aFR

(
t
s

;
r

s1/z

)
(4b)
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where j is an external field conjugate to the height h. Throughout, all correlators are calculated with
j = 0. In the context of Janssen-de Dominicis theory, h̃ is the conjugate response field to h, see [17].
Spatial translation-invariance was implicitly admitted in (4). This defines the ageing exponents a, b.
The autocorrelation exponent λC and the autoresponse exponent λR are defined from the asymptotics
FC,R(y, 0) ∼ y−λC,R/z as y→ ∞. For these non-equilibrium exponents, one has b = −2β [15] and the
bound λC ≥ (d + zb)/2 [19,20].

For the DLE process, these exponents are readily found form the exact solution of (1) [2,4,21]. For
an initially flat interface h(0, r) = 0, the two-time correlator and response are in Fourier space

Ĉ(t, s; q, q′) :=
〈

ĥ(t, q)ĥ(s, q′)
〉
=

T
|q|

[
e−ν|q||t−s| − e−ν|q|(t+s)

]
δ(q + q′), (5a)

R̂(t, s; q, q′) :=
δ〈ĥ(t, q)〉
δ̂(s, q′)

∣∣∣∣∣
j=0

= Θ(t− s) e−ν|q|(t−s) δ(q + q′). (5b)

In direct space, this becomes, for d 6= 1 and with C0 := Γ((d + 1)/2)/(Γ(d/2)π(d+1)/2)

C(t, s; r) =
TC0

d− 1

[(
ν2(t− s)2 + r2

)−(d−1)/2
−
(

ν2(t + s)2 + r2
)−(d−1)/2

]
(6a)

R(t, s; r) = C0 Θ(t− s) ν(t− s)
(

ν2(t− s)2 + r2
)−(d+1)/2

(6b)

where the Heaviside function Θ expresses the causality condition t > s. In particular, in the growth
regime, the interface width reads (where C1(Λ) is a known constant and a high-momentum cut-off Λ
was used for d > 1)

w2(t) = C(t, t; 0) =
TC0

1− d

[
(2νt)1−d − C1(Λ)

] t→∞'


TC0C1(Λ)/(d− 1) ; if d > 1
TC0 ln(2νt) ; if d = 1
TC0(2ν)1−d/(1− d) · t1−d ; if d < 1

(7)

Hence d∗ = 1 is the upper critical dimension of the DLE process. It follows that at late times
the DLE-interface is smooth for d > 1 and rough for d ≤ 1. On the other hand, one may consider
the stationary limit t, s → ∞ with the time difference τ = t − s being kept fixed. Then one finds
a fluctuation-dissipation relation ∂C(s + τ, s; r)/∂τ = −νTR(s + τ, s; r). The similarity of this to what
is found for equilibrium systems is unsurprising, since several discrete lattice variants of the DLE

process exist and are formulated as an equilibrium system [5]. Lastly, the exponents defined above are
read off by taking the scaling limit, and are listed in Table 1. In contrast to the interface width w(t),
which shows a logarithmic growth at d = d∗ = 1, logarithms cancel in the two-time correlator C and
response R, up to additive logarithmic corrections to scaling. This is well-known in the physical ageing
at d = d∗ of simple magnets [22,23] or of the Arcetri model [20].

For comparison, we also list in Table 1 values of the non-equilibrium exponents for several other
universality classes of interface growth. In particular, one sees that for the Edwards-Wilkinson (EW) [24]
and Arcetri classes, the upper critical dimension d∗ = 2, while it is still unknown if a finite value of
d∗ exists for the Kardar-Parisi-Zhang (KPZ) class, see [13,14,25–28]. Clearly, the stationary exponents
a, b, z are the same in the EW and Arcetri classes, but the non-equilibrium relaxation exponents λC, λR
are different for dimensions d < d∗. This illustrates the independence of λC, λR from those stationary
exponents, in agreement with studies in the non-equilibrium critical dynamics of relaxing magnetic
systems. On the other hand, for the KPZ class, a perturbative renormalisation-group analysis shows
that λC = d for d < 2 [29]. For d > 2, a new strong-coupling fixed point arises and the relaxational
properties are still unknown. Even for d = 2, the results of different numerical studies in the KPZ class
are not yet fully consistent, but recent simulations suggest that precise information on the shape of the
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scaling function, coming from a dynamical symmetry [30], may improve the quality of the extracted
exponents [31].

Table 1. Exponents of growing interfaces in the Kardar-Parisi-Zhang (KPZ), Edwards-Wilkinson (EW),
Arcetri (for both T = Tc and T < Tc) and DLE universality classes. The numbers in bracket give the
estimated error in the last digit(s).

Model d z β a b λC λR References

KPZ 1 3/2 1/3 −1/3 −2/3 1 1 [25,29,32]
2 1.61(2) 0.2415(15) 0.30(1) −0.483(3) 1.97(3) 2.04(3) [33,34]
2 1.61(2) 0.241(1) - −0.483 1.91(6) - [35]
2 1.61(5) 0.244(2) - - - - [26]
2 1.627(4) 0.229(6) - - - - [36]
2 1.61(2) 0.2415(15) 0.24(2) −0.483(3) 1.97(3) 2.00(6) [31,33]

EW < 2 2 (2− d)/4 d/2− 1 d/2− 1 d d
2 2 0(log) # 0 0 2 2 [24,37]

> 2 2 0 d/2− 1 d/2− 1 d d
Arcetri T = Tc < 2 2 (2− d)/4 d/2− 1 d/2− 1 3d/2− 1 3d/2− 1

2 2 0(log) # 0 0 2 2 [20]
> 2 2 0 d/2− 1 d/2− 1 d d

T < Tc d 2 1/2 d/2− 1 −1 d/2− 1 d/2− 1
DLE < 1 1 (1− d)/2 d− 1 d− 1 d d

1 1 0(log) # 0 0 1 1 [4,21]
> 1 1 0 d− 1 d− 1 d d

# For d = d∗, one has logarithmic scaling w(t; L)2 ∼ ln t fw (ln L/ ln t).

Here, we are concerned with the dynamical symmetries of the DLE process. Our main results are
as follows.

Theorem 1. The dynamical symmetry of the DLE process, in d = 1 space dimension and with j = 0,
is a meta-conformal algebra, in a sense to be made more precise below, and is isomorphic to the direct sum of
three Virasoro algebras without central charge (or loop-Virasoro algebra). The Lie algebra generators will be
given below in Equation (29), they are non-local in space. The general form of the co-variant two-time response
function is (with t > s)

R(t, s; r) = FA (t− s)1−2x ν(t− s)
ν2(t− s)2 + r2

+FB (t− s)1+ψ−2x
(

ν2(t− s)2 + r2
)−(ψ+1)/2

cos
(
(ψ + 1) arctan

(
r

ν(t− s)

)
− πψ

2

)
(8)

where x, ψ are real parameters and FA,B are normalisation constants.

Remark 1. The exact solution (6b) of the DLE-response in (1 + 1)D is reproduced by (8) if one takes
x = 1

2 , ν > 0, FA = C0 and FB = 0. This illustrates the importance of non-local generators in a specific
physical application.

Remark 2. The symmetries so constructed are only dynamical symmetries of the so-called ‘deterministic
part’ of Equation (1), which is obtained by setting T = 0. We shall see that the co-variant two-time correlator
C(t, s; r) = 0. This agrees with the vanishing of the exact DLE-correlator (6a) in the T → 0 limit (fix d 6= 1 and
let first T → 0 and only afterwards d→ 1).

This paper presents an exploration of the dynamical symmetries of DLE process for d = 1 and is
organised as follows. In Section 2, we introduce the distinction of ortho-conformal and meta-conformal
invariance and illustrate these notions by several examples, see Table 2. In Section 3, we explain why
none of these local symmetries can be considered as a valid candidate of the dynamical symmetry
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of the DLE process. Section 4 presents some basic properties on the Riesz-Feller fractional derivative
which are used in Section 5 to explicitly construct the non-local dynamical symmetry of the DLE process,
thereby generalising and extending earlier results [21]. Section 6 outlines the formulation of time-space
Ward identities for the computation of covariant n-point functions and in Section 7 the two-point
correlator and response are found for the dynamical symmetry of the DLE process. The propositions
proven in Sections 5 and 7 make the Theorem 1 more precise and constitute its proof. The Lie algebra
contraction, in the limit ν → ∞, and its relationship with the conformal Galilean algebra is briefly
mentioned. This is summarised in Table 3.

2. Local Conformal Invariance

Can one explain the form of the two-time scaling functions of the DLE process in terms of
a dynamical symmetry? To answer such a question, one must first formulate it more precisely.

Definition 2. The deterministic part of the Langevin Equation (1) is obtained when formally setting B̂ = 0.

Our inspiration comes from Niederer’s treatment [38] of the dynamical symmetries of the free
diffusion equation. The resulting Lie algebra, called Schrödinger algebra by physicists, was found by
Lie (1882) [39]. The corresponding continuous symmetries, however, were already known to Jacobi
(1842/43) [40]. For growing interfaces, the Langevin equation of the EW class is the noisy diffusion
equation. Hence its deterministic part, the free diffusion equation, is obviously Schrödinger-invariant.
In this work, we seek dynamical symmetries of the deterministic part of the DLE process, that is,
we look for dynamical symmetries of the non-local equation (µ∂t −∇r)ϕ = 0, where the non-local
Riesz-Feller derivative ∇r will be defined below, in Section 4.

Since we see from Equation (1), or the explicit correlators and responses (5), that the dynamical
exponent z = 1, conformal invariance appears as a natural candidate, where one spatial direction is
re-labelled as ‘time’. However, one must sharpen the notion of conformal invariance. For notational
simplicity, we now restrict to the case of 1 + 1 time-space dimensions, labelled by a ‘time coordinate’
t and a ‘space coordinate’ r. Our results on the dynamical symmetries of the DLE process, see
Propositions 3 and 4, require us to present here a more flexible definition than given in [21,41].

Definition 3. (a) A set of meta-conformal transformations M is a set of maps (t, r) 7→ (t′, r′) = M (t, r),
which may depend analytically on several parameters and form a Lie group. The corresponding Lie algebra is
isomorphic to the conformal algebra such that the maximal finite-dimensional Lie sub-algebra is semi-simple
and contains at least a Lie algebra isomorphic to sl(2,R)⊕ sl(2,R). A physical system is meta-conformally
invariant if its n-point functions transform covariantly under meta-conformal transformations; (b) A set of
ortho-conformal transformations O is a set of meta-conformal transformations (t, r) 7→ (t′, r′) = O(t, r),
such that (i) the maximal finite-dimensional Lie algebra is isomorphic to sl(2,R)⊕ sl(2,R) and that (ii) angles
in the coordinate space of the points (t, r) are kept invariant. A physical system is ortho-conformally invariant
if its n-point functions transform covariantly under ortho-conformal transformations.

The names ortho- and meta-conformal are motivated by the greek prefixes o$θo: right, standard
and µετα: of secondary rank. Ortho-conformal transformations are usually simply called ‘conformal
transformations’. We now recall simple examples to illustrate these definitions. See Table 2 for
a summary.
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Table 2. Comparison of local ortho-conformal, conformal Galilean and meta-1 conformal invariance,
in (1 + 1)D. The non-vanishing Lie algebra commutators, the defining equation of the generators,
the invariant differential operator S and the covariant two-point function is indicated, where applicable.
Physically, the co-variant quasiprimary two-point function C12 = 〈ϕ1(t, r)ϕ2(0, 0)〉 is a correlator,
with the constraints x1 = x2 and γ1 = γ2.

Ortho Galilean Meta-1

Lie [Xn, Xm] = (n−m)Xn+m [Xn, Xm] = (n−m)Xn+m [Xn, Xm] = (n−m)Xn+m
algebra [Xn, Ym] = (n−m)Yn+m [Xn, Ym] = (n−m)Yn+m [Xn, Ym] = (n−m)Yn+m

[Yn, Ym] = (n−m)Xn+m [Yn, Ym] = 0 [Yn, Ym] = µ(n−m)Yn+m

generators (9) (15) (13)

S ∂2
t + ∂2

r - −µ∂t + ∂r

C12 t−2x1

(
1 +

( r
t
)2
)−x1

t−2x1 exp
(
−2
∣∣ γ1r

t
∣∣) t−2x1

(
1 + µ

γ1

∣∣ γ1r
t
∣∣)−2γ1/µ

Example 3. In (1 + 1)D, ortho-conformal transformations are analytic or anti-analytic maps, z 7→ f (z) or
z̄ 7→ f̄ (z̄), of the complex variables z = t + ir, z̄ = t− ir. The Lie algebra generators are `n = −zn+1∂z and
¯̀n = −z̄n+1∂z̄ with n ∈ Z. The conformal Lie algebra is a pair of commuting Virasoro algebras with vanishing
central charge [42,43], viz. [`n, `m] = (n−m)`n+m. In an ortho-conformally invariant physical system, the
`n, ¯̀n act on physical ‘quasi-primary’ [1] scaling operators φ = φ(z, z̄) = ϕ(t, r) and contain terms describing
how these quasi-primary operators should transform, namely

`n = −zn+1∂z − ∆(n + 1)zn , ¯̀n = −z̄n+1∂z̄ − ∆(n + 1)z̄n (9)

where ∆, ∆ ∈ R are the conformal weights of the scaling operator φ. The scaling dimension is x := xφ = ∆ + ∆.
Laplace’s equation Sφ = 4∂z∂z̄φ =

(
∂2

t + ∂2
r
)

ϕ = 0 is a simple example of an ortho-conformally invariant
system, because of the commutator

[S , `n] φ(z, z̄) = −(n + 1)znSφ(z, z̄)− 4∆n(n + 1)zn−1∂z̄φ(z, z̄). (10)

This shows that for a scaling operator φ with ∆ = ∆ = 0, the space of solutions of the Laplace equation
Sφ = 0 is conformally invariant, since any solution φ is mapped onto another solution `nφ (or ¯̀nφ) in
the transformed coordinates. The maximal finite-dimensional sub-group is given by the projective conformal
transformations z 7→ αz+β

γz+δ with αδ− βγ = 1; its Lie algebra is sl(2,R)⊕ sl(2,R). Two-point functions of
quasi-primary scaling operators read

C12(t1, t2; r1, r2) := 〈φ1(z1, z̄1)φ2(z2, z̄2)〉 = 〈ϕ1(t1, r1)ϕ2(t2, r2)〉. (11)

Their ortho-conformal covariance implies the projective Ward identities XnC12 = YnC12 = 0 for n = ±1, 0 [1].
For scalars, such that ∆i = ∆i = xi, this gives, up to the normalisation C0 [44]

C12(t1, t2; r1, r2) = C0 δx1,x2

(
(t1− t2)

2 + (r1− r2)
2
)−x1

. (12)

Below, we often use the basis Xn := `n + ¯̀n and Yn := `n − ¯̀n, see also Table 2.

Example 4. An example of meta-conformal transformations in (1+ 1)D reads [45]

Xn = −tn+1∂t − µ−1[(t + µr)n+1− tn+1]∂r − (n + 1)xtn − (n + 1)
γ

µ
[(t + µr)n − tn]

Yn = −(t + µr)n+1∂r − (n + 1)γ(t + µr)n (13)
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with n ∈ Z. Herein, x, γ are the scaling dimension and the ‘rapidity’ of the scaling operator ϕ = ϕ(t, r) on
which these generators act. The constant 1/µ has the dimensions of a velocity. The Lie algebra 〈Xn, Yn〉n∈Z
is isomorphic to the conformal Lie algebra [46], see Table 2, where it is called meta-1 conformal invariance.
If γ = µx, the generators (13) act as dynamical symmetries on the equation Sϕ = (−µ∂t + ∂r)ϕ = 0.
This follows from the only non-vanishing commutators of the Lie algebra with S , namely [S, X0] ϕ = −Sϕ

and [S, X1] ϕ = −2tSϕ + 2(µx− γ)ϕ. The formulation of the meta-1 conformal Ward identities does require
some care, since already the two-point function turns out to be a non-analytic function of the time- and
space-coordinates. It can be shown that the covariant two-point correlator is [41]

C12(t1, t2; r1, r2) = C0 δx1,x2δγ1,γ2 |t1− t2|−2x1

(
1+

µ

γ1

∣∣∣∣γ1
r1− r2

t1− t2

∣∣∣∣)−2γ1/µ

. (14)

Although both examples have z = 1 and isomorphic Lie algebras, the explicit two-point functions (12)
and (14), as well as the invariant equations Sϕ = 0, are different, see also Table 2. That the form of
two-point functions depends mainly on the representation and not so much on the Lie algebra, is not a
phenomenon restricted to the conformal algebra. Similarly, for the so-called Schrödinger algebra at least
three distinct representations with different forms of the two-point function are known [47].

The representation (13) can be extended to produce dynamical symmetries of the (1+ 1)D Vlasov
equation [48].

Example 5. Taking the limit µ→ 0 in the meta-conformal representation (13) produces the generators

Xn = −tn+1∂t − (n + 1)tnr∂r − (n + 1)xtn − (n + 1)nγtn−1r

Yn = −tn+1∂r − (n + 1)γtn (15)

of the conformal Galilean algebra (CGA) in (1 + 1)D [49–60]. Its Lie algebra is obtained by standard
contraction of the conformal Lie algebra, see Table 2. Hence the CGA is not a meta-conformal algebra, although
z = 1. About CGA-covariant equations, see [61]. The co-variant two-point correlator can either be obtained
from the generators (15), using techniques similar to those applied in the above example of meta-conformal
invariance [46,68], or else by letting µ→ 0 in (14). Both approaches give

C12(t1, t2; r1, r2) = C0 δx1,x2 δγ1,γ2 |t1 − t2|−2x1 exp
(
−2
∣∣∣∣γ1

r1 − r2

t1 − t2

∣∣∣∣) (16)

Clearly, this form is different from both ortho- and meta-1-conformal invariance.

The non-analyticity of the correlators (14), and especially (16), in general overlooked in the
literature, is required in order to achieve C12 → 0 for large time- or space-separations, viz. t1− t2 → ±∞
or r1 − r2 → ±∞.

All two-point functions (12), (14) and (16) have indeed the symmetries C12(t1, t2; r, r) = C21(t2, t1; r, r)
and C12(t, t; r1, r2) = C21(t, t; r2, r1), under permutation ϕ1 ↔ ϕ2 of the two scaling operators,
as physically required for a correlator. The shape of the scaling function of these three two-point
function is compared in Figure 3. In particular, the non-analyticity of the meta- and Galilean conformal
invariance at u = 0 is clearly seen, in contrast to ortho-conformal invariance, while for u → ∞,
the slow algebraic decay of ortho- and meta-conformal invariance is distinct from the exponential
decay of conformal Galilean invariance. This illustrates the variety of possible forms already for z = 1.
Below, we shall find another form of (meta-)conformal invariance, different from all forms displayed
in Figure 3.
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Figure 3. Scaling function f (u) of the covariant two-point correlator C (t, r) = t−2x1 f (r/t), over against
the scaling variable u = r/t, for ortho-, meta-1- and Galilean-conformal invariance, Equations (12),
(14) and (16) respectively, where x1 = γ1 = 1

2 and µ = 1.

3. Impossibility of a Local Meta-Conformal Invariance of the DLE Process

Can one consider these several variants of conformal invariance, which have z = 1 and are
realised in terms of local first-order differential operators, as a valid dynamical symmetry of the DLE

process in 1 + 1 dimensions ? The answer turns out to be negative:

1. The deterministic part of the DLE Langevin Equation (1) is distinct from the simple invariant
equations Sϕ = 0 of either ortho- or meta-1-conformal invariance.
For analogy, consider briefly Schrödinger-invariant systems with a Langevin equation of the
form Sϕ = (2νT)1/2 η, where η = dB

dt is a white noise of unit variance, and such that the
Schrödinger algebra is a dynamical symmetry of the noise-less equation (deterministic part)
Sϕ0 = 0. Then, the Bargman super-selection rules [69] which follow from the combination of
spatial translation-invariance and Galilei-invariance with z = 2, imply exact relations between
averages of the full noisy theory and the averages calculated from its deterministic part [70].
In particular, the two-time response function of the full noisy equation R(t, s; r) = R0(t, s; r),
is identical to the response R0 found when the noise is turned off and computed from the
dynamical Schrödinger symmetry [16,70].
We shall assume here that an analogous result can be derived also for the DLE Langevin equation,
although this has not yet been done. It seems plausible that such a result should exist, since in
the example (5b) and (6b) of the DLE process, the two-time response R is independent of T
(which characterises the white noise), as it is the case for Schrödinger-invariance.

2. The explicit response function (6b) of the DLE process is distinct from the predictions (12) ,
(14) and (16), see also Table 2. The form of the meta-1 conformal two-point function (14), is clearly
different for finite values of the scaling variable v = (r1 − r2)/(t1 − t2), and similarly for the
conformal Galilean case (16). The ortho-conformal two-point function (12) looks to be much closer,
with the choice x1 = 1

2 and the scale factor fixed to ν = 1, were it not for the extra factor ν(t− s).
On the other hand, the two-time DLE-correlator (6a) does not agree with (12) either, but might be
similar to a two-point function computed in a semi-infinite space t ≥ 0, r ∈ R with a boundary at
t = 0.

Looking for dynamical symmetries of the deterministic part of the DLE Langevin Equation (1),
in 1 + 1 dimensions, the first test will be the computation of the two-time response function R(t, s; r).
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By contrast, we shall show that the two-time correlator C cannot be found in this way. Indeed,
its ‘deterministic’ contribution vanishes: C0(t, s; r) = 0.

4. Riesz-Feller Fractional Derivative

Formulating (1) in direct space requires the Riesz-Feller fractional derivative [71–73] of order α.

Definition 4. For functions f (r) of a single variable r ∈ R, the Riesz-Feller derivative, of order α, is

∇α
r f (r) :=

iα

√
2π

∫
R

dk |k|α eikr f̂ (k) =
iα

2π

∫
R2

dkdx |k|α eik(r−x) f (x) (17)

where f̂ (k) denotes the Fourier transform of f (r). For brevity, we often write ∇r = ∇1
r and distinguish it from

the standard derivative ∂r.

Lemma 1. ([72], Prop. 3.6) Let f ∈ Hα/2(R) =
{

f ∈ L2(R)
∣∣∣∫R dk | f̂ (k)|2(1 + |k|2)α/2 < ∞

}
, a fractional

Sobolev space. For 0 < α < 2, the Riesz-Feller derivative∇α
r f (r) exists.

Lemma 2. ([16] app. J.2, [21]) The following formal properties hold true, where α, β, q, µ are constants

∇α
r∇

β
r f (r) = ∇α+β

r f (r) , [∇α
r , r] f (r) = α∂r∇α−2

r f (r) , ∇α
r f (µr) = |µ|α∇α

µr f (µr)

∇α
r eiqr = (i|q|)α eiqr ,

(
∇α

r f (r)
∧)

(q) = (i|q|)α f̂ (q) , ∇2
r f (r) = ∂2

r f (r) (18)

Lemma 2 follows directly from the definition (17). The analogy with the rules of the ordinary
derivative ∂n

r , with n ∈ N, applied to exponentials eiqr and to Fourier transforms, motivated our choice
of (complex) normalisation in (17). Later, we shall also need the object ∂r∇−1

r , which is formally
written as

∂r∇−1
r f (r) =

1√
2π

∫
R

dk eikr sign (k) f̂ (k) (19)

but is best considered via its Fourier transform, viz.
(

∂r∇−1
r f (r)
∧)

(q) = sign (q) f̂ (q). This is

well-defined, since f ∈ Hα/2(R) ⊂ L2(R) and because of Plancherel’s theorem. The Fourier transform
of sign (q) is a distribution ([74] [Equation (2.3.17)]).

Corollary 1. One has the following formal commutator identities

[∇r, rn] = nrn−1∂r∇−1
r ,

[
r2∇r, r∂r

]
= −r2∇r ,

[
r∂r∇−1

r , r∇r

]
= −r ,

[∇r, ∂r] = [r∂r, r∇r] =
[
r, ∂r∇−1

r

]
=
[
rn∂r, ∂r∇−1

r

]
=
[
rn∇r, ∂r∇−1

r

]
= 0 . (20)

Proof. Most of these identities are immediate consequences of (17,18). The first one is proven by
induction, for all n ∈ N. We only detail here the computation of the third one. Formally, one has[
r∂r∇−1

r , r∇r
]
= −r

(
∂r∇−1

r
)2. Using (19), and its Fourier transform, gives

(
∂r∇−1

r

)2
f (r) =

∫
R

dk√
2π

eikrsign (k)
(

∂r∇−1
r f (r)
∧)

(k) =
∫
R

dk√
2π

eikr (sign (k))2 f̂ (k) = f (r)

which establishes the assertion.
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Lemma 3. [72,75] If 0 < α < 2, one has for either f ∈ Hα/2(R) or else f ∈ S (R), the Schwartz space of
smooth, rapidly decreasing functions, for almost all r ∈ R

∇α
r f (r) =

1− eiπα

4πi
Γ(α + 1)

∫
R

dy
|y|α+1 [ f (r + y)− 2 f (r) + f (r− y)] (21)

If f ∈ S (R),∇α
r f (r) can be defined beyond the interval 0 < α < 2.

5. Non-Local Meta-Conformal Generators

The deterministic part of (1) becomes Sϕ = (−µ∂r +∇r) ϕ = 0, where µ−1 = iν. Following earlier
studies [45], it seems physically reasonable that the Lie algebra of dynamical symmetries should at
least contain the generators of time translations X−1 = −∂t, dilatations X0 = −t∂t − r

z ∂r − x
z and space

translations Y−1 = −∂r. It turns out, however, if one wishes to construct a generator of generalised
Galilei transformations as a dynamical symmetry, the non-local generator −∇r automatically arises,
see below and ([16], Chapter 5.3). It is still an open problem how to close these generators into a Lie
algebra, for z 6= 2 and beyond the examples listed above in Section 2.

This difficulty motivates us to start with the choice of a non-local spatial translation operator
Y−1 = −µ−1∇r. Here indeed, a closed Lie algebra can be found.

Proposition 1. [21] Define the following generators

X−1 = −∂t , X0 = −t∂t − r∂r − x , X1 = −t2∂t − 2tr∂r − µr2∇r − 2xt− 2γr∂r∇−1
r (22)

Y−1 = − 1
µ
∇r , Y0 = − 1

µ
t∇r − r∂r −

γ

µ
, Y1 = − 1

µ
t2∇r − 2tr∂r − µr2∇r − 2

γ

µ
t− 2γr∂r∇−1

r

where the constants x = xϕ and γ = γϕ, respectively, are the scaling dimension and rapidity of the scaling
operator ϕ = ϕ(t, r) on which these generators act. The six generators (22) obey the commutation relations of
a meta-conformal Lie algebra, isomorphic to sl(2,R)⊕ sl(2,R)

[Xn, Xm] = (n−m)Xn+m , [Xn, Ym] = (n−m)Yn+m , [Yn, Ym] = (n−m)Yn+m (23)

Proposition 2. [21] The generators (22) obey the commutators

[S , Yn] ϕ = [S , X−1] ϕ = 0 , [S , X0] ϕ = −Sϕ , [S , X1] ϕ = −2tSϕ + 2(µx− γ)ϕ (24)

with the operator S = −µ∂t +∇r and thus form a Lie algebra of meta-conformal dynamical symmetries (of the
deterministic part) Sϕ = 0 of the DLE Langevin Equation (1), if only γ = xµ.

The non-local generators X1, Y0,1 in (22) do not generate simple local changes of the coordinates
(t, r), in contrast to all examples of Section 2. Finding a clear geometrical interpretation of the
generators (22) remains an open problem.

This meta-conformal symmetry algebra can be considerably enlarged.

Proposition 3. Consider the generators (22) and furthermore define

Z−1 = − 1
µ

∂r , Z0 = − 1
µ

t∂r − r∇r −
γ

µ
∂r∇−1

r , Z1 = − 1
µ

t2∂r − 2tr∇r − µr2∂r − 2
γ

µ
t∂r∇−1

r − 2γr (25)

These generators are dynamical symmetries of the DLE Langevin equation, since [S , Zn] = 0 and they
extend the meta-conformal Lie algebra (23) as follows

[Xn, Zm] = (n−m)Zn+m , [Yn, Zm] = (n−m)Zn+m , [Zn, Zm] = (n−m)Yn+m (26)
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Although Z−1 generates local spatial translations, the transformations obtained from Z0,1 are
non-local. In what follows, we write ξ := γ/µ for the second, independent scaling dimension of ϕ.

Corollary 2. Define the generators B±n = 1
2 (Yn ± Zn), n ∈ {−1, 0, 1}. Then the non-vanishing commutators

of the Lie algebra (23) and (26) take the form

[Xn, Xm] = (n−m)Xn+m ,
[
Xn, B±m

]
= (n−m)B±n+m ,

[
B±n , B±m

]
= (n−m)B±n+m (27)

The B±n are dynamical symmetries of the DLE process, since [S , B±n ] = 0.

Corollary 3. Define the generators An = Xn − (B+
n + B−n ) = Xn − Yn, n ∈ {−1, 0, 1}. Then the

non-vanishing commutators of the Lie algebra (27) are

[An, Am] = (n−m)An+m ,
[
B±n , B±m

]
= (n−m)B±n+m (28)

This Lie algebra of dynamical symmetries of the deterministic part of the DLE Langevin Equation (1) is
isomorphic to the direct sum sl(2,R)⊕ sl(2,R)⊕ sl(2,R).

In this last choice of basis, all generators contain non-local terms. Their form, in Corollary 3,
is suggestive for the explicit construction of an infinite-dimensional extension of the above Lie algebra.

Proposition 4. Construct the generators, for all n ∈ Z and x, ξ constants

An = −tn+1 (∂t −∇r)− (n + 1) (x− ξ) tn

B±n = −1
2
(t± r)n+1 (∇r ± ∂r)−

n + 1
2

ξ (t± r)n
(

1± ∂r∇−1
r

)
(29)

Their non-vanishing commutators are given by (28), for n, m ∈ Z. Their Lie algebra is isomorphic to
the direct sum of three Virasoro algebras with vanishing central charges. They are also dynamic symmetries
of the deterministic equation Sϕ = (−∂t +∇r) ϕ = 0 of DLE process, provided that x = ξ, because of the
commutators

[S , An] = −(n + 1)tnS + (n + 1)n (x− ξ) tn−1 ,
[
S , B±n

]
= 0 (30)

Proof. For n = ±1, 0, the generators (29) are those given above in (22) and (25), using ξ = γ/µ

and rescaling µ 7→ 1. One generalises the first identity (20) in the Corollary 1 to the following form,
with n ∈ N [

∇r, (α± r)n] = ±n (α± r)n−1 ∂r∇−1
r

where α is a constant. The assertions now follow by direct formal calculations, using (18) and (20).

This is the DLE-analogue of the ortho- and meta-1 conformal invariances, respectively, of the
Laplace equation and of simple ballistic transport, as treated in Examples 3 and 4. In Table 3, it is called
‘’meta-2 conformal”. It clearly appears that both local and non-local spatial translations are needed
for realising the full dynamical symmetry of the DLE process, which we call erosion-Virasoro algebra
and denote by ev. The infinite-dimensional Lie algebra ev is built from three commuting Virasoro
algebras (obviously, the maximal finite-dimensional Lie sub-algebra is sl(2,R)⊕ sl(2,R)⊕ sl(2,R)).
The scaling operators ϕ = ϕ(t, r) on which these generators act are characterised by two independent
scaling dimensions x = xϕ and ξ = ξϕ. By analogy with conformal Galilean invariance [76], one expects
that three independent central charges of the Virasoro type should appear if the algebra (28) will be
quantised. Additional physical constraints (e.g. unitarity) may reduce the number of independent
central charges.
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6. Ward Identities for Co-Variant Quasi-Primary n-Point Functions

A basic application of dynamic time-space symmetries is the derivation of co-variant n-point
functions. Adapting the corresponding definition from (ortho-)conformal invariance [1], a scaling
operator ϕ = ϕ(t, r) is called quasi-primary, if it transforms co-variantly under the action of the
generators of the maximal finite-dimensional sub-algebra of ev. A primary scaling operator transforms
co-variantly under the action of all generators of ev. In this work, we consider examples of n-point
functions of quasi-primary scaling operators.

In the physical context of non-equilibrium dynamics, such n-point functions can either be
correlators, such as 〈ϕ(t, r)ϕ(t′, r′)〉, or response functions 〈ϕ(t, r)ϕ̃(t′, 0)〉 = δ〈ϕ(t,r)〉

δj(t′,0)

∣∣∣
j=0

, which can be

formally rewritten as a correlator by using the formalism of Janssen-de Dominicis theory [17] which
defines the response operator ϕ̃, conjugate to the scaling operator ϕ.

Proceeding in analogy with ortho-conformal and Schrödinger-invariance [1,16,43,44,77], the quasi-
primary ev-Ward identities are obtained from the explicit form of the Lie algebra generators (22)
and (25), generalised to n-body generators. In order to do so, we assign a signature ε = ±1 to each
scaling operator [21]. We choose the convention that εi = +1 for scaling operators ϕi and εi = −1 for
response operators ϕ̃i. In order to prepare a later application to the conformal Galilean algebra, to be
obtained from a Lie algebra contraction, we also multiply the generators Yi, Zi by the scale factor µ.
The n-body generators then read

X−1 = X[n]
−1 = ∑

i
[−∂i] , X0 = X[n]

0 = ∑
i
[−ti∂i − riDi − xi]

X1 = X[n]
1 = ∑

i

[
−t2

i ∂i − 2tiriDi − µεir2
i∇i − 2xiti − 2µξiεiriDi∇−1

i

]
Y−1 = Y[n]

−1 = ∑
i
[−εi∇i] , Y0 = Y[n]

0 = ∑
i
[−εiti∇i − µriDi − µξi] (31)

Y1 = Y[n]
1 = ∑

i

[
−εi

(
t2
i + µ2r2

i

)
∇i − 2µtiriDi − 2µξiti − 2µ2ξiεiriDi∇−1

i

]
Z−1 = Z[n]

−1 = ∑
i
[−Di] , Z0 = Z[n]

0 = ∑
i

[
−tiDi − εiri∇i − µξiDi∇−1

i

]
Z1 = Z[n]

1 = ∑
i

[
−
(

t2
i + µ2r2

i

)
Di − 2εiµtiri∇i − 2µξiri − 2µξiεitiDi∇−1

i

]
with the short-hands ∂i =

∂
∂ti

, Di =
∂

∂ri
and∇i = ∇ri . It can be checked that the generators (31) obey

the meta-conformal Lie algebra of the DLE process. Define the (n + m)-point function

Cn,m = Cn,m(t1, . . . , tn+m; r1, . . . , rn+m)

= 〈ϕ1(t1, r1) · · · ϕn(tn, rn)ϕ̃n+1(tn+1, rn+1) · · · ϕ̃n+m(tn+m, rn+m)〉 (32)

of quasi-primary scaling and response operators. Their co-variance is expressed through the
quasi-primary Ward identities, for k = ±1, 0

X[n+m]
k Cn,m = Y[n+m]

k Cn,m = Z[n+m]
k Cn,m = 0, (33)

The solution of this set of (linear) differential equations gives the sought (n+m)-point function Cn,m.

7. Co-Variant Two-Time Correlators and Responses

In order to illustrate the procedure outlined in section 6, we shall apply it to the two-point
functions.
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Proposition 5. Any two-point correlator C2,0(t1, t2; r1, r2) = 〈ϕ1(t1, r1)ϕ2(t2, r2)〉, built from ev-quasi-primary
scaling operators ϕi, vanishes.

Proof. Time-translation-invariance, expressed by X−1C2,0 = 0, implies that C2,0 = C2,0(t; r1, r2),
with t = t1− t2. Invariance under both non-local and local space-translations gives Y−1C2,0 = Z−1C2,0 = 0.
In Fourier space, this becomes

(ε1|q1|+ ε2|q2|) Ĉ2,0(t; q1, q2) = 0 , (q1 + q2) Ĉ2,0(t; q1, q2) = 0

where the signatures are both positive, viz. ε1 = ε2 = +1. The only solution is Ĉ2,0(t; q1, q2) = 0.

Recall that the dynamical symmetry of the ev algebra is only a symmetry of the deterministic
part of the DLE Langevin equation (1), which corresponds to T = 0. The vanishing of C2,0 is seen
explicitly in the exact DLE-correlator (5a,6a), which indeed vanishes as T→ 0. This result of the DLE

process is analogous to what is found for Schrödinger-invariant systems [16,77], where it follows from
a Bargman superselection rule [69]. Still, this does not mean that symmetry methods could only predict
vanishing correlators. For example, in Schrödinger-invariant systems, correlators with T 6= 0 can be
found from certain integrals of higher n-point responses [16,70]. For a simple illustration in the noisy
Edwards-Wilkinson equation, see [78]. We conjecture that an analogous procedure might work for the
DLE process and hope to return to this elsewhere.

We now concentrate on the two-time response function R = R(t1, t2; r1, r2) = C1,1(t1, t2; r1, r2).
Time-translation-invariance, which imposes X−1R = 0, implies that R = R(t; r1, r2), with t = t1 − t2.
Invariance under non-local and local space-translations now give (in Fourier space)

ε1 (|q1| − |q2|) R̂(t; q1, q2) = 0 , (q1 + q2) R̂(t; q1, q2) = 0

since the signatures are now ε1 = −ε2 = +1. Here, a non-vanishing solution is possible and we can
write R = F(t, r), with r = r1 − r2.

Proposition 6. The ev-covariant two-point response function R = C1,1 from (32) satisfies the scaling form
R = 〈ϕ1(t, r)ϕ̃2(0, 0)〉 = t−2x f (v), with the scaling variable v = r/t. If the scaling function f (v) obeys the
following two conditions, with the abbreviations x = 1

2(x1 + x2) and ξ = 1
2(ξ1 + ξ2),

(ε1∇v + µv∂v + 2µξ) f (v) = 0 , (x1 − x2) (ε1∇v + µv∂v + µ) f (v) = 0. (34)

and the constraint ξ1 − ξ2 = x1 − x2 holds true, then all quasi-primary Ward identities are satisfied.

The conditions (34) come from the deterministic part of the DLE Langevin Equation (1) and do
not contain T. This is consistent with the T-independence of the exact DLE-response function (5b)
and (6b). A fuller justification, analogous to the derivation of the Bargman superselection rules of
Schrödinger-invariance [70,77], is left as an open problem, for future work.

Proof. Denote by xi and ξi (with i = 1, 2), the two scaling dimensions of the scaling operator ϕ1

and of the response operator ϕ̃2, respectively. Time-translation-invariance and non-local and local
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space-translation-invariances produced the form R = F(t, r), with t = t1 − t2, r = r1 − r2 and the
signatures ε1 = −ε2 = +1. The other six Ward identities lead to the conditions, using (18)

[−t∂t − r∂r − x1 − x2] F = 0 (35a)

[−tε1∇r − µr∂r − µξ1 − µξ2] F = 0 (35b)[
−t∂r − µε1r∇r − µ(ξ1 + ξ2)ε1∂r∇−1

r

]
F = 0 (35c)[

−t2∂t − 2tr∂r − µr2ε1∇r − 2x1t− 2µξ1ε1r∂r∇−1
r

]
F = 0 (35d)[

−t2ε1∇r − 2µtr∂r − µ2ε1r2∇r − 2µξ1t− 2µ2ξ1ε1r∂r∇−1
r

]
F = 0 (35e)[

−t2∂r − 2µε1tr∇r − µ2r2∂r − 2µ2ξ1r− 2µξ1ε1t∂r∇−1
r

]
F = 0 (35f)

Herein, Equation (35d) is obtained by using Equations (35a) and (35c), and Equations (35e)
and (35f) are obtained by using (35b) and (35c). Actually, because of the identity[

−t∂r − µε1r∇r − 2µξε1∂r∇−1
r

]
F = ε1

[
−tε1∇r∂r∇−1

r − µr∇2
r∇−1

r − 2µξ∂r∇−1
r

]
F

= ε1∂r∇−1
r [−ε1t∇r − µr∂r − 2µξ] F

the condition Y0F = 0, Equation (35b), implies Z0F = 0, Equation (35c). Since
(
∂r∇−1

r
)2 f (r) = f (r),

see the Corrollary 1, the converse also holds true. Next, Equation (35d) can be simplified further:
multiply Equation (35a) with t and subtract it from (35d), which gives[

−tr∂r − µε1r2∇r − (x1 − x2)t− 2µξ1ε1r∂r∇−1
r

]
F = 0 (36)

Then multiply (35c) with r and substract it from (36). This gives the condition[
(x1 − x2) t + µ (ξ1 − ξ2) ε1r∂r∇−1

r

]
F = 0 (37)

Similarly, simplify Equation (35e): multiply (35b) by t and subtract from (35e), then multiply (36)
by µ and subtract as well. This gives

µ [(ξ1 − ξ2)− (x1 − x2)] tF = 0

Unless F ∼ δ(t) is a distribution, this gives the constraint ξ1 − ξ2 = x1 − x2. Finally, Equation (35f)
is simplified by multiplying first (35c) with t and subtracting and then multiplying (35b) with
r and subtracting as well. This leads to (ξ1 − ξ2)

[
µr + ε1t∂r∇−1

r
]

F = 0. Since in the proof

of the Corollary 1, we have seen that
(
∂r∇−1

r
)2 f (r) = f (r), this can be rewritten as follows:

(ξ1 − ξ2)ε1
(
∂r∇−1

r
) [

ε1µr∂r∇−1
r + t

]
F = 0. Taking the constraint into account, the last condition

can be combined with (37) into the single equation

(x1 − x2)
[
t + µε1r∂r∇−1

r

]
F = 0 (38)

The form of F is now fixed by the three equations (35a,35b,38) and the constraint has to be obeyed.
Equation (35a) implies the scaling form F = t−2x f (r/t). Inserting this into (35b) produces, with

the help of (18), the first of the Equations (34). Finally, inserting the scaling form for F into (38) gives
(x1 − x2)

(
1 + µε1v∂v∇−1

v
)

f (v) = 0. Since it is not immediately obvious if that condition is consistent
with the first Equation (34), we rephrase it as follows: use the commutator

[
v∂v,∇−1

v
]
= ∇−1

v to write
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formally v∂v∇−1
v = ∇−1

v +∇−1
v (v∂v). Then, apply∇v to the last condition on f (v) derived from (38),

in order to rewrite it as follows

∇v∇−1
v [(x1 − x2) (ε1∇v + µv∂v + µ)] f (v) = 0

and this equation is obeyed if the second Equation (34) holds true. We have found a sufficient set of
conditions to satisfy all nine DLE-quasi-primary Ward identities for R = C1,1.

The two conditions in Equation (34) are compatible in two distinct cases:

Case A: 2ξ = 1. Then (ε1∇v + µv∂v + µ) f (v) = 0 and x1 6= x2 is still possible.
Case B: x1 = x2. Then ξ1 = ξ2 and (ε1∇v + µv∂v + 2µξ) f (v) = 0.

We must also compare the differential operator S = −µ∂t + ∇r with the DLE Langevin
Equation (1). Taking into account the normalisation in the definition of the Riesz-Feller derivative,
we find µ−1 = iν. Physically, one should require ν > 0 in order that the correlators and responses
vanish for large momenta |q| → ∞.

Proposition 7. The ev-co-variant two-time response function R12(t, r) = F(t, r) has the form

F(t, r) = FA δξ1+ξ2,1 δξ1−ξ2,x1−x2 t1−x1−x2
νt

ν2t2 + r2

+FB δx1,x2 δξ1,ξ2 t1+ψ−2x1
(

ν2t2 + r2
)−(ψ+1)/2

cos
(
(ψ + 1) arctan

( r
νt

)
− πψ

2

)
(39)

where ψ = (ξ1 + ξ2)− 1 is assumed real, FA,B are normalisation constants and the convention ε1 = +1
is admitted.

Proof. Both cases can be treated in the same way. The first Equation (34) becomes in Fourier space[
iε1|q| − µq∂q + µ(2ξ − 1)

]
f̂ (q) = 0

In case A, the constant term vanishes, while it is non-zero in case B. The solution reads

f̂ (q) = f̂0q2ξ−1 exp (iε1|q|/µ) = f̂0q2ξ−1 exp (−ε1ν|q|)

where f̂0 is a normalisation constant and we can now adopt ε1 = +1. We also introduced the constant
ν from the DLE Langevin Equation (1) to illustrate that f̂ (q) → 0 for |q| large when ν is positive.
Both cases A and B produce valid solutions of the linear Equations (34). Therefore, the general
solution should be a linear superposition of both cases. Carrying out the inverse Fourier transforms is
straightforward.

Remark 3. Propositions 4 and 7 contain the assertions in the Theorem 1, which are also listed in Table 3.
Proposition 5 proves the statement in Remark 2. We had already mentioned in Section 1 (Remark 1), that if
we restrict to case A and take x = x1 = x2 = 1

2 and ν > 0, the resulting two-time response F(t, r) =

F0 t1−2x ε1νt/(ν2t2 + r2), with t = t1 − t2 and r = r1 − r2, reproduces the exact solution (6b). We stress that
no choice of x1 will make the ortho-conformal prediction (12) compatible with (6b).

This is the main conceptual point of this work: The non-local representation (29) of the meta-conformal
algebra ev is necessary to reproduce the correct scaling behaviour of the non-stationary response of the
DLE process.

The non-local meta-2 conformal invariance produces the response function R = C1,1, whereas all local
ortho-, Galilean and meta-conformal invariances yielded a correlator C2,0.
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The main result (8) and (39) on the shape of the meta-2-conformal response can be cast into the
scaling form tx1+x2R12(t, r) = f (r/t), with the explicit scaling function

f (u) =
(
1 + u2)−1

+ ρ
(
1 + u2)−ξ1 sin (πξ1 − 2ξ1 arctan u)

1 + ρ sin πξ1
. (40)

We see that the first scaling dimensions x1, x2 merely arrange the data collapse, while the form of
the scaling functions only depends on the second scaling dimension ξ1 = ξ2 and the amplitude ratio ρ

(the exact solution (6b) of the DLE-process corresponds to ρ = 0). The normalisation is chosen such
that f (0) = 1. For ξ1 = 1

2 , we simply have f (u) = (1 + u2)−1. In Figure 4, several examples of the
shape of f (u) are shown. Clearly, these are quite distinct from all the examples of ortho-, meta-1- and
Galilean-conformal invariance, displayed above in Figure 3.
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Figure 4. Scaling function f (u) of the covariant meta-2-conformal two-point response
R(t, r) = t−x1−x2 f (r/t), over against the scaling variable u = r/t, for ξ = ξ1 = [0.6, 1.0, 1.4] in
the left, middle and right panels, respectively, and several values of the amplitude ratio ρ.

Remark 4. By analogy with Schrödinger-invariance, we conjecture that the fluctuation-dominated correlators
should be obtained from certain time-space integrals of higher n-point responses [16,70]. Working with the
quantum chain representation of the terrace-step-kink model, Karevski and Schütz have calculated the stationary
two-point correlator of the densities, which in our terminology correspond to the slopes u(t, r) = ∂rh(t, r).
They find [10]

C(t, r) = CAt−2 1− ζ2

(1 + ζ2)2 + CBt−ψ cos[2(q∗r−ωt)]
(1 + ζ2)ψ (41)

with the scaling variable ζ = (r− vct)/(νt), where vc is the global velocity of the interface, ψ ≥ 1
2 is a real

parameter and CA,B are normalisation constants. The structure of their result is qualitatively very close to
the form (8) and (39) for the two-time response of the ev-algebra, in the sense that it contains a dominant
and monotonous term and a non-dominant and oscillatory one. Indeed, it can be checked that from the
exact height-height correlator (5a) and (6a) this first term in (41) is recovered by computing the correlator
〈u(t, r)u(0, 0)〉 of the densities u = ∂rh. We interpret this as an encouraging signal that it should be possible
to find the correlators from the ev as well, by drawing on the analogies with Schrödinger-invariance. The first
step in this direction would be the derivation of an analogue of a Bargman superselection rule, which is work
in progress.

Remark 5. The consequences of the choice of the fractional derivative are difficult to appreciate in advance and
largely remain a matter of try and error. Our choice of the Riesz-Feller derivative was suggested that in this way
the Lie algebra becomes a dynamical symmetry of the DLE process. In the past, we had also worked [16,45] with
an extension of the Riemann-Liouville derivative by distributional terms [74]. For dynamical exponents z 6= 1, 2,
this leads to a strong oscillatory behaviour of the response functions which appears to be physically undesirable.
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We consider the success of the simple case study of the DLE process treated here as suggestive for
future investigations.

Corollary 4. In the limit µ→ 0 (or ν→ ∞) the Lie algebra ev can be contracted into the algebra

[Xn, Xm] = (n−m)Xn+m ,
[
Xn, B±m

]
= (n−m)B±n+m (42)

with n, m ∈ Z and with the explicit generators

Xn = −tn+1∂t − (n + 1)tnr∂r − (n + 1)xtn − n(n + 1)εγtn−1r∂r∇−1
r

B±n = −1
2

tn+1 (ε∇r ± ∂r)−
1
2
(n + 1)γtn

(
1± ε∂r∇−1

r

)
(43)

where ε = ±1 is the signature and x = xϕ and γ = γϕ are the scaling dimension and the rapidity of the scaling
operator on which these generators act. The co-variant quasi-primary two-point correlator C2,0 = 0, whereas the
co-variant quasi-primary two-point response R = C1,1 is, with the normalisation constant R0

R(t, r) = δx1,x2 δγ1,γ2 R0 t−2x1 exp
(
−2
∣∣∣γ1r

t

∣∣∣) . (44)

The algebra (42), which one might call meta-conformal Galilean algebra, contains the conformal
Galilean algebra as a sub-algebra, although the generators (43) are in general non-local, in contrast
with those in Equation (15). However, the co-variant two-point function is here a response, and not
a correlator.

Proof. In order to carry out the contraction on the generators (29), where Xn = An + B+
n + B−n ,

we first change coordinates r 7→ µr, let ξi = γi/µ and rescale the generators B±n 7→ µB±n . Then the
last commutator in (27) becomes [B±n , B±m ] = µ(n − m)B±n+m. Taking the limit µ → 0 produces
the generators (43) and the commutators (42) immediately follow. The Ward identities for the
finite-dimensional sub-algebra are written down as before and C2,0 = 0 follows. For the response
function, going again through the proof of the proposition 7 and recalling that µ−1 = iν, we see that
case A in (39) does not have a non-vanishing limit as ν → ∞. For case B, consider the scaling form
R(t, r) = t−2x1 f (r/t), with the scaling function f (v) written as

f (v) = f0

[(
ε1

iµ
− iv

)−ψ−1
+ eiπψ

(
ε1

iµ
+ iv

)−ψ−1
]

and ψ+ 1 = 2γ1/µ. If γ1 > 0, the first term (−i/µ− iv)−ψ−1 = (iµ)2γ1/µ (1 + µv)−2γ1/µ µ→0
= µ0e−2γ1v,

and where µ0 is a constant, to be absorbed into the overall normalisation. The second term vanishes,
since eiπψ = eiπ(−1+2iνγ1) = −e−2πνγ1 → 0 as ν → ∞. On the other hand, if γ1 < 0, one divides
f (v) by eiπψ, and redefines the normalisation constant. Now, the second term produces ∼ e+2γ1v

and the first one vanishes in the ν → ∞ limit. Both cases are combined into f (v) = f̄0e−2|γ1v|.
Alternatively, one derives from the Ward identities the two constraints x1 = x2 and γ1 = γ2. Global
dilation-invariance gives the scaling form R(t, r) = t−2x1 f (r/t) where the scaling function f (v) must
satisfy the equation f ′(v) + 2γ1sign (t) f (v) = 0 which leads to the asserted form, modulo a dualisation
procedure, analogous to [41,46] to guarantee the boundedness for large separations.

Our results on non-local meta-conformal algebras are summarised in Table 3.
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Table 3. Comparison of non-local meta-2 conformal invariance, and meta-conformal galilei invariance
in (1 + 1)D. The non-vanishing Lie algebra commutators, the defining equation of the generators
and the invariant differential operator S are indicated. The usual generators are Xn = An + B+

n + B−n ,
Yn = B+

n + B−n and Zn = B+
n − B−n , see also Table 2. Physically, the co-variant quasiprimary two-point

function R12 = 〈ϕ1(t, r)ϕ̃2(0, 0)〉 is a response function. In case B, one has ψ = 2ξ1 − 1.

Meta-2 Conformal Meta-Conformal Galilean Constraints

Lie [An, Am] = (n−m)An+m [Xn, Xm] = (n−m)Xn+m
algebra

[
B±n , B±m

]
= (n−m)B±n+m

[
Xn, B±m

]
= (n−m)B±n+m

generators (29) (43)

S −µ∂t +∇r -

R12

t1−x1−x2 · νt
(
ν2t2 + r2)−1 - ξ1 + ξ2 = 1 (A)

x1 − ξ1 = x2 − ξ2

t2ξ1−2x1
(
ν2t2 + r2)−ξ1

t−2x1 exp (−2 |γ1r/t|) x1 = x2 (B)
· sin

[
πξ1 − 2ξ1 arctan

( r
νt
)]

ξ1 = ξ2 , or γ1 = γ2
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