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Abstract: A topological index of graph G is a numerical parameter related to G, which characterizes
its topology and is preserved under isomorphism of graphs. Properties of the chemical compounds
and topological indices are correlated. In this report, we compute closed forms of first Zagreb,
second Zagreb, and forgotten polynomials of generalized prism and toroidal polyhex networks.
We also compute hyper-Zagreb index, first multiple Zagreb index, second multiple Zagreb index,
and forgotten index of these networks. Moreover we gave graphical representation of our results,
showing the technical dependence of each topological index and polynomial on the involved
structural parameters.
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1. Introduction

Chemical reaction network theory is an area of applied mathematics that attempts to model the
behavior of real world chemical systems. Since its foundation in the 1960s, it has attracted a growing
research community, mainly due to its applications in biochemistry and theoretical chemistry. It has
also attracted interest from pure mathematicians due to the interesting problems that arise from the
mathematical patterns in structures of material.

Cheminformatics is an emerging field in which quantitative structure-activity (QSAR) and
Structure-property (QSPR) relationships predict the biological activities and properties of nanomaterial.
In these studies, some physcio–chemical properties and topological indices are used to predict
bioactivity of the chemical compounds [1–5].

The branch of chemistry which deals with the chemical structures with the help of mathematical
tools is called mathematical chemistry. Chemical graph theory is the branch of mathematical chemistry
that applies graph theory to mathematical modeling of chemical phenomena. In chemical graph
theory, a molecular graph is a simple graph (having no loops and multiple edges) in which atoms and
chemical bonds between them are represented by vertices and edges respectively.

A graph G with vertex set V(G) and edge set E(G) is connected if there exists a connection between
any pair of vertices in G. The distance between two vertices u and v is denoted as d(u, v) and is the
length of shortest path between u and v in graph G. The number of vertices of G, adjacent to a given
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vertex v, is the “degree” of this vertex and will be denoted by dv. For details on basics of graph theory,
any standard text such as [6] can be of great help.

A topological index is actually designed by transforming a chemical structure into a number.
These topological indices associate certain physico–chemical properties like boiling point, stability,
strain energy, etc. of chemical compounds. Graph theory has been of considerable use in this area
of research. In 2013, Shirdel et al. [7] proposed the “hyper-Zagreb index”, which is a degree-based
index as

HM(G) = ∑
uv∈E(G)

[du + dv]
2

In 2012, Ghorbani and Azimi [8] proposed two new variants of Zagreb indices; first multiple
Zagreb index PM1(G) = ∏

uv∈E(G)
[du + dv] and second multiple Zagreb index PM2(G) = ∏

uv∈E(G)
[du × dv].

Recently in 2015, Furtula and Gutman [9] introduced another topological index called the forgotten index
or F-index

F(G) = ∑
uv∈E(G)

[
(du)

2 + (dv)
2
]
.

For more detail on the “F-index”, we refer to the articles [10–12].
The first Zagreb polynomial of G is defined as

M1(G, x) = ∑
uv∈E(G)

x[du+dv].

The second Zagreb polynomial of G is defined as

M2(G, x) = ∑
uv∈E(G)

x[du×dv].

The forgotten polynomial of a graph G is defined as

F(G, x) = ∑
uv∈E(G)

x[(du)
2+(dv)

2].

In this article, we compute the first Zagreb polynomial, the second Zagreb polynomial and the
forgotten polynomial of generalized prism and toroidal polyhex networks. We also compute some
degree-based topological indices of these networks. Recently authors computed M-polynomials and
related topological indices for Nanostar dendrimers [13], titania nanotubes [14], circulant graphs [15],
polyhex nanotubes [16], and generalized prism and toroidal polyhex networks [17]. The structures of
Nanostar dendrimers, titania nanotubes, and polyhex nanotubes differ from fullerenes geometrically.
Basic structural units of titania nanotubes are rectangles arranged differently for different types,
whereas basic units of polyhex nanotubes are hexagons concatenated in different ways for different
types. Nanostar dendrimers are macromolecules built in a tree-like structure. These materials have
many applications in electronics, chemical processing, optics, and energy management and are used
in flat panel display screens, hydrogen storage, robotics and artificial muscles, chemical sensors,
and photography. Our results will help to determine physico–chemical properties like the heat of
formation, strain energy, strength and fracture toughness of these materials.

2. Results and Discussions

In this part we give our main computational results.

2.1. Computational Aspects of Generalized Prism

In graph theory, a cycle graph or circular graph is a graph that consists of a single cycle or, in
other words, some number of vertices connected in a closed chain. The cycle graph with n vertices is
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called Cn. The number of vertices in Cn equals the number of edges, and every vertex has degree 2;
that is, every vertex has exactly two edges incident with it. Figure 1 is a cycle of length 10.
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Figure 1. Cycle graph C10.

For a cycle Cn, we have V(Cn) = {xi : 1 ≤ i ≤ n}, and E(Cn) = {xixi+1 : 1 ≤ i ≤ n− 1} ∪ {xnx1}.
A path graph Pm is a graph whose vertices can be listed in the order v1, v2, · · ·, vm such that

the edges are {vi, vi+1}, where i = 1, 2, · · · , m− 1. Equivalently a path with at least two vertices is
connected and has two terminal vertices (vertices that have degree 1), while all others (if any) have
degree 2. Figure 2 shows a path graph P4.
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Figure 2. Path graph P4.

For a path Pm, we have V(Pm) =
{

yj : 1 ≤ j ≤ m
}

and E(Pn) =
{

xjxj+1 : 1 ≤ j ≤ n− 1
}

.
The Cartesian product G� H of graphs G and H is a graph such that the vertex set of G� H is the

Cartesian product V(G)×V(H) and any two vertices (u, u′) and (v, v′) are adjacent in G� H if and
only if either u = v and u′ is adjacent with v′ in H, or u′ = v′ and u is adjacent with v in G.

Let P{n,m} be the generalized prism graph that is obtained by Cartesian product of a cycle

Cn with a path Pm as shown in Figure 3. Then V
(

P{n,m}

)
=
{
(xi, yj) : 1 ≤ i ≤ n, 1 ≤ j ≤ m

}
and

E
(

P{n,m}

)
=
{
(xi, yj)(xi+1, yj) : 1 ≤ i ≤ n− 1, 1 ≤ j ≤ m

}
∪
{
(xn, yj)(x1, yj) : 1 ≤ j ≤ m

}
∪
{
(xi, yj)(xi, yj+1) : 1 ≤ i ≤ n, 1 ≤ j ≤ m− 1

}
.
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Figure 3. The generalized prism P{n,m}.

The generalized prism P{n,m} has been studied extensively in recent years. Kuo et al. [18] and
Chiang et al. [19] studied distance-two labelings of P{n,m}. Siddiqui et al. [20] counted some topological
indices of P{n,m}. Deming et al. [21] gave complete characterization of the Cartesian product of cycles
and paths for their incidence chromatic numbers. Gravier et al. [22] showed the link between the
existence of perfect Lee codes and minimum dominating sets of P{n,m}. Lai et al. [23] determined the
edge addition number for the Cartesian product of a cycle with a path. Chang et al. [24] established
upper bounds and lower bounds for global defensive alliance number of P{n,m}.

Theorem 1. Let P{n,m} be the generalized prism. Then the first Zagreb polynomial, second Zagreb polynomial,
and forgotten polynomial of P{n,m} are

1. M1

(
P{n,m}, x

)
= 2mnx8 − 5nx8 + 2nx7 + 2nx6,

2. M2

(
P{n,m}, x

)
= 2mnx16 − 5nx16 + 2nx12 + 2nx9,

3. F
(

P{n,m}, x
)
= 2mnx32 − 5nx32 + 2nx25 + 2nx18.

Proof. Let P{n,m} be the generalized prism with defining parameters m and n. The number of vertices
and edges in generalized prism P{n,m} are nm and n(2m − 1) respectively. There are three types of
edges in P{n,m} based on degrees of end vertices of each edge. The first edge partition E1(P{n,m})

contains 2n edges uv, where du = dv = 3. The second edge partition E2(P{n,m}) contains 2n edges
uv, where du = 3, dv = 4. The third edge partition E3(P{n,m}) contains 2mn− 5n edges uv, where
du = dv = 4. Then;
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1. by definition, the first Zagreb polynomial is;

M1

(
P{n,m}, x

)
= ∑

uv∈E(P{n,m})
x[du+dv ]

= ∑
uv∈E1(P{n,m})

x[du+dv ] + ∑
uv∈E2(P{n,m})

x[du+dv ] + ∑
uv∈E3(P{n,m})

x[du+dv ]

=
∣∣∣E1

(
P{n,m}

)∣∣∣x6 +
∣∣∣E2

(
P{n,m}

)∣∣∣x7 +
∣∣∣E3

(
P{n,m}

)∣∣∣x8

= 2mnx8 − 5nx8 + 2nx7 + 2nx6.

Following Figure 4 is the graph of first Zagreb polynomial P{7,8}.
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2. Now, by definition, the second Zagreb polynomial is;

M2

(
P{n,m}, x

)
= ∑

uv∈E(P{n,m})
x[du×dv ]

= ∑
uv∈E1(P{n,m})

x[du×dv ] + ∑
uv∈E2(P{n,m})

x[du×dv ] + ∑
uv∈E3(P{n,m})

x[du×dv ]

=
∣∣∣E1

(
P{n,m}

)∣∣∣x9 +
∣∣∣E2

(
P{n,m}

)∣∣∣x12 +
∣∣∣E3

(
P{n,m}

)∣∣∣x16

= 2mnx16 − 5nx16 + 2nx12 + 2nx9.

The graph of the second Zagreb polynomial of generalized prism is in Figure 5.
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3. By definition, the forgotten polynomial is:

F
(

P{n,m}, x
)

= ∑
uv∈E(P{n,m})

x[(du)
2+(dv)

2]

= ∑
uv∈E1(P{n,m})

x[(du)
2+(dv)

2] + ∑
uv∈E2(P{n,m})

x[(du)
2+(dv)

2] + ∑
uv∈E3(P{n,m})

x[(du)
2+(dv)

2]

=
∣∣∣E1

(
P{n,m}

)∣∣∣x18 +
∣∣∣E2

(
P{n,m}

)∣∣∣x25 +
∣∣∣E3

(
P{n,m}

)∣∣∣x32

= 2mnx32 − 5nx32 + 2nx25 + 2nx18.

The graph of the forgotten polynomial of P{7,8} is given in Figure 6 below,
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Figure 6. Graph of the forgotten polynomial of P{7,8}.

Proposition 1. Let P{n,m} be the generalized prism. Then the hyper-Zagreb index, first multiple Zagreb index,
second multiple Zagreb index, and forgotten index of P{n,m} are

1. HM
(

P{n,m}

)
= −150n + 128mn,

2. PM1

(
P{n,m}

)
= 62n × 72n × 82mn−5n,

3. PM2

(
O{n,m}

)
= 92n × 122n × 162mn−5n,

4. F
(

P{n,m}

)
= 324n + 625n + 36n(2m−5).

Proof.

1. By definition of the hyper-Zagreb index,

HM
(

P{n,m}

)
= ∑

uv∈E(P{n,m})
[du + dv]

2

= ∑
uv∈E1(P{n,m})

[du + dv]
2 + ∑

uv∈E2(P{n,m})
[du + dv]

2 + ∑
uv∈E3(P{n,m})

[du + dv]
2

= 36
∣∣∣E1

(
P{n,m}

)∣∣∣+49
∣∣∣E2

(
P{n,m}

)∣∣∣+ 64
∣∣∣E3

(
P{n,m}

)∣∣∣
= 36(2n) + 49(2n) + 64(2mn− 5n)
= −150n + 128mn.

The Figure 7 is 3D plot of the Hyper Zagreb index of generalized prism.



Symmetry 2017, 9, 5 7 of 12
Symmetry 2016, 9, 5 7 of 12 

 

 

Figure 7. 3D plot for the hyper-Zagreb index. 

2. By the definition of the first multiple Zagreb index, 

 
 

 

 
 

 
 

 
 

     

1 2 3

2 3

1 { , }

 { , }

 { , } { , } { , }

       | ?  | { , } { , }{ , }1

2 2 2 5         

d d

     

         =6 7 8 .

             d d d d d d

                  6 7 8

n m u v

uv E P n m

u v u v u v

uv E P uv E P uv E Pn m n m n m

E P E PE P n m n mn m

n n mn n

PM P







 

 

  



 



  





  
  

3D plot of the multiple-Zagreb index of generalized prism is shown in Figure 8. 

 

 

Figure 8. 3D plot for the first multiple-Zagreb index. 

3. By the definition of the second multiple Zagreb index, 

Figure 7. 3D plot for the hyper-Zagreb index.

2. By the definition of the first multiple Zagreb index,

PM1

(
P{n,m}

)
= ∏

uv∈E(P{n,m})
[du + dv]

= ∏
uv∈E1(P{n,m})

[du + dv]× ∏
uv∈E2(P{n,m})

[du + dv]× ∏
uv∈E3(P{n,m})

[du + dv]

= 6|E1(P{n,m})| × 7|E2(P{n,m})| × 8|E3(P{n,m})|

= 62n × 72n × 82mn−5n.

3D plot of the multiple-Zagreb index of generalized prism is shown in Figure 8.
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3. By the definition of the second multiple Zagreb index,

PM2

(
P{n,m}

)
= ∏

uv∈E(P{n,m})
[du × dv]

= ∏
uv∈E1(P{n,m})

[du × dv]× ∏
uv∈E2(P{n,m})

[du × dv]× ∏
uv∈E3(P{n,m})

[du × dv]

= 9|E1(P{n,m})| × 12|E2(P{n,m})| × 16|E3(P{n,m})|

= 92n × 122n × 162mn−5n.

3D plot for the second multiple-Zagreb index of generalized prism is given in Figure 9.
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4. By the definition of the forgotten index,

F
(

P{n,m}

)
= ∏

uv∈E(P{n,m})

[
(du)

2 + (dv)
2
]

= ∏
uv∈E1(P{n,m})

[
(du)

2 + (dv)
2
]
× ∏

uv∈E2(P{n,m})

[
(du)

2 + (dv)
2
]
× ∏

uv∈E3(P{n,m})

[
(du)

2 + (dv)
2
]

= 18|E1(P{n,m})| × 25|E2(P{n,m})| × 31|E3(P{n,m})|

= 324n + 625n + 36n(2m−5).

3D plot for the second multiple-Zagreb index of generalized prism is given in Figure 10.
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2.2. Computational Aspects of Toroidal Polyhex

The discovery of the fullerene molecules has stimulated many interests in other possibilities for
carbons. Many properties of fullerenes can be studied using mathematical tools such as graph theory.
A fullerene can be represented by a trivalent graph on a closed surface with pentagonal and hexagonal
faces, such that its vertices are carbon atoms of the molecule. Two vertices are adjacent if there is a
bond between corresponding atoms. In [25], authors considered fullerene’s extension to other closed
surfaces and showed that only four surfaces, sphere, torus, Klein bottle and projective (elliptic) plane,
are possible. The spherical and elliptic fullerenes have 12 and 6 pentagons respectively. There are no
pentagons in the toroidal’s and the Klein bottle’s fullerenes [26].

A toroidal fullerene (toroidal polyhex), obtained from 3D Polyhex Torus Figure 11, is a cubic bipartite
graph embedded on the torus such that each face is a hexagon. The torus is a closed surface that can
carry the graph of the toroidal polyhex in which all faces are hexagons and the degree of all vertices is 3.
The optical and vibrational properties of toroidal carbon nanotubes can be found in [27]. There have
appeared a few works in the enumeration of perfect matchings of toroidal polyhexes by applying
various techniques, such as transfer-matrix and permanent of the adjacency matrix. Ye et al. [28] have
studied a k-resonance of toroidal polyhexes. Classification of all possible structures of fullerene Cayley
graphs is given in [29] by Kang. The atom-bond connectivity index (ABC) and geometric–arithmetic
index (GA) of the toroidal polyhex are computed in [30] by Baca et al. In [31], authors computed
distance-based topological indices of eight infinite sequences of 3-generalized fullerenes.

In [32], authors presented a new extension of the generalized topological indices (GTI) approach
to represent topological indices in a unified way.
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Figure 11. Polyhex Torus.

Let L be a regular hexagonal lattice and nPm be a m× n quadrilateral section (with m hexagons on
the top and bottom sides and n hexagons on the lateral sides; n is even), cut from the regular hexagonal
lattice L. First identify two lateral sides of nPm to form a cylinder, and finally identify the top and
bottom sides of nPm at their corresponding points. From this we get a toroidal polyhex H{m,n} with
mn hexagons.

The set of vertices of the toroidal polyhex is:

V(H{m,n}) =
{

vi
j, vi

j : 0 ≤ i ≤ n− 1, 0 ≤ j ≤ m− 1
}

.

The set of edges of the toroidal polyhex is splitted into mutually disjointed subsets; such that for even
i, such that 0 ≤ i ≤ n− 2, we have Ai =

{
ui

jv
i
j : 0 ≤ j ≤ m− 1

}
and A′i =

{
vi

ju
i
j+1 : 0 ≤ j ≤ m− 1

}
, and

for i odd and 1 ≤ i ≤ n− 1, we have Bi =
{

vi
ju

i
j : 0 ≤ j ≤ m− 1

}
and B′i =

{
ui

jv
i
j+1 : 0 ≤ j ≤ m− 1

}
,
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and for 0 ≤ i ≤ n− 1 we have Ci =
{

vi
ju

i+1
j : 0 ≤ j ≤ m− 1

}
, where i is taken modulo n and j is taken

modulo m.

Hence E(H{m,n}) =
n
2−1
∪

i=0
(A2i ∪ A′2i ∪ B2i+1 ∪ B′2i+1)

n−1
∪

i=0
Ci. We can easily observe from Figure 12

that the number of vertices in H{m,n} are 2mn and the number of edges in H{m,n} are 3mn. Note that
there is only one type of edge in a toroidal polyhex, based on degrees of end vertices of each edge.
The edge partition E1(H{m,n}) contains 3mn edges uv, where du = dv = 3.

Theorem 2. Let H{m,n} be the toroidal polyhex. Then the first Zagreb polynomial, second Zagreb polynomial,
and forgotten polynomial of H{m,n} are;

M1

(
H{m,n}, x

)
= 3mnx6,

M2

(
H{m,n}, x

)
= 3mnx9, and

F
(

H{m,n}, x
)
= mnx18.

Proposition 2. Let H{m,n} be the toroidal polyhex. Then the hyper-Zagreb index, first multiple Zagreb index,
second multiple Zagreb inde, x and forgotten index of H{m,n} are;

HM
(

H{m,n}

)
= 108mn,

PM1

(
H{m,n}

)
= 216mn,

PM2

(
H{m,n}

)
= 729mn,

F
(

H{m,n}

)
= 5832mn.
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Figure 12. 2D lattice graph of toroidal polyhex.
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3. Conclusions and Discussion

In this article, we computed closed forms of topological indices for a generalized prism and
toroidal polyhex. We also gave closed forms of some well-known polynomials concerning these
structures. Further, we gave graphs (Figures 4–10) for the computed polynomials and topological
indices to correlate these indices with involved parameters of structure. These results can play a vital
role in industry and pharmacy. It is important to remark that the methodology described above can be
employed in recently developed nanomaterials, nanotubes, and polymers [33–35]. Some examples are
Boron nanotubes, aluminosilicate/aluminugerminate, SiO2—layered structure and titania nanotubes.
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