
symmetryS S

Article

A Generalization of Trapezoidal Fuzzy Numbers
Based on Modal Interval Theory

Lambert Jorba *,† and Romà Adillon †

Departament de Matemàtica Econòmica, Financera i Actuarial, Universitat de Barcelona, 08034 Barcelona, Spain;
adillon@ub.edu
* Correspondence: lambert.jorba@ub.edu; Tel.: +34-93-402-1953
† These authors contributed equally to this work.

Received: 8 September 2017; Accepted: 16 September 2017; Published: 21 September 2017

Abstract: We propose a generalization of trapezoidal fuzzy numbers based on modal interval theory,
which we name “modal interval trapezoidal fuzzy numbers”. In this generalization, we accept that
the alpha cuts associated with a trapezoidal fuzzy number can be modal intervals, also allowing
that two interval modalities can be associated with a trapezoidal fuzzy number. In this context, it is
difficult to maintain the traditional graphic representation of trapezoidal fuzzy numbers and we must
use the interval plane in order to represent our modal interval trapezoidal fuzzy numbers graphically.
Using this representation, we can correctly reflect the modality of the alpha cuts. We define some
concepts from modal interval analysis and we study some of the related properties and structures,
proving, among other things, that the inclusion relation provides a lattice structure on this set. We will
also provide a semantic interpretation deduced from the modal interval extensions of real continuous
functions and the semantic modal interval theorem. The application of modal intervals in the field of
fuzzy numbers also provides a new perspective on and new applications of fuzzy numbers.
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1. Introduction

The classical numerical system of real numbers is not efficient to express the vagueness,
uncertainty and imprecision of real life. Fuzzy numbers and modal intervals are useful tools to
get over those deficiencies.

The introduction of fuzzy sets by Zadeh [1] was a novelty as they provide a graduation of the
membership relation. When considering fuzzy numbers, the expression “to be an element of a set”
makes no sense, whereas many expressions in which this membership relation is relativized do indeed
make sense.

Fuzzy numbers can be considered from two different points of view: with their membership
function or with their α-cuts. The two ways of considering fuzzy numbers are equivalent,
and, depending on the details we want to study, one can be better than the other. Among all types of
fuzzy numbers, triangular and trapezoidal ones, whose names are derived from the shape obtained
when their membership function is represented in the Cartesian plane, are the most commonly used.
However, when we observe a fuzzy number from the point of view of its α-cuts, what we are indeed
getting is an intervalar point of view of the fuzzy number.

Fuzzy sets theory has evolved since its appearance in 1965. Nowadays, we can find applications
of fuzzy sets in the most part of scientific disciplines, such as decision-making [2–4], probability [5],
control theory [6], medical sciences [7], characterization of complex systems [8], among others.

Modal intervals were introduced by Gardeñes [9] and they implied a new treatment of interval
analysis, providing new resources to solve problems and systematize their resolution, as well as to
interpret correctly an intervalar calculus.
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Fuzzy numbers and intervals are not far removed from each other. This is because a fuzzy number
can be identified by its α-cuts, which are intervals, and intervals can also be considered fuzzy numbers.

The set of intervals, in their classical point of view, has some deficiencies in the operative sense
and also in the interpretation of the calculus. These deficiences remain in the set of fuzzy numbers.
Modal intervals, which are an extension of classical intervals, solve some of the operative deficiencies
(although the distributive property is neither satisfied), and they give, without ambiguity, the right
semantical interpretations of the calculus. Moreover, modal intervals are a lattice with regard to the
incluson relationship, while classical intervals are not.

The advantages that present modal intervals in front of classical intervals have motivated us to
deepen the relationship between fuzzy sets theory and interval analysis theory using modal intervals.
We are certain that, with this tool, we open new lines of research.

If the connection between intervals and fuzzy numbers is so obvious, why not use modal intervals
when working with fuzzy numbers, especially if we take into account the fact that modal intervals are
an efficient extension of classical intervals? This is what we want to do in this paper: we will focus on
the modal interval point of view of the α-cuts of trapezoidal fuzzy numbers.

Modal intervals have been used combined with fuzzy sets [10,11]. The study that we present is
based on the set of trapezoidal fuzzy numbers, expanding this set using modal intervals. The new
fuzzy numbers obtained by this extension are named modal interval trapezoidal fuzzy numbers.

In this new set of modal interval trapezoidal fuzzy numbers (MITFNs), we study the inclusion
relationship and we prove that this relationship provides a lattice structure. At the same time, in the set
of MITFNs, we define the dual operator, inherited from the dual operator of modal intervals. The dual
operator is an internal operator in the set of MITFNs, and it gives us the possibility to solve problems
that, until now, had no solution in the set of traditional fuzzy numbers.

The rest of this paper is organized as follows. In Section 2, some basic concepts related to modal
intervals and to fuzzy numbers are given. In Section 3, we provide the main definitions of this work
and we also study the lattice structure of MITFNs with regard to the inclusion relation. In Section 4,
we define the modal extension of a real function, we study some properties of this extension and
we present the semantic interpretability theorem. Section 4 also includes an example to show some
advantages when working on MITFNs instead of working with trapezoidal fuzzy numbers in their
traditional sense. The conclusions and future research are described in Section 5.

2. Preliminaries

2.1. Modal Intervals

Given a, b ∈ R such that a ≤ b, the classical interval [a, b] is defined as [a, b] = {x ∈ R | a ≤ x ≤ b}.
The set of classical intervals is represented by I (R) and it has been extensively studied. We can
highlight the preliminary studies by Warmus [12] and Sunaga [13], and further consolidation of
classical interval theory by Moore [14], Nickel [15] and Alefeld [16]. The operations between classical
intervals have been studied by Kaucher [17].

Modal intervals were introduced by Gardeñes [9,18]. Some authors, such as Wang [19], refer to
modal intervals as generalized intervals. A modal interval is defined as a pair consisting of a classical
interval and a quantifier. The set of modal intervals is represented by I∗ (R). Thus, A ∈ I∗ (R) if
A = ([a, b] , Q) , where [a, b] ∈ I (R) and Q ∈ {∃, ∀} . We can refer to [a, b] as the subtractum of A,
and it would be represented by set (A); and we will refer to Q as the modality of A, which would be
represented by mod (A).

In the set of modal intervals, we distinguish proper intervals as those modal intervals whose
modality is ∃; and improper intervals as those whose modality is ∀. Thus, A is proper if A = ([a, b] , ∃)
and A is improper if A = ([a, b] , ∀). We identify proper intervals as the classical intervals. We will
denote the proper interval A = ([a, b] , ∃) by A = [a, b], and the improper interval A = ([a, b] , ∀) by
A = [b, a]. Using this notation, the interval [2, 4] is the proper interval ([2, 4] , ∃) and the interval [3, 1]
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is the improper interval ([1, 3] , ∀). A pointwise interval can be considered as either proper or improper.
Moore’s semiplane is useful to represent classical intervals, but it is not detailed enough to represent
modal intervals, whose graphic representation must be in the interval plane (see Figure 1).

Figure 1. The interval plane.

A modal interval A must be identified with the set of predicates accepted by A. Given a predicate
P, this predicate is accepted by the modal interval A = ([a, b] , Q) if Qx ∈ [a, b] , P (x) is true. That is,
if A = ([a, b] , ∃), P is a predicate accepted by A if ∃x ∈ [a, b] such that P (x) is true. In the same way,
if A = ([a, b] , ∀) , the predicate P is accepted by A if ∀x ∈ [a, b] , P (x) is true. We denote by pred (A)

the set of the predicates accepted by A.
The dual operator of a modal interval A = ([a, b] , Q), which we will represent by du (A),

is defined by du (A) = ([a, b] , du (Q)), where du (Q) = ∀ if Q = ∃ and du (Q) = ∃ if Q = ∀.
The inclusion relation between two modal intervals A and B is defined by:

A ⊆ B⇔ pred (A) ⊆ pred (B)

and, using the canonical coordinates of A and B, the inclusion A ⊆ B holds in the same way as in the
set of classical intervals, that is, [a, b] ⊆ [c, d] if a ≥ c and b ≤ d.

In the set of modal intervals, we define the meet (∧) and join (∨) operators between
two modal intervals. If A = [a, b] and B = [c, d], then A ∧ B = [max {a, c} , min {b, d}] and
A ∨ B = [min {a, c} , max {b, d}]. The meet and join operators correspond to the intervalar infimum
and supremum of two modal intervals with regard to the inclusion relation. Thus, the set of modal
intervals is a lattice with regard to the inclusion relation, while the set of classical intervals is not.

Using the meet and join operators, we define the modal extension of a real continuous function
f : Rn −→ R which is represented by f ∗ as:

f ∗ (X) = ∨
xp∈set(XP)

∧
xi∈set(XI)

[
f
(
xp, xi

)
, f
(
xp, xi

)]
,

where XP are the proper components of X and XI are the improper ones.
The calculus of the modal extension of a real continuous function can be semantically interpreted

using the semantic modal interval theorem [20].

2.2. Fuzzy Numbers

Fuzzy sets were introduced by Zadeh [1]. Although they are surely the most accepted tool
to represent uncertainty, there are some other tools used to represent indiscernibility, vagueness,
imprecision and also uncertainty: rough sets [21–23]; marks [24] and numerical clouds [25],
among others.
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If X is a universal set, a fuzzy set A, in X can be defined by its membership function.
The membership function of a fuzzy set A is a mapping µA : X → [0, 1] which assigns to each
element x ∈ X, a real number µA (x) ∈ [0, 1]. The value µA (x) quantifies the level of membership of
the fuzzy set A, of the element x.

A fuzzy number A is a fuzzy set of the real line. Its membership function, µA : R → [0, 1]
must be normal (that is, ∃x ∈ R such that µA (x) = 1), fuzzy convex (∀x, y ∈ R ∀ λ ∈ [0, 1],
µA (λx + (1− λ) y) ≥ µA (x) ∧ µA (y)), upper semi-continuous and such that the closure of the set
{x ∈ R | µA (x) > 0} is bounded [26].

The membership function of a fuzzy number A can be described as:

µA (x) =


fL (x) , if a1 ≤ x < a2,

1, if a2 ≤ x ≤ a3,
fU (x) , if a3 < x ≤ a4,

0, otherwise,

where a1, a2, a3 and a4 are real numbers such that a1 < a2 ≤ a3 < a4; fL is a real-valued
strictly increasing and right-continuous function; and fU is a real-valued strictly decreasing and
left-continuous function.

Given a fuzzy set A of X with membership function µA, and given a real number α ∈ [0, 1],
the α-cut of A is the crisp set denoted by Aα and is defined by:

Aα =


{x ∈ X | µA (x) ≥ α} , if α ∈ (0, 1] ,

{x ∈ X | µA (x) > 0}, if α = 0,

where {x ∈ X | µA (x) > 0} is the closure of the set {x ∈ X | µA (x) > 0}.
The α-cut A0 is called the support of A and it is denoted by supp (A) . The α-cut A1 is called the

core of A.
A fuzzy number A can be represented by its membership function or alternatively by the set of its

α-cuts: A = {Aα | α ∈ [0, 1]} .
The expected interval of a fuzzy number is given by Dubois and Prade [27], Grzegorzewski [28],

and Heilpern [29]. For a trapezoidal fuzzy number A = (a1, a2, a3, a4), the expected interval is
EI (A) =

[
a1+a2

2 , a3+a4
2

]
.

3. Modal Interval Trapezoidal Fuzzy Numbers

Definition 1. (Modal interval trapezoidal fuzzy number)
Given [a1, a4] , [a2, a3] ∈ I∗ (R) such that set ([a2, a3]) ⊆ set ([a1, a4]).
If, for any α ∈ [0, 1], we consider Aα = (1− α) [a1, a4] + α [a2, a3], then A = {Aα | α ∈ [0, 1]} is an

MITFN which we represent by A = ([a1, a4] , [a2, a3]) .

The modal interval [a1, a4] that corresponds to A0 is the support of A, and the modal interval
[a2, a3] that corresponds to A1 is the core of A. Thus, A =

(
A0, A1).

We denote the set of MITFNs by TI∗ (R) , extending the expression I∗ (R) , which denotes the set
of modal intervals.

If A = ([a1, a4] , [a2, a3]) is an MITFN, we can define set (A) as the trapezoidal fuzzy number
(in its standard sense):

set (A) = (min {a1, a4} , min {a2, a3} , max {a2, a3} , max {a1, a4}) .

It is obvious that supp (set (A)) = set (supp (A)) = set [a1a4] and core (set (A)) =

set (core (A)) = set [a2, a3] .
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Definition 2. (Modality of an MITFN)
Given A = ([a1, a4] , [a2, a3]) which is an MITFN, we define:

1. A is a proper-improper MITFN (MITFNI
P) if supp (A) is a proper interval and core (A) is an improper

interval. We denote it by A = (set (A) ,∃,∀);
2. A is an improper-proper MITFN (MITFNP

I ) if supp (A) is an improper interval and core (A) is a proper
interval. We denote it by A = (set (A) ,∀,∃);

3. A is a proper-proper MITFN (MITFNP
P) if both the support and core of A are proper intervals. We denote

it by A = (set (A) ,∃,∃);
4. A is an improper-improper MITFN (MITFNI

I) if both the support and core of A are improper intervals.
We denote it by A = (set (A) ,∀,∀).

In general, an MITFN A will be:
A =

(
A′, Q1, Q2

)
,

where A′ is a trapezoidal fuzzy number in its traditional sense; Q1 ∈ {∃,∀} is the interval modality of
the support of A, that is, the modality of [a1, a4]; and Q2 ∈ {∃,∀} is the interval modality of the core of
A, that is, the modality of [a2, a3].

If A is an MITFNP
P, we will refer to A as a proper trapezoidal fuzzy number; while if A is an

MITFNI
I , then we will refer to A as an improper trapezoidal fuzzy number [10]. Notice that if A is an

MITFNP
P, then A is a trapezoidal fuzzy number in its classical sense.

Proposition 1. Given A = ([a1, a4] , [a2, a3]) , which is an MITFNI
P or an MITFNP

I , there exists a unique value
α0 ∈ [0, 1] such that the α-cut Aα0

is a pointwise interval [p, p]. Moreover, if β ∈
[
0, α0] , then mod

(
Aβ
)
=

mod (supp (A)) and if γ ∈
[
α0, 1

]
, then mod (Aγ) = mod (core (A)) .

Proof. If A is an MITFNI
P, a1 ≤ a4 and a2 ≥ a3. As Aα = (1− α) [a1, a4] + α [a2, a3]. We must impose:

(1− α) [a1, a4] + α [a2, a3] = [p, p]⇒
{

(1− α) a1 + αa2 = p,
(1− α) a4 + αa3 = p,

that is: {
α (a2 − a1)− p = −a1,
α (a3 − a4)− p = −a4,

which has a unique solution as

∣∣∣∣∣ a2 − a1 −1
a3 − a4 −1

∣∣∣∣∣ 6= 0.

Let α0, p0 be the solution. If β ∈
[
0, α0], then β = α0− ξ, ξ ≥ 0. If A is an MITFNI

P, then we have to
prove that (1− β) [a1, a4] + β [a2, a3] is a proper interval. As [a1, a4] is a proper interval, then a1− a4 ≤ 0.
As [a2, a3] is an improper interval, then a2 − a3 ≥ 0 :

a1 − a4 ≤ a2 − a3 ⇒ a1 − a2 ≤ a4 − a3

as ξ ≥ 0, ξ (a1 − a2) ≤ ξ (a4 − a3) and

p0 + ξa1 − ξa2 ≤ p0 + ξa4 − ξa3,

but p0 is either
(
1− α0) a1 + α0a2 or

(
1− α0) a4 + α0a3, so it follows that:(

1− α0
)

a1 + α0a2 + ξa1 − ξa2 ≤
(

1− α0
)

a4 + α0a3 + ξa4 − ξa3

and then (
1− α0 + ξ

)
a1 +

(
α0 − ξ

)
a2 ≤

(
1− α0 + ξ

)
a4 +

(
α0 − ξ

)
a3,
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so
(1− β) a1 + βa2 ≤ (1− β) a4 + βa3,

which means that Aβ = [(1− β) a1 + βa2, (1− β) a4 + βa3] is a proper interval.
If γ ∈

[
α0, 1

]
, then γ = α0 + ξ, ξ ≥ 0 and the demonstration would be equivalent.

Similar reasoning holds for the case in which A is an MITFNP
I .

We will refer to α0 as the transition modality value of the MITFN, A. The pointwise interval
Aα0

= [p, p] is the transition α−cut of A, and its graphical representation is shown in Figure 4.
If A = ([a1, a4] , [a2, a3]) is an MITFNI

P or an MITFNP
I and [p, p] is the transition α−cut of A, then A∆ =

([a1, a4] , [p, p]) is a modal interval triangular non-normalized fuzzy number and its modality is the
same as the interval modality of the support of A, that is, if A is an MITFNI

P, then A∆ = ([a1, a4] , [p, p])
will be a proper triangular fuzzy number; while, if A is an MITFNP

I , then A∆ = ([a1, a4] , [p, p]) will be
an improper triangular fuzzy number [10].

Proposition 2. (Canonical characterization of an MITFN)
Let A = ([a1, a4] , [a2, a3]) ∈ TI∗ (R), then

1. A is an MITFNI
P ⇔ a1 ≤ a3 ≤ a2 ≤ a4;

2. A is an MITFNP
I ⇔ a4 ≤ a2 ≤ a3 ≤ a1;

3. A is an MITFNP
P ⇔ a1 ≤ a2 ≤ a3 ≤ a4;

4. A is an MITFNI
I ⇔ a4 ≤ a3 ≤ a2 ≤ a1.

Proof.

1. If A is an MITFNI
P, then supp (A) = [a1, a4] is proper, that is, a1 ≤ a4 and core (A) = [a2, a3] is

improper, that is, a3 ≤ a2.

As Definition 1 establishes set ([a2, a3]) ⊆ set ([a1, a4]), in this case, set ([a2, a3]) = [a3, a2] and
set ([a1, a4]) = [a1, a4] which means [a3, a2] ⊆ [a1, a4], that is a3 ≥ a1 and a2 ≤ a4.

From a1 ≤ a4, a3 ≤ a2, a3 ≥ a1, a2 ≤ a4, it follows that a1 ≤ a3 ≤ a2 ≤ a4.

2. If A is an MITFNP
I , supp (A) = [a1, a4] is an improper interval, that is, a4 ≤ a1

and core (A) = [a2, a3] is a proper interval, that is, a2 ≤ a3.

As it must be that set ([a2, a3]) ⊆ set ([a1, a4]) and set ([a2, a3]) = [a2, a3] , set ([a1, a4]) = [a4, a1] ,
so it follows that [a2, a3] ⊆ [a4, a1], that is, a2 ≥ a4 and a3 ≤ a1.

From a4 ≤ a1, a2 ≤ a3, a2 ≥ a4, a3 ≤ a1, it follows that a4 ≤ a2 ≤ a3 ≤ a1.

The proof of both case 3 and case 4 is trivial.

Proposition 3. (Interval modality of the expected interval)
If A = ([a1, a4] , [a2, a3]) is an MITFN, then the interval modality of the expected interval is the same as

the interval modality of the support of A, that is:

mod (EI (A)) = mod (supp (A)) .

Proof. The expected interval for a trapezoidal fuzzy number A = (a1, a2, a3, a4) is EI (A) =
[

a1+a2
2 , a3+a4

2

]
.

• If both supp (A) and core (A) are proper intervals, then a1 ≤ a4 and a2 ≤ a3 so a1 + a2 ≤ a3 + a4

and
[

a1+a2
2 , a3+a4

2

]
is a proper interval.

• If both supp (A) and core (A) are improper intervals, then a1 ≥ a4 and a2 ≥ a3 so a1 + a2 ≥ a3 + a4

and
[

a1+a2
2 , a3+a4

2

]
is an improper interval.
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• If supp (A) is a proper interval and core (A) is an improper one, then set (core (A)) = [a3, a2] and
set (supp (A)) = [a1, a4]. As set (core (A)) ⊆ set (supp (A)) , it holds that a3 ≥ a1 and a2 ≤ a4.
Thus,

[
a1+a2

2 , a3+a4
2

]
is a proper interval.

• If supp (A) is an improper interval and core (A) is a proper interval, then set (core (A)) = [a2, a3]

and set (supp (A)) = [a4, a1]. As set (core (A)) ⊆ set (supp (A)) , it holds that a2 ≥ a4 and a3 ≤ a1.
Thus,

[
a1+a2

2 , a3+a4
2

]
is an improper interval.

The graphical representation of the expected interval is shown in Figure 5.
It is possible to consider the membership function of an MITFN, but it is difficult to represent

improper intervals in the Cartesian plane. However, a graphical visualization of the functions fL and
fU is provided in Figure 2.

Figure 2. Membership function of an MITFN.

Next, we will define some operators on the set of MITFNs.
Dual operator. If A = (A′, Q1, Q2) ∈ TI∗ (R) the dual operator on A, dual (A) is defined as:

dual (A) =
(

A′, dual (Q1) , dual (Q2)
)

,

where dual (Q) =

{
∀, if Q = ∃,
∃, if Q = ∀.

We will distinguish between the dual operator of an MITFN, which we will represent by dual ( )
and the dual operator of an interval, which we will represent by du ( ) .

If A = ([a1, a4] , [a2, a3]) ∈ TI∗ (R), then dual (A) = ([a4, a1] , [a3, a2]). Moreover,
(dual (A))α = du (Aα) and, consequently, supp (dual (A)) = du (supp (A)) and core (dual (A)) =

du (core (A)), that is, if A =
(

A0, A1), then dual (A) =
(
du
(

A0) , du
(

A1)) .
It is obvious that if A is an MITFNI

P, then dual (A) is an MITFNP
I ; if A is an MITFNP

I , then dual (A)

is an MITFNI
P; if A is an MITFNP

P, then dual (A) is an MITFNI
I ; and if A is an MITFNI

I , then dual (A) is
an MITFNP

P.
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Proper and improper operators. If A = (A′, Q1, Q2) ∈ TI∗ (R) we define the proper operator
on A, as prop (A) = (A′,∃,∃) and the improper operator on A as impr (A) = (A′,∀,∀). Using the
canonical notation, if A = ([a1, a4] , [a2, a3]), then:

prop (A) = ([min {a1, a4} , max {a1, a4}] , [min {a2, a3} , max {a2, a3}]) ,

which coincides with set (A), and

impr (A) = ([max {a1, a4} , min {a1, a4}] , [max {a2, a3} , min {a2, a3}]) .

Both prop (A) and impr (A) are quantified trapezoidal fuzzy numbers [10].

3.1. Graphical Representation of an MITFN in the Interval Plane

Trapezoidal fuzzy numbers, in their traditional sense, can be represented in Moore’s semiplane as
decreasing segments in which the support is represented by ◦ and the core is represented by • [30].

Moore’s semiplane is not detailed enough to represent an MITFN, and we must use the intervalar
plane to represent them graphically. Using the same notation, that is, representing the support of an
MITFN A by ◦ and representing its core by •, the segment with ends ◦ and • represents the MITFN A.
The graphic representation of the four types of MITFNs, described in Definition 2, is shown in Figure 3.

Figure 3. Representation of an MITFN in the interval plane.

The following graphical representation Figure 4 allows us to interpret the existence and
uniqueness of the transition modality value easily, as well as the transition α-cut of an MITFNI

P
or an MITFNP

I . Figure 5 is the graphic representation of the expected interval of an MITFN.
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Figure 4. Transition α−cut of an MITFN.

Figure 5. Expected interval of an MITFN.

3.2. The Lattice of MITFNs

We have defined the MITFN (Definition 1) using the α-cuts, and we will now define the inclusion
relation between two MITFNs using the modal interval inclusion of the α-cuts, that is:

A ⊆ B ⇐⇒ (∀α ∈ [0, 1]⇒ Aα ⊆ Bα) .

In the following proposition, we study the inclusion relation between two MITFNs A and B
using the modalities of the support and the core of both A and B. There are 16 cases to be considered,
but, using the properties of the modal interval duality, we can reduce those 16 cases to 10.

Lemma 1. Let A, B ∈ TI∗ (R), then:

A ⊆ B ⇐⇒ supp (A) ⊆ supp (B) and core (A) ⊆ core (B) .

Proof. ⇒) As A ⊆ B ⇐⇒ (∀α ∈ [0, 1]⇒ Aα ⊆ Bα), taking α = 1 and α = 0, it follows that
supp (A) = A0 ⊆ B0 = supp (B) and core (A) = A1 ⊆ B1 = core (B).

⇐) A = ([a1, a4] , [a2, a3]) and B = ([b1, b4] , [b2, b3]).
As α ≥ 0 and [a2, a3] ⊆ [b2, b3] ⇒ α [a2, a3] ⊆ α [b2, b3] . Moreover, as 1− α ≥ 0, [a1, a4] ⊆ [b1, b4]

then (1− α) [a1, a4] ⊆ (1− α) [b1, b4] .
Thus, Aα = (1− α) [a1, a4] + α [a2, a3] ⊆ (1− α) [b1, b4] + α [b2, b3] = Bα.

Proposition 4. Given A, B ∈ TI∗ (R), where A =
(

A′, QA
1 , QA

2
)

and B =
(

B′, QB
1 , QB

2
)

, it follows that:

1. If A = (A′, ∃, ∃) and B = (B′, ∃, ∃), then
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A ⊆ B ⇐⇒ set (supp (A)) ⊆ set (supp (B)) and set (core (A)) ⊆ set (core (B));
2. If A = (A′, ∃, ∃) and B = (B′, ∀, ∀), then

A ⊆ B ⇐⇒ A = B = (p, p, p, p);
3. If A = (A′, ∃, ∃) and B = (B′, ∃, ∀), then

A ⊆ B ⇐⇒ set (supp (A)) ⊆ set (supp (B)) and core (A) = core (B) = [p, p];
4. If A = (A′, ∃, ∃) and B = (B′, ∀, ∃), then

A ⊆ B ⇐⇒ A = B = (p, p, p, p);
5. If A = (A′, ∀, ∀) and B = (B′, ∃, ∃), then

A ⊆ B ⇐⇒ set (supp (A)) ∩ set (supp (B)) 6= ∅ and set (core (A)) ∩ set (core (B)) 6= ∅;
6. If A = (A′, ∀, ∀) and B = (B′, ∃, ∀), then

A ⊆ B ⇐⇒ set (supp (A)) ∩ set (supp (B)) 6= ∅ and set (core (A)) ⊇ set (core (B));
7. If A = (A′, ∀, ∀) and B = (B′, ∀, ∃), then

A ⊆ B ⇐⇒ set (supp (A)) ⊇ set (supp (B)) and set (core (A)) ∩ set (core (B)) 6= ∅;
8. If A = (A′, ∃, ∀) and B = (B′, ∃, ∀), then

A ⊆ B ⇐⇒ set (supp (A)) ⊆ set (supp (B)) and set (core (A)) ⊇ set (core (B));
9. If A = (A′, ∃, ∀) and B = (B′, ∀, ∃), then

A ⊆ B ⇐⇒ A = B = (p, p, p, p);
10. If A = (A′, ∀, ∃) and B = (B′, ∃, ∀), then

A ⊆ B ⇐⇒ set (supp (A)) ∩ set (supp (B)) 6= ∅ and core (A) = core (B) = [p, p] .

Proof. As the inclusion of two modal intervals X, Y conforms to the following (Gardeñes, [9]):

X ⊆ Y ⇐⇒


set (X) ⊆ set (Y) , if X and Y are both proper,
set (Y) ⊆ set (X) , if X and Y are both improper,

set (X) ∩ set (Y) 6= ∅, if X is improper and Y is proper,
X = Y = [p, p] , if X is proper and Y is improper.

By applying Lemma 1 to the α-cuts Aα and Bα, which are modal intervals, we obtain the
desired result.

Notice that the following six cases:
{(A′, ∀, ∀) , (B′, ∀, ∀)}, {(A′, ∃, ∀) , (B′, ∀, ∀)}, {(A′, ∃, ∀) , (B′, ∃, ∃)},
{(A′, ∀, ∃) , (B′, ∀, ∃)}, {(A′, ∀, ∃) , (B′, ∃, ∃)}, {(A′, ∀, ∃) , (B′, ∀, ∀)}, are not treated in the above

Proposition 4, as they are dual cases of some of those studied, and it is possible to apply the property
A ⊆ B⇔ dual (B) ⊆ dual (A) .

From the above Lemma 1, it is possible to express the inclusion relation of two MITFNs in terms
of their coordinates. Thus, if A, B ∈ TI∗ (R), A = ([a1, a4] , [a2, a3]) and B = ([b1, b4] , [b2, b3]), then:

A ⊆ B ⇐⇒ a1 ≥ b1, a4 ≤ b4, a2 ≥ b2 and a3 ≤ b3.

Definition 3. (Infimum and supremum)
Given A, B, X, Y ∈ TI∗ (R),

• inf {A, B} = X if X ⊆ A, X ⊆ B and if there exists a D ∈ TI∗ (R) such that D ⊆ A and D ⊆ B,
then D ⊆ X;

• sup {A, B} = Y if A ⊆ Y, B ⊆ Y and if there exists a D ∈ TI∗ (R) such that A ⊆ D and B ⊆ D,
then Y ⊆ D.
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Proposition 5. Given A, B ∈ TI∗ (R), let us consider L0 = A0 ∧ B0 and L1 = A1 ∧ B1, then

inf {A, B} =


(

L0, L1) , if set
(

L1) ⊆ set
(

L0) ,

(
L0 ∧ L1, L1) , if set

(
L1) 6⊆ set

(
L0) .

Proof. We should consider the following four cases, depending on the modalities of L0 and L1.

1. L0 and L1 are proper intervals.

As L0 and L1 are proper intervals, then A and B are MITFNsP
P. Thus, A1 ⊆ A0 and B1 ⊆ B0 so

L1 ⊆ L0 and as L1 and L0 are proper intervals, set
(

L1) ⊆ set
(

L0). If X =
(

L0, L1), then X ⊆ A,
X ⊆ B and X ∈ TI∗ (R). Moreover, if D ∈ TI∗ (R) conforms to D ⊆ A and D ⊆ B, then
D0 ⊆ A0 , D0 ⊆ B0, D1 ⊆ A1 and D1 ⊆ B1 so D0 ⊆ A0 ∧ B0 and D1 ⊆ A1 ∧ B1. That is, D ⊆ X;
thus,

(
L0, L1) = Inf{A, B} .

2. L0 is a proper interval and L1 an improper interval.

As L0 = A0 ∧ B0 is a proper interval, L1 = A1 ∧ B1 is an improper interval and set
(

A1) ⊆
set
(

A0) , set
(

B1) ⊆ set
(

B0) , and it follows that L1 ⊆ L0. We distinguish the following two cases
according to the inclusion set of L1 and L0:

(a) If set
(

L1) ⊆ set
(

L0), we can proceed as in the first case.

(b) If set
(

L1) 6⊆ set
(

L0), then let us prove that X =
(

L0 ∧ L1, L1) corresponds to in f {A, B}.
Notice that, if L1 ⊆ L0, then L0 ∧ L1 = L1; thus, X =

(
L1, L1). It is obvious that X ∈ TI∗ (R).

Moreover, X0 ⊆ A0 and X0 ⊆ B0 as X0 = L1 ⊆ L0. In a similar way, X1 ⊆ A1 and X1 ⊆ B1.
Therefore, X ⊆ A and X ⊆ B.

If D ∈ TI∗ (R) conforms to D ⊆ A and D ⊆ B, then D1 ⊆ A1 ∧ B1 = L1. Notice that, as L1

is an improper interval, D1 will also be an improper interval and then set
(

L1) ⊆ set
(

D1).
We must prove that D0 ⊆ L1 and, consequently, D ⊆ X.

• If D0 is an improper interval, as set
(

D1) ⊆ set
(

D0), it follows that D0 ⊆ D1.
As D1 ⊆ L1, then D0 ⊆ L1.

• If D0 is a proper interval, as set
(

D1) ⊆ set
(

D0) = D0 and D0 ⊆ L0, it follows that
set
(

D1) ⊆ L0. Using the inclusion set
(

L1) ⊆ set
(

D1), we obtain set
(

L1) ⊆ set
(

L0) ,
which contradicts the hypothesis set

(
L1) 6⊆ set

(
L0).

3. L0 is an improper interval and L1 a proper one.

As L0 = A0 ∧ B0 is an improper interval, L1 = A1 ∧ B1 is a proper interval and set
(

A1) ⊆
set
(

A0) , set
(

B1) ⊆ set
(

B0), and it follows that set
(

L1) ⊆ set
(

L0); thus, the demonstration
follows as in the first case.

4. L0 and L1 are improper intervals.

(a) If L1 ⊆ L0, then set
(

L0) ⊆ set
(

L1). Let us prove that X =
(

L0 ∧ L1, L1) corresponds to
in f {A, B}. Notice that if L1 ⊆ L0, then L0 ∧ L1 = L1 and thus X =

(
L1, L1). It is obvious

that X ∈ TI∗ (R). Moreover, X0 ⊆ A0 and X0 ⊆ B0 as X0 = L1 ⊆ L0. In a similar way,
X1 ⊆ A1 and X1 ⊆ B1. Therefore, X ⊆ A and X ⊆ B.

If D ∈ TI∗ (R) conforms to D ⊆ A and D ⊆ B, then D1 ⊆ A1 ∧ B1 = L1 and
D0 ⊆ A0 ∧ B0 = L0. This implies that D0 and D1 are improper intervals.

Moreover, as set
(

D1) ⊆ set
(

D0), then due to the modality of D0 and D1 it will be the
case that D0 ⊆ D1 and as D1 ⊆ L1, it follows that D0 ⊆ L1. Thus, X =

(
L0 ∧ L1, L1) =

in f {A, B} .
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(b) If L0 ⊆ L1, then set
(

L1) ⊆ set
(

L0). Let us prove that X =
(

L0, L1) corresponds to in f {A, B}.
If X =

(
L0, L1), then X ⊆ A, X ⊆ B and X ∈ TI∗ (R). Moreover, if D ∈ TI∗ (R) conforms to

D ⊆ A and D ⊆ B, then D0 ⊆ A0 , D0 ⊆ B0, D1 ⊆ A1 and D1 ⊆ B1 so D0 ⊆ A0 ∧ B0 and
D1 ⊆ A1 ∧ B1. That is, D ⊆ X; thus,

(
L0, L1) = Inf{A, B} .

(c) If L0 ≤ L1 or L1 ≤ L0, then let us prove that X =
(

L0 ∧ L1, L1) corresponds to in f {A, B}.
Notice that L0 ∧ L1 ⊆ L1 as L0 ∧ L1 and L1 are improper intervals, set

(
L1) ⊆ set

(
L0 ∧ L1) ,

thus X ∈ TI∗ (R) and obviously X ⊆ A and X ⊆ B.

If D ∈ TI∗ (R) conforms to D ⊆ A and D ⊆ B, then D1 ⊆ A1 ∧ B1 = L1 and
D0 ⊆ A0 ∧ B0 = L0. As L1 and L0 are both improper, D1 and D0 will also be improper intervals.

Moreover, as set
(
D1) ⊆ set

(
D0), then due to the modality of D0 and D1, it will be the case

that D0 ⊆ D1 and as D1 ⊆ L1, it follows that D0 ⊆ L1 and consequently D0 ⊆ L0 ∧ L1. That is
D ⊆ X, thus X =

(
L0 ∧ L1, L1) = in f {A, B}.

Proposition 6. Given A, B ∈ TI∗ (R), let us consider M0 = A0 ∨ B0 and M1 = A1 ∨ B1, then:

sup {A, B} =


(

M0, M1) , if set
(

M1) ⊆ set
(

M0) ,

(
M0 ∨M1, M1) , if set

(
M1) 6⊆ set

(
M0) .

Proof. Applying modal interval properties relating duality and meet–join operators [24], that is:

du
(

M0
)

= du
(

A0 ∨ B0
)
= du

(
A0
)
∧ du

(
B0
)

du
(

M1
)

= du
(

A1 ∨ B1
)
= du

(
A1
)
∧ du

(
B1
)

and
sup {A, B} = dual (inf {dual (A) , dual (B)})

Let L0 be L0 = du
(

A0)∧ du
(
B0). As set

(
L0) = set

(
du
(
L0)), then

set
(

L0
)
= set

(
du
(

du
(

A0
)
∧ du

(
B0
)))

= set
(

A0 ∨ B0
)

.

In the same way, if L1 = du
(

A1)∧ du
(
B1), then set

(
L1) = set

(
A1 ∨ B1) .

When we calculate Inf{dual (A) , dual (B)} , we should consider:

• If set
(
L1) ⊆ set

(
L0), then set

(
M1) ⊆ set

(
M0) and so:

sup {A, B} = dual
(

du
(

A0
)
∧ du

(
B0
)

, du
(

A1
)
∧ du

(
B1
))

=
(

du
(

du
(

A0
)
∧ du

(
B0
))

, du
(

du
(

A1
)
∧ du

(
B1
)))

=
(

A0 ∨ B0, A1 ∨ B1
)
=
(

M0, M1
)

.

• If set
(
L1) 6⊆ set

(
L0), then

sup {A, B} = dual
(

du
(

A0
)
∧ du

(
B0
)
∧ du

(
A1
)
∧ du

(
B1
)

, du
(

A1
)
∧ du

(
B1
))

=
(

du
(

du
(

A0
)
∧ du

(
B0
))

, du
(

du
(

A1
)
∧ du

(
B1
)))

=
(

A0 ∨ B0 ∨ A1 ∨ B1, A1 ∨ B1
)
=
(

M0 ∨M1, M1
)

.
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4. Interpretability of the Calculations

Definition 4. (Modal extension of a real function)
Let f : Rn −→ R be a real continuous function. We represent the modal interval trapezoidal fuzzy

extension associated with f by TI f ∗, and we define it over (X1, . . . , Xn) ∈ (TI∗ (R))n using the interval
extension f ∗ (see Sainz [24,31]) over the α−cuts of the MITFNs

(
Xα

1 , . . . , Xα
n
)

:

TI f ∗ (X1, . . . , Xn) = { f ∗ (Xα
1 , . . . , Xα

n) , α ∈ [0, 1]} .

As the α-cuts are modal intervals, we can express this modal interval trapezoidal fuzzy extension
using the meet and join operators, and splitting the components of Xα

1 , . . . , Xα
n into the proper ones:

Xα
jP

and the improper ones: Xα
jI

TI f ∗ (X1, . . . , Xn) =

 ∨
xjp∈set

(
Xα

jP

) ∧
xji
∈set

(
Xα

jI

) [ f
(

xjp , xji

)
, f
(

xjp , xji

)]
, α ∈ [0, 1]

 ,

which is equivalent to

TI f ∗ (X1, . . . , Xn) =

=


 min

xjp∈set
(

Xα
jP

) max
xji
∈set

(
Xα

jI

) f
(

xjp , xji

)
, max

xjp∈set
(

Xα
jP

) min
xji
∈set

(
Xα

jI

) f
(

xjp , xji

) , α ∈ [0, 1]

 .

Proposition 7. (Inclusivity of the modal extension)
If TI f ∗ is the modal extension of a real continuous function f : Rn −→ R, given X1, . . . , Xn, Y1, . . . , Yn ∈

TI∗ (R) such that ∀i ∈ {1, . . . , n}Xi ⊆ Yi, then:

TI f ∗ (X1, . . . , Xn) ⊆ TI f ∗ (Y1, . . . , Yn) .

Proof. We can express the inclusion of MITFNs by using the inclusion of the α-cuts, that is Xi ⊆ Yi ⇔
α ∈ [0, 1] , Xα

i ⊆ Yα
i , as the interval extension f ∗ is inclusive ([24] [Theorem 3.2.4]).

(TI f ∗ (X1, . . . , Xn))
α = f ∗ (Xα

1 , . . . , Xα
n) ⊆ f ∗ (Yα

1 , . . . , Yα
n ) = (TI f ∗ (Y1, . . . , Yn))

α .

Given a rational real continuous function f , if Xα
1 , . . . , Xα

n are the α-cuts of the classical trapezoidal
fuzzy numbers X1, . . . , Xn, then ∀α ∈ [0, 1], and the interval extension that we represent by
F
(
Xα

1 , . . . , Xα
n
)
= Yα associated with f can be interpreted as:

(∀x1 ∈ Xα
1 ) · · · (∀xn ∈ Xα

n) (∃y ∈ Yα) and f (x1, . . . , xn) = y (1)

or also as:
(∀y ∈ Yα) (∃x1 ∈ Xα

1 ) · · · (∃xn ∈ Xα
n) and f (x1, . . . , xn) = y (2)

because f is a continuous function and the value Yα corresponds to:[
min
xj∈Xα

j

f (x1, . . . , xn) , max
xj∈Xα

j

f (x1, . . . , xn)

]
. (3)

In most of the cases, ∀α ∈ [0, 1] , the exact values Yα = F
(
Xα

1 , . . . , Xα
n
)

that define the fuzzy number
Y = {Yα, α ∈ [0, 1]} are difficult to calculate. This is the reason why we often replace every rational
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operator in the function f by its corresponding intervalar operator. The result obtained with this
replacement is not the same interval Yα, but an interval Zα which conforms to:

F (Xα
1 , . . . , Xα

n) = Yα ⊆ Zα.

However, the only valid semantic application to this last calculus will be the interpretation given
in Equation (1)

(∀x1 ∈ Xα
1 ) · · · (∀xn ∈ Xα

n) (∃z ∈ Zα) and f (x1, . . . , xn) = z

and the semantic expressed in Equation (2) will not be applicable to this last calculus
F
(
Xα

1 , . . . , Xα
n
)
⊆ Zα.

Theorem 1. (Interpretability theorem)
Let TI f ∗ : (TI∗ (R))n −→ TI∗ (R) be the ∗-extension of a real continuous function f : Rn −→ R, and let

X = (X1, . . . , Xn) be a vector of MITFNs sorted by their modality, that is:

X = (A1, . . . , Ai︸ ︷︷ ︸
P−P

, B1, . . . , Bj︸ ︷︷ ︸
I−I

, C1, . . . , Ck︸ ︷︷ ︸
P−I

, D1, . . . , Dl︸ ︷︷ ︸
I−P

),

where i + j + k + l = n.
If Z = (Z′, Q1, Q2) ∈ TI∗ (R) conforms to TI f ∗ (X1, . . . , Xn) ⊆ Z and we consider γ0

q, δ0
r and α0

z the
transition modality values of the MITFNs Cq, Dr and Z, respectively, then, given α ∈ [0, 1] , it holds that:(

∀ (a1, . . . , ai) ∈ set (A1, . . . , Ai)
α) (∀(ck1 , . . . , ckξ

)
∈ set

(
Ck1 , . . . , Ckξ

)α)(
∀
(

dl1 , . . . , dlφ

)
∈ set

(
Dl1 , . . . , Dlφ

)α)
(Qz ∈ set (Zα))

(
∃
(
b1, . . . , bj

)
∈ set

(
B1, . . . , Bj

)α
)

(
∃
(

ck̃1
, . . . , ck̃µ

)
∈ set

(
Ck̃1

, . . . , Ck̃µ

)α)(
∃
(

dl̃1
, . . . , dl̃τ

)
∈ set

(
Dl̃1

, . . . , Dl̃τ

)α)
such that:

z = f
(
a1, . . . , ai, b1, . . . , bj, c1, . . . , ck, d1, . . . , dl

)
,

where
(

Ck1 , . . . , Ckξ

)α
are the α-cuts of C1, . . . , Ck whose interval modality is proper,

(
Ck̃1

, . . . , Ck̃µ

)α
are the

α-cuts of C1, . . . , Ck whose interval modality is improper,
(

Dl1 , . . . , Dlφ

)α
are the α-cuts of D1, . . . , Dl whose

interval modality is proper and
(

Dl̃1
, . . . , Dl̃τ

)α
are the α-cuts of D1, . . . , Dl whose interval modality is improper,

and Q = Q1 if α ≤ α0
z or Q = Q2 if α > α0

z .
Moreover, {

ck1 , . . . , ckξ
, ck̃1

, . . . , ck̃µ

}
= {c1, . . . , ck} ,{

dl1 , . . . , dlφ , dl̃1
, . . . , dl̃τ

}
= {d1, . . . , dl} ,

although the elements within these sets are not ordered in the same way.

Proof. The interval semantic theorem (Sainz [24]), states that if f ∗ is the ∗-semantic extension of a
real function f , and X is a vector of modal intervals expressed as X = (XP, XI) , where XP are the
proper components of X and XI are the improper components of X, if (Y, Q) ∈ I∗ (R) is such that
f ∗ (XP, XI) ⊆ Y, then:(

∀xp ∈ set (XP)
)
(Qy ∈ set (Y)) (∃xi ∈ set (XI)) such that y = f

(
xp, xi

)
.
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We will now apply this semantic theorem to the α-cuts of:

X = (A1, . . . , Ai︸ ︷︷ ︸
P−P

, B1, . . . , Bj︸ ︷︷ ︸
I−I

, C1, . . . , Ck︸ ︷︷ ︸
P−I

, D1, . . . , Dl︸ ︷︷ ︸
I−P

).

The modality of the α-cuts
(

Aα
1 , . . . , Aα

i
)

is always proper and the modality of the α-cuts(
Bα

1 , . . . , Bα
j

)
is always improper.

Let Ω be the set Ω =
{

γ0
q, δ0

r

}
q∈{1,...,k}
r∈{1,...,l}

∪
{

α0
z
}

. Above this set Ω we define inductively

θ1 = min Ω, θm = min Ω \
m−1
∪

s=1
{θs} , θk+l+1 = 1.

Then, given α ∈ [0, 1], there will exist p ∈ {1, . . . , k + l} such that α ∈
[
θp, θp+1

]
. For this value,

we must consider the modality of the α-cuts Cα
1 , . . . , Cα

k and Dα
1 , . . . , Dα

l , as some of these modalities
have changed with regard to the modalities of the zero-cuts C0

1, . . . , C0
k , D0

1, . . . , D0
l .

Thus, for this given α, there will be Ck1 , . . . , Ckξ
∈ {C1, . . . , Ck} in which the interval modality of

their α-cuts is proper, and there will be Ck̃1
, . . . , Ck̃µ

∈ {C1, . . . , Ck} in which the interval modality of
their α-cuts is improper. At the same time, there will exist Dl1 , . . . , Dlφ ∈ {D1, . . . , Dl} in which the
interval modality of their α-cuts is proper and Dl̃1

, . . . , Dl̃τ in which the interval modality of their α-cuts
is improper. The interval modality of Zα will be Q1 if α ≤ α0

z and Q2 if α > α0
z .

Corollary 1. Under the above conditions of Theorem 1, if α ∈ [0, min Ω], then:(
∀ (a1, . . . , ai) ∈ set (A1, . . . , Ai)

α) (∀ (c1, . . . , ck) ∈ set (C1, . . . , Ck)
α)

(Q1z ∈ set (Zα))
(
∃
(
b1, . . . , bj

)
∈ set

(
B1, . . . , Bj

)α
)

(
∃ (d1, . . . , dl) ∈ set (D1, . . . , Dl)

α) such that

z = f
(
a1, . . . , ai, b1, . . . , bj, c1, . . . , ck, d1, . . . , dl

)
.

Corollary 2. Under the above conditions of Theorem 1, if α ∈ [max Ω, 1], then:(
∀ (a1, . . . , ai) ∈ set (A1, . . . , Ai)

α) (∀ (d1, . . . , dl) ∈ set (D1, . . . , Dl)
α)

(Q2z ∈ set (Zα))
(
∃
(
b1, . . . , bj

)
∈ set

(
B1, . . . , Bj

)α
)

(
∃ (c1, . . . , ck) ∈ set (C1, . . . , Ck)

α) such that

z = f
(
a1, . . . , ai, b1, . . . , bj, c1, . . . , ck, d1, . . . , dl

)
.

Definition 5. Let � be a binary real rational operator. Given A, B ∈ TI∗ (Rn): the extension of the operator �
above the MITFNs A and B is represented by ⊗ and defined using the α-cuts of A and B as

(A⊗ B)α = Aα � Bα.

Definition 6. Let � be a binary real rational operator, and ⊗ its extension above the MITFNs. Given A, B ∈
TI∗ (Rn) if C is an MITFN, C is said to be interpretability compatible with the exact value A⊗ B if A⊗ B ⊆ C.

Often, the result of calculating
{
(A⊗ B)α , α ∈ [0, 1]

}
= {Aα � Bα, α ∈ [0, 1]}will not be an MITFN.

There are some situations that clearly reflect this, such as the multiplication, the quotient and rounding
results. This situation is well known when working with trapezoidal fuzzy numbers, in which not all
the rational operators are internal operators. To preserve the inclusion expressed in the above Theorem
1, that is, TI f ∗ (X1, . . . , Xn) ⊆ Z, we will have to find Z ∈ TI∗ (R) such that TI f ∗ (X1, . . . , Xn) ⊆ Z.
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The extension of a rational real operator � above two MITFNs A and B is always interpretability
compatible with the calculation of A⊗ B as the intervalar extension above the α-cuts Aα and Bα is
always inclusive.

Sometimes, rounding results do not constitute a very important subject. However, if we center
our study on the interpretability of the calculus, then when we evaluate A⊗ B we must find a modal
trapezoidal fuzzy number C such that C is interpretability compatible with A⊗ B.

We have just mentioned Equation (3) above, the difficulty of calculating the exact value[
min
xj∈Xα

j

f (x1, . . . , xn) , max
xj∈Xα

j

f (x1, . . . , xn)

]

of a rational real function f . The modal extension TI f ∗ (X1, . . . , Xn) of the real continuous function f
is even more difficult to evaluate. Thus, instead of calculating the modal extension TI f ∗ (X1, . . . , Xn),
we will evaluate a new function obtained by replacing every rational real operator in f by its
corresponding operator above MITFNs. Since, on many occasions, the result of calculating these
rational operators will not be an MITFN, this result will be transformed into an MITFN that is
interpretability compatible with the exact result.

What we have laid out leads us to evaluate an MITFN Z that contains the exact value. Of course,
this is too general and we should impose some other conditions.

Many methods to convert a non-trapezoidal fuzzy number to a trapezoidal one have been studied.
Many researches have studied how to find a fuzzy number that is the nearest to a non-trapezoidal
fuzzy number, which is related to the approximation of fuzzy numbers under different points of view.

Abbasbandy and Asady [32] used the metric distance between two fuzzy numbers to
introduce a trapezoidal approximation. Other research such as Grzegorzewski and Mrówka [33],
and Grzegorzewski [34] and Yeh [35,36] studied a nearest trapezoidal approximation preserving the
expected interval.

Veerani et al. [37] proposed a method to convert any fuzzy number to the nearest symmetric
trapezoidal fuzzy number approximation also preserving the expected interval.

Preserving ambiguity, value and width, Ban, Coroianu and Khastan [38] developed a general
method to study the L-R approximations of fuzzy numbers. In addition, some methods for
ranking fuzzy numbers using distances have been developed [39,40], but none of those trapezoidal
approximations is useful to us because, although they preserve certain properties, they do not impose
preservation of inclusivity and so they are not valid for semantic interpretations.

When possible, we will apply the optimal external inclusion introduced by Wagen [41], although,
in some special cases, it may be necessary to add some further conditions, referring to the inclusion of
the core of the result.

Example 1. The fuzzy trapezoidal equation A + X = B whose solution is X = B− dual (A) does not always
have a solution in the classical sense. However, using MITFNs, many of these equations not only have a solution,
but the solution can be semantically interpreted as well.

Let us take the MITFN A = ([0, 20] , [7, 12]) and B = ([1, 30] , [15, 17]). Both A and B are proper
trapezoidal fuzzy numbers, that is, trapezoidal fuzzy numbers in the classical sense. The solution of
the equation

([0, 20] , [7, 12]) + X = ([1, 30] , [15, 17])

is
X = ([1, 30] , [15, 17])− dual ([0, 20] , [7, 12]) = ([1, 10] , [8, 5]) .

However, X = ([1, 10] , [8, 5]) is an MITFNI
P whose transition modality value is α0

X = 3
4 .

Thus, the interpretation is:
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• ∀α ∈
[
0, 3

4
]

(∀a ∈ set (Aα)) (∀x ∈ set (Xα)) (∃b ∈ set (Bα)) a + x = b;
• ∀α ∈

[ 3
4 , 1
]

(∀a ∈ set (Aα)) (∃b ∈ set (Bα)) (∃x ∈ set (Xα)) a + x = b.

Next, let us consider the fuzzy equation A + X = B, where A is the MITFNP
P, A = ([2, 9] , [6, 7])

and B is the MITFNP
I , B = ([15, 10] , [9, 14]) . The solution for X is:

X = B− dual (A) = ([15, 10] , [9, 14])− dual ([2, 9] , [6, 7]) = ([13, 1] , [3, 7]) ,

which is an MITFNP
I (see Figure 6). The transition modality value for X is α0

X = 3
4 = 0.75 and the

transition modality value for B is α0
B = 1

2 = 0.5; thus, the interpretation of the calculus A + X = B is:

• ∀α ∈ [0, 0.5] (∀a ∈ set (Aα)) (∀b ∈ set (Bα)) (∃x ∈ set (Xα)) a + x = b;
• ∀α ∈ [0.5, 0.75] (∀a ∈ set (Aα)) (∃b ∈ set (Bα)) (∃x ∈ set (Xα)) a + x = b;
• ∀α ∈ [0.75, 1] (∀a ∈ set (Aα)) (∀x ∈ set (Xα)) (∃b ∈ set (Bα)) a + x = b.

Figure 6. Graphical solution of the equation A + X = B.

5. Conclusions

In this paper, we have used the lattice structure of modal intervals to develop the lattice completion
of trapezoidal fuzzy numbers, with regard to the inclusion relation. We have named the set obtained
with this completion MITFNs. The elements of this new set have been defined allowing that their
α-cuts can be modal intervals and also allowing that the support modality and the core modality are
not the same. This reticular completion has not simply been left in a theoretical study of the inclusion
relationship between modal trapezoidal fuzzy numbers, but the calculation of the extensions of real
continuous functions has also been addressed.

Moreover, we have not simply focused on the calculation of the real extensions on MITFNs, but
we have also used the semantic theorem of modal interval analysis so as to interpret the calculus to
the α-cuts of the extensions. We are certain that knowing the meaning of a calculation is even more
important than the calculation itself.

With the study presented in this paper, we have provided a new tool for fuzzy numbers. We have
introduced an extension of traditional trapezoidal fuzzy numbers and we have solved a problem that
had no solution in the set of traditional trapezoidal fuzzy numbers, while also providing the semantic
interpretation of the result obtained.

Our future lines of research are twofold; on the one hand, further theoretical research will be
conducted, and, on the other, some practical applications of our theoretical studies will be developed.

Regarding theoretical studies, we believe it is interesting to look for and implement algorithms
that allow us to obtain a good inclusive approach to the semantic extension TI f ∗. Thus, we would
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reduce the typical enlargement of the interval results. This research should be supplemented with the
study of optimality in the calculus of rational functions, understanding that optimality, in the sense of
studying when a result obtained by replacing each of the rational operators in the real function f by
the corresponding fuzzy operator, is the best possible result with regard to the inclusion relationship.

From an applied perspective, the application of MITFNs to the field of MultiCriteria Decision
Making (MCDM) is also worth exploring, as there are many methods related to multicriteria
analysis that use trapezoidal fuzzy numbers that could be extended to the MITFNs. Among these
methods, we will pay special attention to the following: the CODAS method (Combinative
Distance-based Assessment) [42], QUALIFLEX method (QUALItative FLEXible) [43], ELECTRE
method (ELimination Et Choix Traduisant la REalité) [44,45], VIKOR method (VlseKriterijumska
Optimizacija I Kompromisno Resenje) [46,47], MULTIMOORA method (Multiple Objective
Optimization on the basis of Ratio Analysis) [48], EAMRIT Method (Evaluation by an Area-based
Method of Ranking Interval Type-2 Fuzzy sets) [49], TOPSIS (Technique for Order of Preference
by Similarity to Ideal Solution [50], EDAS Method (Evaluation based on Distance from Average
Solution) [51], AFRAW Method (Assessment-based on Fuzzy Ranking and Aggregated Weights) [52],
TEDE Method (Total Effective Dose Equivalent) [53], and WASPAS (Weighted Aggregated Sum Product
ASsessment) [54]. The extension of these methods to the field of MITFNs can provide new tools, from
the point of view of both the calculations, as well as from the interpretative point of view.
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