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Abstract: A graph is chordal if every induced cycle has exactly three edges. A vertex separator
set in a graph is a set of vertices that disconnects two vertices. A graph is δ-hyperbolic if every
geodesic triangle is δ-thin. In this paper, we study the relation between vertex separator sets, certain
chordality properties that generalize being chordal and the hyperbolicity of the graph. We also give a
characterization of being quasi-isometric to a tree in terms of chordality and prove that this condition
also characterizes being hyperbolic, when restricted to triangles, and having stable geodesics, when
restricted to bigons.
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1. Introduction

M. Gromov defined in [1] his notion of hyperbolicity for the study of finitely-generated groups.
Since then, Gromov hyperbolic spaces have been studied from a geometric point of view providing a
wide variety of results and making them an important subclass of metric spaces [2–6]. In particular,
Gromov hyperbolicity is an important property to be studied in graphs [7–25]. Gromov hyperbolicity
has found also interesting applications in phylogenetics [26,27], complex networks [28–31], virus
propagation and secure transmission of information [32,33] and congestion in hyperbolic networks [34].

Given a metric space (X, d) and two points x, y ∈ X, a geodesic from x to y is an isometry,
γ : [0, l]→ X, from a closed interval [0, l] of the real line to X such that γ(0) = x and γ(l) = y. We will
make no distinction between the geodesic and its image. X is a geodesic metric space if for every pair
of points x, y ∈ X, there is some geodesic joining x to y. Although geodesics need not be unique, for
convenience, [xy] will denote any such geodesic.

Herein, we consider the graphs always endowed with the usual length metric where every edge
has length one. Thus, for any pair of points in G, the distance between them will be the length of the
shortest path in G joining them. Notice that we are considering also the interior points of the edges as
points in G. Therefore, G with the length metric is a geodesic metric space. Let us also assume that the
graphs are connected.

Gromov hyperbolicity, in the context of geodesic metric spaces, can be characterized by the Rips
condition as follows. If X is a geodesic metric space and x1, x2, x3 ∈ X, the union of three geodesics
[x1x2], [x2x3] and [x3x1] is called a geodesic triangle and will be denoted by T = {x1, x2, x3}. If two
vertices are identical then it is called a bigon. A triangle T is δ-thin if any side of T is contained in
the δ-neighborhood of the union of the two other sides. A geodesic metric space X is δ-hyperbolic if
every geodesic triangle is δ-thin. By δ(X), we denote the sharp hyperbolicity constant of X, this is,
δ(X) := inf{δ | every triangle in X is δ-thin}. A metric space X is hyperbolic if it is δ-hyperbolic for
some δ ≥ 0. There exist other equivalent definitions of Gromov hyperbolicity. See [4].

A graph G is said to be chordal if every induced cycle has exactly three edges. Chordal graphs
form an important subclass of perfect graphs, and as is pointed out in [35] (see the further references
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therein), they have applications in scheduling, Gaussian elimination on sparse matrices and relational
database systems. Furthermore, chordal graphs have applications in computer science; see [36]. In
[37], it is proved that chordal graphs are hyperbolic. Wu and Zhang extended this result in [38]
proving that k-chordal graphs are hyperbolic where a graph is k-chordal if induced cycles have at
most k edges. In [39], the authors defined some more natural generalizations of being chordal as being
(k, m)-edge-chordal and (k, k

2 )-path-chordal proving that (k, m)-edge-chordal graphs are hyperbolic
and that hyperbolic graphs are (k, k

2 )-path-chordal. In [40], we continue this work and define being
ε-densely (k, m)-path-chordal and ε-densely k-path-chordal. In [39,40], edges were allowed to have
any finite length, but in this work, we assume that all edges have length one. Therefore, the distinction
between edge and path is unnecessary, and these properties are referred as (k, m)-chordal and ε-densely
k-chordal. The main results in [40] (with this simplified notation) state that:

(k, 1)-chordal⇒ ε-densely (k, m)-chordal⇒ δ-hyperbolic

and:
δ-hyperbolic⇒ ε-densely k-chordal⇒ k-chordal.

We also proved that the converse is false for all these implications, giving counterexamples, and
that a graph is hyperbolic if and only if certain chordality property is satisfied on the triangles.

Herein, we continue this study analyzing some relations between these properties and vertex
separators. There are some well-known relations between chordality and vertex separators.
For example, Dirac proved in [41] that a graph is chordal if and only if every minimal vertex separator
is complete. Furthermore, the set of minimal vertex separators of a chordal graph allows one to
decompose the graph into subgraphs that are again chordal, and the process can be continued until
the subgraphs are cliques [35]. Generalized versions of chordality are also related to minimal vertex
separator [42]. For further results about chordality and vertex separators, see also [36] and the
references therein. For an important application of minimal vertex separators in machine learning,
see [43]. Our main results are the following.

In Section 2, we prove that being (k, 1)-chordal implies that every minimal vertex separator
has a uniformly-bounded diameter. We also obtain that, for uniform graphs, if every minimal
vertex separator has a uniformly-bounded diameter, then the graph is ε-densely (k, m)-chordal
and therefore hyperbolic.

Section 3 studies the relation between generalized chordality and the bottleneck property, which
is an important property on hyperbolic geodesic spaces. J. Manning defined it in [44] and proved that
a geodesic metric space satisfies bottleneck property, (BP), if and only if it is quasi-isometric to a tree.
This characterization has proven to be very useful; see for example [45]. For some other relations with
(BP), see [46,47] and the references therein.

Here, we prove that a graph satisfies (BP) if and only if it is ε-densely (k, m)-chordal, providing
a characterization of being quasi-isometric to a tree in terms of chordality. Furthermore, the
characterization of hyperbolicity from [40] is re-written obtaining that a graph is hyperbolic if and only
if it is ε-densely (k, m)-chordal on the cycles that are geodesic triangles.

Furthermore, we prove that if G is a uniform graph and every minimal vertex separator has a
uniformly-bounded diameter, then the graph satisfies (BP), and therefore, it is quasi-isometric to a tree.
Finally, we prove directly that being (k, 1)-chordal implies (BP) .

In Section 4, we generalize the concept of vertex separators defining vertex r-separators. It is
proven that if, in a uniform graph, all minimal vertex r-separators have a uniformly-bounded diameter,
then the graph is ε-densely (k, m)-chordal and, therefore, quasi-isometric to a tree.

Section 5 introduces neighbor separators, generalizing also vertex separators. This concept allows
one to characterize (BP) in terms of having a neighbor-separator vertex.

In Section 6, we define neighbor obstructors. We use them to characterize the graphs where
geodesics between vertices are stable and to prove that geodesics between vertices are stable if and
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only if the graph is ε-densely (k, m)-chordal on the bigons defined by two vertices. We also prove that,
in general, geodesics are stable if and only if the graph is ε-densely (k, m)-chordal on the bigons.

2. Generalized Chordality and Minimal Vertex Separators

We are assuming that every path is finite and simple, that is, it has finite length and distinct
vertices. By a cycle, we mean a simple closed curve, that is, a path where all the vertices are different
except from the first one and the last one, which are the same.

Let γ be a path or a cycle. A shortcut in γ is a path σ joining two vertices p, q in γ such that
L(σ) < dγ(p, q) where L(σ) denotes the length of the path σ and dγ denotes the length metric on γ.
A shortcut σ in γ is strict if σ ∩ γ = {p, q}. In this case, we say that p, q are shortcut vertices in γ

associated with σ. A shortcut with length k is called a k-shortcut.

Remark 1. Suppose σ is a k-shortcut in a cycle C joining two vertices, p, q. Then, σ contains a strict shortcut,
and there are two shortcut vertices p′, q′ such that dC(p, p′), dC(q, q′) < k.

Definition 1. A metric graph G is k-chordal if for any cycle C in G with L(C) ≥ k, there exists a shortcut
σ of C.

Definition 2. A metric graph G is (k, m)-chordal if for any cycle C in G with L(C) ≥ k, there exists a shortcut
σ of C such that L(σ) ≤ m. Notice that being chordal is equivalent to being (4, 1)-chordal.

Remark 2. Notice that in the definitions of k-chordal and (k, m)-chordal, it makes no sense to consider k ≤ 3
nor k < 2m. Therefore, let us assume always that k ≥ 4 and k ≥ 2m.

Definition 3. A subset S ⊂ V(G) is a separator if G \ S has at least two connected components. Two vertices
a and b are separated by S if they are in different connected components of G \ S. If a and b are two vertices
separated by S, then S is said to be an ab-separator.

Let us call a path joining the vertices a, b an ab-path.

Definition 4. S is a minimal separator if no proper subset of S is a separator. Similarly, S is a minimal
ab-separator if no proper subset of S separates a and b. Finally, S is a minimal vertex separator if it is a minimal
separator for some pair of vertices.

Note that being a minimal vertex separator does not imply being a minimal separator. See Figure 1.

ba

d

e

c

f

Figure 1. The set {d, e} is a minimal ab-separator, but it is not a minimal separator.

Remark 3. Let S be a minimal ab-separator, and let Ga, Gb be the connected components of G \ S containing a
and b, respectively. Then, notice that every vertex v in S is adjacent to both Ga and Gb. Otherwise, S \ {v} is
an ab-separator.
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Proposition 1. If G is (k, 1)-chordal, then every minimal vertex separator has a diameter less than k
2 .

Proof. Let S be a minimal ab-separator, and suppose that diam(S) ≥ k
2 . Let x, y ∈ S such that

d(x, y) ≥ k
2 . Then, there are vertices a1, an in Ga adjacent to x and y respectively, and since Ga is

connected, there is a path γ1 = {x, a1, ..., an, y} with ai ∈ Ga ∀1 ≤ i ≤ n. Similarly, there exist vertices
b1, bm in Gb adjacent to y and x respectively and a path γ2 = {y, b1, ..., bm, x} with bi ∈ Gb ∀1 ≤ i ≤ m.
Moreover, let us assume that γ1, γ2 have minimal length. Then, C = γ1 ∪ γ2 defines a cycle in G, and
since d(x, y) ≥ k

2 , L(C) ≥ k. Then, since G is (k, 1)-chordal, there is a shortcut σ in C with L(σ) = 1.
However, since S is an ab-separator, vertices in Ga and Gb cannot be adjacent, and since γ1, γ2 are
supposed minimal, there is no possible one-shortcut on γi for i = 1, 2. Thus, x, y need to be adjacent,
leading to a contradiction.

The converse is not true.

Example 1. Consider the graph G0 whose vertices are V(G0) = {n ∈ N | n ≥ 3} and edges joining consecutive
numbers. Now, let us define the graph G such that for every n ≥ 3, there is cycle Cn whose vertices are all
adjacent to the vertex n in G0. See Figure 2.

4 5 63

Figure 2. Every minimal vertex separator has diameter at most two, but the graph is not (k, 1)-chordal
for any k > 0.

It is trivial to check that G is not (k, 1)-chordal for any k > 0 since the cycles Cn have no one-shortcut
in G.

Let us see that every minimal vertex separator has diameter at most two. Consider any pair of non-adjacent
vertices a, b in G.

If a, b ∈ Cn for some n, then every vertex separator S must contain the vertex n and at least two vertices
x1, x2 in Cn. If S is minimal, then S = {n, x1, x2} and diam(S) = 2.

If a, b /∈ Cn for any n, then the geodesic [ab] is contained in G0. Therefore, any ab-separator must contain
some vertex m ∈ [ab] and m separates a and b. Thus, if S is minimal, then S is just a vertex and diam(S) = 0.

Remark 4. Given two vertices a, b, a path γ joining them and a vertex v ∈ γ distinct from a, b, there may not
exist a minimal ab-separator containing {v}. Consider, for example four vertices x0, x1, x2, x3 with edges xi−1xi
for every 1 ≤ i ≤ 3 and an edge x0x2. Then, there is no minimal x0x3-separator containing x1.

Given a graph G and a subgraph, A ⊂ G, let us denote V(A) the vertices in A.

Definition 5. A graph Γ is said to be µ-uniform if each vertex p of V has at most µ neighbors, i.e.,

sup
{
|N(p)|

∣∣ p ∈ V(Γ)
}
≤ µ.

If a graph Γ is µ-uniform for some constant µ, we say that Γ is uniform.

For any vertex v ∈ V(G) and any constant ε > 0, let us denote:

Sε(v) := {w ∈ V(G) | d(v, w) = ε},

Bε(v) := {w ∈ V(G) | d(v, w) < ε},
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Nε(v) := {w ∈ V(G) | d(v, w) ≤ ε}.

Lemma 1. Let G be a uniform graph. Given two vertices a, b, a geodesic [ab] joining them and a vertex
v0 ∈ [ab] distinct from a, b, then there is a minimal ab-separator containing {v0}.

Proof. Suppose any geodesic [ab] and v0 ∈ [ab] with 0 < d(a, v0) < d(a, b), and define ε = d(a, v0).
Since G is uniform, for every vertex v ∈ G, the set S0 := S(v, ε) is finite for every ε ∈ N. It is immediate
to check that S0 is an ab-separator and [ab] ∩ S0 = {v0}. Since S0 is finite, then there is a minimal
subset S ⊂ S0 that is also an ab-separator. Finally, since [ab] ∩ S0 = {v0}, v0 ∈ S.

Let us recall that a graph Γ is countable if |V(Γ)| ≤ ℵ0, i.e., if it has a countable number of vertices.

Remark 5. In the case of countable graphs and using the axiom of choice, Lemma 1 can be slightly improved.
See Lemma 2 below.

Lemma 2. Let G be a uniform countable graph. Given two vertices a, b, a path γ0 joining them and a
vertex v0 ∈ γ0 distinct from a, b, then either there is a one-shortcut in γ0 or there is a minimal ab-separator
containing {v0}.

Proof. If there is no ab-path in G \ {v0}, it suffices to consider S := {v0}. If there is an ab-path γ1

in G \ {v0} such that V(γ1) ⊂ V(γ0), then there is a one-shortcut in γ0. Thus, let us suppose that
every ab-path γ in G \ {v0} contains a vertex, which is not in γ0, and that there is at least one of these
ab-paths.

Since |V(G)| is countable and G is uniform, there exist at most ℵk
0 ab-paths of length k.

Then, there exists at most a countable number (a countable union of countable sets) of ab-paths,
{γi}i∈I⊂N in G \ {v0} where I = {1, . . . , m} if there exist exactly m such paths or I = N if the number
of those paths is not finite.

For every i ∈ I, consider some vertex xi in V(γi) \V(γ0), and let X = {xi}i∈I . Now, let S0 := X,
and for every 0 < i ∈ I, define:

Si =

 Si−1 \ {xi} if V(γj) ∩
(

Si−1 \ {xi}
)
6= ∅ for every j ≤ i,

Si−1 if V(γj) ∩
(

Si−1 \ {xi}
)
= ∅ for some j ≤ i.

Notice that for every i, Si ⊂ Si−1, and let S := ∩i∈ISi.

Claim: S is a minimal ab-separator containing v0.

First, let us see that S is an ab-separator. Consider any ab-path, γj. Suppose V(γj) ∩ X =

{xj1 , xj2 , ..., xjk}, and assume jl < jk for every l < k. Then, it is trivial to check that there exist some
vertex xjr ∈ Sjk ∩V(γj) and, by construction, xjr ∈ S.

To check that S is minimal, first notice that, since xi /∈ V(γ0) for every i ∈ I, V(γ0)∩ (S\{v0}) = ∅
and S\{v0} is not an ab-separator. Now, suppose that there is some vertex xj ∈ S with j ∈ I
such that S \ {xj} is also an ab-separator. Since xj ∈ S ⊂ Sj, there is some k ≤ j such that

V(γk) ∩
(

Sj−1 \ {xj}
)
= ∅ and, in particular, V(γk) ∩

(
S \ {xj}

)
= ∅, leading to a contradiction.

Thus, S is a minimal ab-separator containing v0.

Given a metric space (X, d) and any ε > 0, a subset A ⊂ X is ε-dense if for every x ∈ X, there
exists some a ∈ A such that d(a, x) < ε.

Definition 6. A metric graph (G, d) is ε-densely k-chordal if for every cycle C with length L(C) ≥ k, there exist
strict shortcuts σ1, ..., σr such that their associated shortcut vertices define an ε-dense subset in (C, dC).



Symmetry 2017, 10, 199 6 of 17

Definition 7. A graph (G, d) is ε-densely (k, m)-chordal if for every cycle C with length L(C) ≥ k, there exist
strict shortcuts σ1, ..., σr with L(σi) ≤ m ∀ i and such that their associated shortcut vertices define an ε-dense
subset in (C, dC).

Theorem 1. Let G be a uniform graph. If every minimal vertex separator in G has diameter at most m, then G
is (m + ε)-densely (4m, 2m− 1)-chordal for any ε > 1

2 .

Proof. Let C be any cycle with L(C) ≥ 4m. Let v be any vertex in C, and let a, b be the two vertices
in C such that dC(a, v) = m = dC(v, b). Let γ0 be the ab-path in C containing v. Then, by Lemma 1,
either there is a shortcut in γ0 or there is a minimal ab-separator containing v.

If there is a shortcut in γ0, then it has length at most 2m− 1. Therefore, it defines a shortcut in C
with an associated shortcut vertex v′ such that dC(v, v′) ≤ m. Suppose, otherwise, that S is a minimal
ab-separator containing v. By hypothesis, diam(S) ≤ m. Let γ1 be the ab-path in C not containing v.
Since S is an ab-separator, there is some vertex w ∈ S ∩ V(γ1) and d(v, w) ≤ m < dC(v, w). Hence,
there is an m-shortcut in C joining v to w and, by Remark 1, an associated shortcut vertex v′ such that
dC(v, v′) < m.

Thus, for every vertex v, there is a shortcut vertex v′ such that dC(v, v′) ≤ m, and therefore,
shortcut vertices define a (m + ε)-dense subset in C for any ε > 1

2 .

If the graph is countable, then we can improve quantitatively this result.

Theorem 2. Let G be a uniform countable graph. If every minimal vertex separator in G has diameter at
most m, then G is (m + ε)-densely (2m + 2, m)-chordal for any ε > 1

2 .

Proof. Let C be any cycle with L(C) ≥ 2m + 2. Let v be any vertex in C, and let a, b be the two vertices
in C such that dC(a, v) = m = dC(v, b). Let γ0 be the ab-path in C containing v. Then, by Lemma 2,
either there is a one-shortcut in γ0 or there is a minimal ab-separator containing v.

If there is a one-shortcut in γ0, then, in particular, there is an associated shortcut vertex v′ such
that dC(v, v′) ≤ m. Suppose, otherwise, that S is a minimal ab-separator containing v. By hypothesis,
diam(S) ≤ m. Let γ1 be the ab-path in C not containing v. Since S is an ab-separator, there is some
vertex w ∈ S ∩V(γ1) and d(v, w) ≤ m < dC(v, w). Hence, there is an m-shortcut in C joining v to w
and, by Remark 1, an associated shortcut vertex v′ such that dC(v, v′) < m.

Thus, for every vertex v, there is a shortcut vertex v′ such that dC(v, v′) ≤ m, and therefore,
shortcut vertices define a (m + ε)-dense subset in C for any ε > 1

2 .

Let us recall the following result:

Theorem 3. (Theorem 4 [40]). If G is ε-densely (k, m)-chordal, then G is hyperbolic. Moreover,
δ(G) ≤ max{ k

4 , ε + m}.

Therefore, from Theorems 1–3, we obtain:

Corollary 1. Let G be a uniform graph. If every minimal vertex separator in G has diameter at most m, then G
is hyperbolic. Moreover, δ(G) ≤ 3m− 1

2 .

Corollary 2. Let G be a uniform countable graph. If every minimal vertex separator in G has diameter at
most m, then G is hyperbolic. Moreover, δ(G) ≤ 2m + 1

2 .

3. Bottleneck Property

Let us recall the following definition from [44]:
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Definition 8. A geodesic metric space (X, d) satisfies the bottleneck property (BP) if there exists some constant
∆ > 0 so that given any two distinct points x, y ∈ X and a midpoint z such that d(x, z) = d(z, y) = 1

2 d(x, y),
then every xy-path intersects N∆(z).

Remark 6. This definition, although not being exactly the same, is equivalent to Manning’s. In the original
definition, J. Manning asked only for the existence of such a midpoint for any pair of points x, y. However,
by Theorem 4 below, (BP) implies that the space is quasi-isometric to a tree and therefore δ-hyperbolic. Hence,
it is an easy exercise in hyperbolic spaces to prove that if there is always a midpoint z such that every xy-path
intersects N∆(z), then this condition holds in general for any midpoint, possibly with a different constant
depending only on ∆ and δ. See, for example, Chapter 2, Proposition 25 in [5].

Definition 9. A graph G satisfies (BP) on the vertices if there exists some constant ∆′ > 0 so that given
any two distinct vertices v, w ∈ V(G) and a midpoint c such that d(v, c) = d(c, w) = 1

2 d(v, w), then every
vw-path intersects N∆′(c).

Proposition 2. A graph G satisfies (BP) if and only if it satisfies (BP) on the vertices. Moreover, if G satisfies
(BP) on the vertices with constant ∆′, it satisfies (BP) with ∆ = ∆′ + 3

2 .

Proof. The only if condition is trivial. Let us see that it suffices to check the property on the pairs
of vertices.

Consider any pair of points x, y ∈ G, and let z be a midpoint of a geodesic [xy]. If d(x, y) ≤ 2,
then (BP) is trivial with ∆ = 1. Suppose d(x, y) > 2. Then, the geodesic [xy] is a path
xv1 ∪ v1v2 ∪ · · · ∪ vky with v1, . . . , vk ∈ V(G) and k ≥ 2. Let v = x if x is a vertex and v = v1

otherwise, and let w = y if y is a vertex and w = vk otherwise. Then, there is a geodesic [vw] ⊂ [xy]
(possibly equal), and its midpoint, c, satisfies that d(c, z) ≤ 1

2 .
Consider any xy-path γ, and let us define a vw-path γ′ as follows: First, if v ∈ γ, let γ0 := γ \ [xv]

and if v /∈ γ, let γ0 := [vx] ∪ γ.
Then, if y 6= w and w ∈ γ, let γ′ := γ0 \ [yw] and if y 6= w and w /∈ γ, let γ′ := [wy] ∪ γ0.

By hypothesis, γ′ passes through N∆′(c). Since d(a, v), d(b, w) ≤ 1 and d(c, z) ≤ 1
2 , it is immediate to

check that γ passes through N∆′+ 3
2
(z).

A map between metric spaces, f : (X, dX)→ (Y, dY), is said to be a quasi-isometric embedding if
there are constants λ ≥ 1 and C > 0 such that ∀x, x′ ∈ X,

1
λ

dX(x, x′)− C ≤ dY( f (x), f (x′)) ≤ λdX(x, x′) + C.

If there is a constant D > 0 such that ∀y ∈ Y, d(y, f (X)) ≤ D, then f is a quasi-isometry, and X, Y
are quasi-isometric.

Theorem 4. (Theorem 4.6 [44]). A geodesic metric space (X, d) is quasi-isometric to a tree if and only if it
satisfies (BP).

Theorem 5. A graph G satisfies (BP) if and only if it is ε-densely (k, m)-chordal.

Proof. Suppose that G satisfies (BP) with parameter ∆ and consider any cycle C with L(C) ≥ 2∆ + 4.
Consider any vertex x ∈ C and the two vertices a, b such that dC(a, x) = dC(x, b) = ∆ + 1.
Thus, C defines two ab-paths, γ1, γ2. Let us assume that x ∈ γ1. If γ1 is not geodesic, then there is
a shortcut with length at most 2∆ + 1 and a shortcut vertex in N∆+1(x). Otherwise, since G satisfies
(BP) with parameter ∆, there is a vertex y in γ2 such that d(x, y) ≤ ∆. Since dC(x, y) > ∆ and by
Remark 1, there is a shortcut vertex z such that dC(x, z) < ∆. Therefore, G is (∆ + 1 + ε)-densely
(4∆ + 4, 2∆ + 1)-chordal for any ε > 1

2 .
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Suppose that G is ε-densely (k, m)-chordal and it does not satisfy (BP) with parameter
∆ = max{ k

4 , ε + m}. Then, there are two points, a, b, a geodesic [ab] with midpoint c and a path γ

such that γ ∩ N∆(c) = ∅. Then, it is immediate to check that there exist two points a′, b′ ∈ γ ∩ [ab]
such that the restriction of [ab], [a′b′], and the restriction of γ, γ′, joining a′ to b′ define a cycle C
with L(C) > k. Since G is ε-densely (k, m)-chordal, there is a strict shortcut σ with L(σ) ≤ m with
an associated shortcut vertex w such that dC(c, w) < ε < ∆. Therefore, w ∈ [a′b′], and since [a′b′] is
geodesic, the shortcut must join w to a vertex z in γ′ ⊂ γ. Hence, d(z, c) < ε + m and γ ∩ N∆(c) 6= ∅,
leading to a contradiction.

Corollary 3. A graph G is quasi-isometric to a tree if and only if it is ε-densely (k, m)-chordal.

Definition 10. Given any family F of cycles, a metric graph (G, d) is ε-densely (k, m)-chordal on F if for
every C ∈ F with length L(C) ≥ k, there exist strict shortcuts σ1, ..., σr with L(σi) ≤ m ∀ i and such that their
associated shortcut vertices define an ε-dense subset in (C, dC).

Let us recall the following:

Lemma 3. (Lemma 2.1 [48]). Let X be a geodesic metric space. If every geodesic triangle in X which is a cycle
is δ-thin, then X is δ-hyperbolic.

Let T be the family of cycles that are geodesic triangles. It is immediate to check that, using
Lemma 3, the proof of Theorem 13 in [40] can be trivially re-written (we include it for completeness) to
obtain the following:

Theorem 6. G is δ-hyperbolic if and only if G is ε-densely (k, m)-chordal on T .

Proof. Suppose that G is ε-densely (k, m)-path-chordal on T . Let us see that δ(G) ≤ max{ k
4 , ε + m}.

Consider any cycle that is a geodesic triangle T = {x, y, z}. If L(T) < k, it follows that every side of
the triangle has length at most k

2 . Therefore, the hyperbolic constant is at most k
4 . Then, let L(T) ≥ k,

and let us prove that T is (ε + m)-thin. Consider any point p ∈ T, and let us assume that p ∈ [xy].
If d(p, x) < ε + m or d(p, y) < ε + m, we are done. Otherwise, there is a shortcut vertex xi such that
d(xi, p) < ε and a shortcut σi, with xi ∈ σi and L(σi) ≤ m. Since [xy] is a geodesic, σi does not connect
two points in [xy] and d(p, [xz] ∪ [yz]) < ε + m. Then, by Lemma 3, δ(G) ≤ max{ k

4 , ε + m}.
Suppose that G is δ-hyperbolic, and consider any cycle that is a geodesic triangle T = {x, y, z}

with L(T) ≥ 9δ. Let p ∈ T, and let us assume, with no loss of generality, that p ∈ [xy]. Since G is
δ-hyperbolic, d(p, [xz] ∪ [yz]) ≤ δ. If d(p, x), d(p, y) > δ, then there is a path γ with L(γ) ≤ δ joining
p to [xz] ∪ [yz]. In particular, there is a shortcut σ ⊂ γ with L(σ) ≤ L(γ) ≤ δ joining some shortcut
vertex p′ ∈ [xy] with d(p, p′) < δ to [xz] ∪ [yz]. Therefore, if L([xy]) > 2δ, for every point q ∈ [xy],
there is a shortcut vertex q′ ∈ [xy] such that dT(q, q′) < 2δ + 1 associated with a shortcut with length at
most δ. Since L(T) ≥ 9δ, by triangle inequality, there is at most one side of the triangle with length at
most 2δ. Then, for every point p in the triangle, there is a shortcut vertex p′ such that dT(p, p′) < 3δ + 1
associated with a shortcut with length at most δ. Thus, it suffices to consider ε = 3δ + 1, k = 9δ

and m = δ.

Remark 7. Notice that in Corollary 3, we obtain that a graph G is quasi-isometric to a tree if and only if all the
cycles satisfy a certain property, and Theorem 6 states that the same property, restricted to the cycles that are
geodesic triangles, characterizes being hyperbolic.

The following theorem can be also obtained as a corollary of Theorems 1 and 5. However,
the direct proof provides a better bound for the parameter ∆.
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Theorem 7. Given a uniform graph G, if every minimal vertex separator has diameter at most m, then G
satisfies (BP) (i.e., G is quasi-isometric to a tree). Moreover, it suffices to take ∆ = m + 2.

Proof. If m = 0, it is trivial to see that G is a tree, and it satisfies (BP) with ∆ = 0. Assume m ≥ 1.
By Proposition 2, it suffices to check the property for pairs of vertices. Thus, consider any pair of
vertices a, b ∈ V(G), and let c be a midpoint of a geodesic [ab].

If d(a, b) ≤ 2, then (BP) is trivial with ∆′ = 1. Suppose d(a, b) ≥ 3. Then, there is some vertex v0

in the interior of [ab] with d(v0, c) ≤ 1
2 . By Lemma 1, since [ab] is a geodesic, there exists a minimal

ab-separator S containing v0. Thus, every ab-path contains a vertex in S, and since diam(S) ≤ m,
every ab-path passes through Nm(v0) ⊂ Nm+ 1

2
(c). Hence, (BP) is satisfied on the vertices with

∆′ = m + 1
2 , and by Proposition 2, G satisfies (BP) with ∆ = m + 2.

The following example shows that the converse is not true.

Example 2. Let G be the graph whose vertices are all the pairs (a, b) with either a ∈ N and b = 0 or
4n + 1 ≤ a ≤ 4n + 3 and 1 ≤ b ≤ n for every n ∈ N, and such that (a, b) is adjacent to (a′, b′) if and only if
either b = b′ and |a′ − a| = 1 or a = a′ and |b′ − b| = 1. See Figure 3.

Now, notice that Sn = {4n + 2, j}0≤j≤n defines a minimal (4n, 0)(4n + 4, 0)-separator with diameter
n for every n ∈ N. Therefore, G has minimal ab-separators arbitrarily big. However, to see that G satisfies
(BP), consider the map f : V(G)→ V(G) such that f (i, j) = (4n + 2, j) for every 4n + 1 ≤ i ≤ 4n + 3 and
1 ≤ j ≤ n and the identity on the rest of the vertices. It is trivial to check that f extends to a (1, 2)-quasi-isometry
on G where the image is a tree. Therefore, G is quasi-isometric to a tree and satisfies (BP) (and it is ε-densely
(k, m)-chordal).

(4n+1,n)

(4n+5,n+1)

(4n+3,n)

Sn

(4n+7,n+1)
Sn+1

(4n+4,0)(4n,0) (4n+8,0)

Figure 3. Satisfying the bottleneck property does not imply the existence of minimal vertex separators
with uniformly-bounded diameters.

Remark 8. In the case of uniform graphs, the following theorem can also be obtained as a corollary of
Proposition 1 and Theorem 7. Furthermore, it follows from Theorem 3 in [40] and Theorem 5. However,
the direct proof provides a better bound for the parameter.

Theorem 8. If G is (k, 1)-chordal, then G satisfies (BP). Moreover, it suffices to take ∆ = k
4 + 5

2 .

Proof. Consider any pair of vertices a, b, any geodesic [ab] in G and the midpoint c in [ab].
If d(a, b) ≤ k

2 + 2, then (BP) is trivially satisfied for ∆′ = k
4 + 1. Suppose d(a, b) > k

2 + 2 and
that there is an ab-path γ not intersecting Nk/4+1(c). Let a′ ∈ [ac] ⊂ [ab] and b′ ∈ [cb] ⊂ [ab] such
that d(a′, c) = d(c, b′) = k

4 . Then, since γ does not intersect Nk/4+1(c), there is a cycle C contained in
[ab] ∪ γ such that [a′b′] ⊂ C and L(C) ≥ k.

Claim: there is a one-shortcut in C joining a vertex in the interior of [a′b′] to a vertex in γ. Since G
is (k, 1)-chordal, there is a one-shortcut, σ1, in C. If σ1 joins a vertex in the interior of [a′b′] to a vertex in
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γ, we are done. Otherwise, we obtain a new cycle, C1, such that [a′b′] ⊂ C1 and, therefore, L(C1) ≥ k.
Repeating the process, we finally obtain a one-shortcut joining a vertex z1 in the interior of [a′b′] to a
vertex z2 in γ.

Therefore, d(c, z2) ≤ d(c, z1) + 1 < k
4 + 1 and z2 ∈ Nk/4+1(c), leading to a contradiction.

Thus, G satisfies (BP) on the vertices with ∆ = k
4 + 1, and by Proposition 2, G satisfies (BP) with

∆ = k
4 + 5

2 .

Corollary 4. If G is (k, 1)-chordal, then G is quasi-isometric to a tree.

Remark 9. Corollary 4 follows also from Proposition 1 and Corollary 1 in the case of uniform graphs.

Remark 10. The converse to Theorem 8 or Corollary 4 is not true. It is immediate to check that the graph from
Example 1 is quasi-isometric to a tree through the map sending every cycle Cn to the vertex n.

Remark 11. Herein, the gap between being hyperbolic and being quasi-isometric to a tree is shown to depend
on which cycles are ε-densely (k, m)-chordal, only geodesic triangles or all of them. Furthermore, we have seen
that (BP) characterizes geodesic spaces quasi-isometric to trees. There exist also properties that characterize
when a hyperbolic space is quasi-isometric to a tree. Corollary 1.9 in [49] states that two visual hyperbolic
geodesic spaces X, Y are quasi-isometric if and only if there is a PQ-symmetric homeomorphism f (where ’PQ’
stands for ’power quasi’) with respect to any visual metrics between their boundaries (The property of being
visual has different names in the literature. For example, it is called “having a pole” in [50,51] or being “almost
geodesically complete” in [52].).

Furthermore, there is a one-to-one correspondence between rooted trees and bounded ultrametric spaces
where every tree induces a bounded ultrametric space, and for every bounded ultrametric space X there is a tree
whose boundary is X. See [53] or [54].

Thus, a visual hyperbolic space is quasi-isometric to a tree if and only if its boundary is PQ-symmetric
homeomorphic to an ultrametric space.

Furthermore, Theorem 1 in [47] states that given a complete geodesic space X with H1(X) uniformly
generated, then X is quasi-isometric to a tree if and only if there is a function f : X → R such that f is
bornologous and metrically proper on the connected components.

Since any hyperbolic space has uniformly generated H1, then it follows that for any hyperbolic graph G, G
is quasi-isometric to a tree if and only if there is a function f : G → R such that f is bornologous and metrically
proper on the connected components.

4. Minimal Vertex r-Separators

Definition 11. Given r ∈ N, two vertices a and b are r-separated by a subset S ⊂ V(G) if considering the
connected components of G \ S, Ga and Gb containing a and b respectively, for every pair of vertices v ∈ Ga and
w ∈ Gb, d(v, w) > r. If a and b are two vertices r-separated by S, then S is said to be an ab-r-separator.

Remark 12. Notice that separated means one-separated.

Definition 12. S is a minimal ab-r-separator if no proper subset of S r-separates a and b. Finally, S is a
minimal vertex r-separator if it is a minimal r-separator for some pair of vertices.

Remark 13. Given any minimal ab-r-separator S, every vertex in S is either adjacent to Ga or Gb. Moreover,
if r ≥ 2, then there are two disjoint subsets Sa and Sb such that S = Sa ∪ Sb where the vertices in Sa are adjacent
to Ga and the vertices in Sb are adjacent to Gb. Furthermore, for every vertex v in Sa, d(v, Sb) = r− 1.

Lemma 4. Let G be a uniform graph and r ≥ 2. Given any geodesic [ab] with d(a, b) > r and two
vertices v1, v2 ∈ [ab] distinct from a, b with d(v1, v2) = r − 1, then there is a minimal ab-r-separator
containing {v1, v2}.
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Proof. Suppose [ab] is a geodesic with d(a, b) > r. Let us assume that d(a, v1) < d(a, v2), and define
ε1 = d(a, v1) and ε2 = d(v2, b). Since G is uniform, for every vertex v ∈ G the set S(v, ε) is finite
for every ε ∈ N. Let S0 := S(a, ε1) ∪ S(b, ε2). It is immediate to check that S0 is an ab-r-separator
and [ab] ∩ S0 = {v1, v2}. Since S0 is finite, then there is a minimal subset S ⊂ S0 which is also an
ab-r-separator. Finally, since [ab] ∩ S0 = {v1, v2}, vi ∈ S for i = 1, 2.

Theorem 9. Let G be a uniform graph and r ≥ 2. If every minimal vertex r-separator has diameter at most m
with m ≤ r, then G is (r + 1

2 )-densely (2r + 2, r)-chordal.

Proof. Let C be any cycle with L(C) ≥ 2r + 2, and let x1 be any vertex in C. Then, consider two
vertices a, b in C such that dC(a, b) = r + 1, dC(a, x1) = 1 and dC(x1, b) = r. Let γ1 and γ2 be the
two independent paths joining a and b defined by C, and assume x1 ∈ γ1. Consider x2 ∈ γ1 with x2

between x1 and b such that dC(x1, x2) = r− 1 (and dC(x2, b) = 1).
If γ1 is not a geodesic, then there is a shortcut with length at most r and a shortcut vertex v such

that dC(x1, v) < r.
If γ1 is a geodesic, by Lemma 4, there exists a minimal ab-r-separator S containing x1, x2.

Then, there exist y1, y2 ∈ γ2 ∩ S, with y1 between a and y2, such that dC(y1, y2) ≥ r− 1, dC(a, y1) ≥ 1
and dC(y2, b) ≥ 1. Since diam(S) ≤ m, then d(x1, y2) ≤ m. Since dC(x1, y2) ≥ r + 1 ≥ m + 1, there is a
shortcut σ in C joining x1 and y2 with L(σ) ≤ m ≤ r and with an associated shortcut vertex v such that
dC(x1, v) < m ≤ r.

Thus, for every vertex x1, there is a shortcut vertex v such that dC(x1, v) < r, and therefore,
shortcut vertices define a (r + 1

2 )-dense subset in C.

Theorem 10. Let G be a uniform graph and r ≥ 2. If for every minimal ab-r-separator S either Sa or Sb has
diameter at most m, then G is ε-densely (k, k

2 )-chordal with k = 2m + 2r + 2 and ε = max{m+1
2 + r, m + 1

2}.

Proof. Let C be any cycle with L(C) ≥ 2m + 2r + 2 and x1 be any vertex in C. Then, consider two
vertices a, b in C such that dC(a, b) = m + r + 1, dC(a, x1) =

m+1
2 and dC(x1, b) = m+1

2 + r if m is odd,
and dC(a, x1) =

m
2 + 1 and dC(x1, b) = m

2 + r if m is even. Let γ1 and γ2 be the two independent paths
joining a and b defined by C, and assume x1 ∈ γ1. Consider x2 ∈ γ1 with x2 between x1 and b such
that dC(x1, x2) = r− 1 (and therefore, dC(x2, b) ≥ m

2 + 1 > m
2 ).

If γ1 is not a geodesic, then there is a shortcut with length at most m+ r + 1 and a shortcut vertex v
such that dC(x1, v) < m

2 + r.
If γ1 is a geodesic, consider S the minimal ab-r-separator containing x1, x2 built in the proof

of Lemma 4, and let us assume, without loss of generality, that Sa has diameter at most m.
Then, by construction, there exists y1 ∈ γ2 ∩ S such that dγ2(a, y1) ≥ d(a, y1) = d(a, x1) ≥ m+1

2 .
Since diam(Sa) ≤ m, then d(x1, y1) ≤ m. However, dC(x1, y1) ≥ min{m + 1, dγ1(x1, b) + d(b, y1)} =
m + 1, and therefore, there is a shortcut σ in C joining x1 and y1 with L(σ) ≤ m. Moreover, there is a
shortcut vertex v such that dC(x1, v) < m.

Thus, for every vertex x1, there is a shortcut vertex v with dC(x1, v) < min{m
2 + r, m}, and

therefore, shortcut vertices define an ε-dense subset in C with ε = max{m+1
2 + r, m + 1

2}.

Then, from Theorems 5 and 10, we can obtain immediately the following:

Corollary 5. Let G be a uniform graph and r ≥ 2. If for every minimal ab-r-separator S either Sa or Sb has
diameter at most m, then G satisfies (BP), i.e.„ G is quasi-isometric to a tree.

Furthermore, from Theorems 3, 9 and 10, we obtain:

Corollary 6. Let G be a uniform graph and r ≥ 2. If every minimal vertex r-separator has diameter at most m
with m ≤ r, then G is δ-hyperbolic. Moreover, δ(G) ≤ 2r + 1

2 .
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Corollary 7. Let G be a uniform graph and r ≥ 2. If for every minimal ab-r-separator S either Sa or Sb has
diameter at most m, then G is δ-hyperbolic. Moreover, δ(G) ≤ max{ 3m+3

2 + 2r, 2m + r + 3
2}}.

5. Neighbor Separators

Given a set S in a graph G, let Nr(S) := {x ∈ G | d(x, S) ≤ r}.

Definition 13. Given two vertices a, b in a graph G = (V, E) and some r ∈ N, a set S ⊂ V is an
ab-Nr-separator if a and b are in different components of G \ Nr(S). S is an ab-neighbor separator if it is
an ab-Nr-separator for some r.

Notice that an ab-separator is just an ab-N0-separator.

Theorem 11. G satisfies (BP) if and only if there is a constant ∆′′ > 0 such that for every pair of vertices a, b
with d(a, b) ≥ 2∆′′ + 2 and any geodesic [ab], there exists a vertex c ∈ [ab] that is an ab-N∆′′ -separator.

Proof. The only if part follows trivially from Proposition 2.
Suppose that for every pair of vertices a, b with d(a, b) ≥ 2∆′′+ 2 and any geodesic [ab], there exists

a point c ∈ [ab] that is an ab-N∆′′ -separator. Consider any pair of vertices x, y in G, any geodesic [xy]
and the midpoint z in [xy].

If d(x, y) ≤ 2∆′′ + 1, then (BP) is trivially satisfied on x, y for any ∆′ ≥ ∆′′ + 1
2 .

If d(x, y) ≥ 2∆′′ + 2, by hypothesis, there is some vertex z1 ∈ [xy] such that N∆′′(z1) is an
xy-N∆′′ -separator. If d(z, z1) ≤ ∆′′, then it follows that every xy-path intersects N∆′′(z1) ⊂ N2∆′′(z) and
G satisfies (BP) on the vertices for ∆′ = 2∆′′. If d(z, z1) > ∆′′, then we repeat the process with the part
of the geodesic, [xz1] or [z1y], containing z. Let us assume, without loss of generality, that z ∈ [xz1].
Since d(z, z1) > ∆′′ and d(x, z) > ∆′′, there is some point z2 ∈ [xz1] that is an xz1-N∆′′ -separator.
Since there is a z1y-path in G \ N∆′′(z2), z2 is also an xy-N∆′′ -separator. If d(z, z2) ≤ ∆′′, we are done.
Otherwise, we repeat the process until we obtain some point zk ∈ [xy] that is an xy-N∆′′ -separator and
such that d(z, zk) ≤ ∆′′. Therefore, G satisfies (BP) on the vertices for ∆′ = 2∆′′.

Thus, by Proposition 2, G satisfies (BP) with ∆ = 2∆′′ + 3
2 .

Corollary 8. G is quasi-isometric to a tree if and only if there is a constant ∆′′ > 0 such that for every pair of
vertices a, b with d(a, b) > ∆′′ and any geodesic [ab], there exists a vertex c ∈ [ab] that is an ab-N∆′′ -separator.

Proposition 3. If G is (k, 1)-chordal, then for every pair of vertices a, b, any geodesic [ab] with d(a, b) ≥ k
2 + 2

and every pair of vertices a′, b′ ∈ [ab] with d({a′, b′}, {a, b}) ≥ 2 and such that d(a′, b′) ≥ k
2 − 2, [a′b′] ⊂ [ab]

is an ab-N1-separator. In particular, for every pair of vertices a, b in G with d(a, b) ≥ k
2 + 2, there is a geodesic

σ of length k
2 − 2 or k−3

2 such that σ is an ab-N1-separator.

Proof. Consider any geodesic [ab] in G with d(a, b) ≥ k
2 + 2 and any pair of vertices a′, b′ ∈ [ab] with

d({a′, b′}, {a, b}) ≥ 2 such that d(a′, b′) ≥ k
2 − 2. Let a′′ be the vertex in [aa′] ⊂ [ab] adjacent to a′

and b′′ be the vertex in [b′b] ⊂ [ab] adjacent to b′. Therefore, d(a′′, b′′) ≥ k
2 . Suppose that a and b are

in the same connected component, A, of G \ N1([a′b′]). Clearly, a′′ and b′′ are adjacent to A. Let γ

be a path of minimal length joining a′′ and b′′ in the subgraph induced by A ∪ {a′′, b′′}. Therefore,
[a′′b′′] ∪ γ defines a cycle, C, of length at least k. Since G is (k, 1)-chordal, then there is an edge joining
two non-adjacent vertices in C. Since [a′′b′′] is geodesic and γ has minimal length, the edge must join a
vertex, v ∈ γ to a vertex in [a′b′]. Therefore, v ∈ N1([a′b′]) ∩ A leading to a contradiction.

Definition 14. A path γ in a graph G is chordal if it has no one-shortcuts in G.

Proposition 4. If G is (k, 1)-chordal, then for every chordal ab-path σ with L(σ) ≥ k and every pair of vertices
a′, b′ ∈ σ with dσ({a′, b′}, {a, b}) ≥ 2 and such that dσ(a′, b′) ≥ k− 4, then the restriction of σ joining a′
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and b′, σ′, is an ab-N1-separator. In particular, for every pair of vertices a, b in G joined by a chordal path with
length at least k there is a chordal path γ′ of length k− 4 such that γ′ is an ab-N1-separator.

Proof. Consider any chordal path σ in G with endpoints a, b and L(σ) ≥ k. Consider any pair of
vertices a′, b′ ∈ [ab] with dσ({a′, b′}, {a, b}) ≥ 2 such that dσ(a′, b′) ≥ k− 4, and let σ′ = [a′b′] ⊂ [ab].
Let a′′ be the vertex in σ adjacent to a′ closer in σ to a and b′′ be the vertex in σ adjacent to b′ closer in σ

to b. Therefore, if σ′′ is the restriction of σ joining a′′ and b′′, then L(σ′′) ≥ k− 2. Suppose that a and
b are in the same connected component, A, of G \ N1(σ

′). Clearly, a′′ and b′′ are adjacent to A. Let γ

be a path of minimal length joining a′′ and b′′ in the subgraph induced by A ∪ {a′′, b′′}. Therefore,
σ′′ ∪ γ defines a cycle, C, of length at least k. Since G is (k, 1)-chordal, then there is an edge joining two
non-adjacent vertices in C. Since σ′′ is chordal and γ has minimal length, the edge must join a vertex
v ∈ γ to a vertex in σ′. Therefore, v ∈ N1(σ

′) ∩ A, leading to a contradiction.

Proposition 5. If a graph G satisfies that for some k, m ∈ N with k ≥ 4m, for every geodesic [ab] with
d(a, b) ≥ k + 2 and for every pair of vertices a′, b′ ∈ [ab] with d({a′, b′}, {a, b}) ≥ m + 1 and such that
d(a′, b′) ≥ k− 2m, [a′b′] ⊂ [ab] is an ab-Nm-separator, then G is ( k

2 + 2)-densely (2k + 4, k + 1)-chordal.

Proof. Let C be any cycle with L(C) ≥ 2k + 4. Let v by any vertex in C and a, b two vertices in C such
that dC(a, v) =

⌊
k
2

⌋
+ 1 and dC(v, b) =

⌈
k
2

⌉
+ 1, and therefore, dC(a, b) = k + 2. Let γ1, γ2 be the two

ab-paths defined by the cycle, and let us assume that v ∈ γ1 (and therefore, L(γ1) ≤ L(γ2)). If there
is a shortcut in γ1, then there is a shortcut in C with length at most k + 1 and with a shortcut vertex
z such that dC(v, z) < k

2 + 2. If there is no shortcut in γ1, then γ1 is a geodesic with d(a, b) = k + 2.
Thus, let a′, b′ ∈ γ1 with d(a, a′) = m + 1 = d(b′, b) and d(a′, b′) = k− 2m. Therefore, [a′b′] ⊂ γ1 is an
ab-Nm-separator. In particular, there is some vertex w in γ2 \ {a, b} such that w ∈ Nm([a′b′]), defining
a shortcut in C with length at most m and with a shortcut vertex z such that dC(v, z) < k

2 + 1.

Corollary 9. If a graph G satisfies that for some k, m ∈ N with k ≥ 4m, for every geodesic [ab] with
d(a, b) ≥ k + 2 and for every pair of vertices a′, b′ ∈ [ab] with d({a′, b′}, {a, b}) ≥ m + 1 and such that
d(a′, b′) ≥ k− 2m, [a′b′] ⊂ [ab] is an ab-Nm-separator, then G is quasi-isometric to a tree.

6. Neighbor Obstructors

Definition 15. Given two vertices a, b in a graph G = (V, E) and some r ∈ N, a set S ⊂ V is
ab-Nr-obstructing if for every geodesic γ joining a and b, γ ∩ Nr(S) 6= ∅.

Given any metric space (X, d) and any pair of subsets A, B ⊂ X, let us recall that the Hausdorff
metric, dH , induced by d is:

dH(A1, A2) := max{ sup
x∈A1

{d(x, A2)}, sup
y∈A2

{d(y, A1)}},

or equivalently,
dH(A1, A2) := inf{ε > 0 | A1 ⊂ B(A2, ε) y A2 ⊂ B(A1, ε)}.

Definition 16. In a geodesic metric space (X, d), we say that geodesics are stable if and only if there is a
constant R ≥ 0 such that given two points x, y ∈ X and any geodesic [xy], then every geodesic σ joining x to y
satisfies that dH(σ, [xy]) ≤ R.

It is well known that if X is a hyperbolic space, then quasi-geodesics are stable. See, for example,
Theorem III.1.7 in [2]. In particular, geodesics are stable in hyperbolic geodesic spaces.

Let B be the family of cycles that are bigons.
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Theorem 12. Given a graph G, geodesics are stable if and only if there exist constants ε > 0 and k, m ∈ N such
that G is ε-densely (k, m)-chordal on B.

Proof. Suppose that G is ε-densely (k, m)-chordal on B. Consider any pair of points x, y and any pair
of geodesics, σ1, σ2, joining them. Then, for any point z ∈ σ1, either z ∈ σ1 ∩ σ2 or there is a cycle
C ⊂ σ1 ∪ σ2 with z ∈ C. If L(C) < k, then d(z, σ2) < k

2 . If L(C) ≥ k, then either dC(z, σ2) < ε or
there is an m-shortcut in C with a shortcut vertex v such that dC(z, v) < ε, and since σ1 is geodesic,
d(v, σ2) ≤ m. Thus, if R = max{ k

2 , ε + m}, d(z, σ2) < R in any case. Hence, σ1 ⊂ NR(σ2). The same
argument proves that σ2 ⊂ NR(σ1), and therefore, dH(σ1, σ2) ≤ R.

Suppose that geodesics are stable with constant R. Consider any pair of points x, y with
d(x, y) ≥ 2R + 2 and two xy-geodesics σ1, σ2 such that σ1 ∪ σ2 defines a cycle C. Then, for any point
z ∈ σ1 (respectively with σ2) such that dC(z, σ2) > R (resp. dC(z, σ1) > R), since dH(σ1, σ2) ≤ R,
d(z, σ2) ≤ R (resp. d(z, σ1) ≤ R), and there is a strict R-shortcut in C with a shortcut vertex v
such that dC(v, z) < R. Thus, shortcut vertices are (2R + 1)-dense in C and G is (2R + 1)-densely
(4R + 4, R)-chordal on B.

Definition 17. In a graph G, we say that geodesics between vertices are stable if and only if there is a constant
R ≥ 0 such that given two vertices a, b ∈ G and any geodesic [ab], then every geodesic σ joining a to b satisfies
that dH(σ, [ab]) ≤ R.

Proposition 6. Given a graph G, geodesics between vertices are stable if and only if there is some constant
k ∈ N so that for every pair of vertices a, b with d(a, b) ≥ 2k + 2, every geodesic [ab] and every vertex v ∈ [ab]
such that d(v, {a, b}) > k, then v is an ab-Nk-obstructing vertex.

Proof. Suppose that geodesics between vertices are stable with constant R. Then, given any two
vertices a, b ∈ G with d(a, b) ≥ 2R + 2 and any geodesic [ab], every geodesic σ joining a to b satisfies
that dH(σ, [ab]) ≤ R. Thus, for every vertex v ∈ [ab] there is some vertex w ∈ σ such that d(v, w) ≤ R.
Suppose v ∈ [ab] with d(v, {a, b}) > R. Hence, v is an ab-NR-obstructing vertex.

Now, suppose that for every pair of vertices a, b with d(a, b) ≥ 2k + 2, every geodesic [ab] and
every vertex v ∈ [ab] with d(v, {a, b}) > k, then v is an ab-Nk-obstructing vertex. Consider any pair of
vertices a, b ∈ G and any pair of ab-geodesics σ1, σ2. If d(a, b) < 2k + 2, then it is trivial to check that
dH(σ1, σ2) < k + 1. Suppose d(x, y) ≥ 2k + 2. Then, for every vertex v ∈ σ1 such that d(v, {a, b}) > k,
σ2 ∩ Nk(v) 6= ∅. Therefore, it follows immediately that σ1 ⊂ Nk+1/2(σ2). The same argument proves
that σ2 ⊂ Nk+1/2(σ1), and therefore, dH(σ1, σ2) < k + 1.

Let B0 be the family of cycles that are bigons defined by two geodesics between vertices.

Proposition 7. If G is k
4 -densely (k, m)-chordal on B0, then for every pair of vertices a, b with d(a, b) ≥ k

2 + 4,
every geodesic [ab] and every vertex v0 such that d(v0, {a, b}) ≥ k

4 + 1, v0 is an ab-Nk-obstructing vertex.
In particular, [ab] contains an ab-Nk-obstructing vertex.

Proof. Consider any pair of vertices a, b with d(a, b) ≥ k
2 + 4, any geodesic [ab] and any vertex v0 ∈ [ab]

with d(v0, {a, b}) ≥ k
4 + 1. Let a′ be the vertex in [av0] ⊂ [ab] with d(a′, v0) =

⌈
k
4

⌉
and b′ be the vertex

in [v0b] ⊂ [ab] with d(v0, b′) =
⌈

k
4

⌉
. Therefore, d(a′, b′) ≥ k

2 , a′ 6= a and b′ 6= b.
If there is no geodesic joining a to b disjoint from Nk/4(v0), we are done.
Suppose there is some geodesic γ0 joining a to b such that γ0 ∩ Nk/4(v0) = ∅. Then, [ab] ∪ γ0

contains a cycle C (with possibly C = [ab] ∪ γ0) composed by two geodesics γ1 = [a′′b′′] with
[a′b′] ⊂ [a′′b′′] ⊂ [ab] and γ2 ⊂ γ0 joining also a′′ to b′′. Clearly, L(C) ≥ k. Since G is k

4 -densely
(k, m)-chordal on B0, then there is a strict shortcut σ with L(σ) ≤ m joining two vertices in C with a
shortcut vertex v1 in Nk/4(v0). Furthermore, since γ1 and γ2 are geodesics, then σ joins v1 to a vertex
v2 in γ2 ⊂ γ0. Therefore, d(v2, v0) ≤ m + k

4 < k (see Remark 2) and γ0 ∩ Nk(v0) 6= ∅.
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Theorem 13. Given a graph G, geodesics between vertices are stable if and only if there exist constants ε > 0
and k, m ∈ N such that G is ε-densely (k, m)-chordal on B0.

Proof. Suppose that G is ε-densely (k, m)-chordal on B0. By Proposition 7, if k′ = max{4ε, k}, then for
every pair of vertices a, b with d(a, b) ≥ k′

2 + 4, every geodesic [ab] and every vertex v0 such that
d(v0, {a, b}) ≥ k′

4 + 1, v0 is an ab-Nk′ -obstructing vertex. Thus, by Proposition 6, geodesics are stable
with constant R = k′

4 + 2.
Let us suppose that geodesics between vertices are stable with constant R. Let a, b be two

vertices with d(a, b) ≥ 2R + 2 and C be a cycle that is a bigon defined by two ab-geodesics, σ1, σ2.
Therefore, L(C) ≥ 4R + 4. Consider any vertex v ∈ σ1 (respectively, σ2) such that d(v, {a, b}) > R.
Then, since geodesics between vertices are stable with parameter R, v ∈ NR(σ2) (respectively, σ1) and
there is a strict R-shortcut in C with an associated shortcut vertex w such that dC(v, w) < R, therefore
shortcut vertices are (2R + 1)-dense in C, and G is (2R + 1)-densely (4R + 4, R)-chordal on B0.

The following example shows that having stable geodesics between vertices does not imply that
geodesics are stable.

Example 3. Consider the family of odd cycles {C2k+1 : k ∈ N}, and suppose we fix a vertex vk in each
cycle; we define a connected graph G identifying the family {vk : k ∈ N} as a single vertex v. Notice that in
G geodesics between vertices are unique. If two vertices belong to the same cycle C2k+1, then the geodesic is
contained in the cycle, and it is clearly unique. Otherwise, the geodesic is the union of the two (unique) shortest
paths joining the vertices to v. Thus, geodesics between vertices are stable with constant zero.

Let mk be the midpoint of an edge in C2k+1 such that d(mk, v) = k + 1
2 . Then, C2k+1 is a bigon in G

defined by two geodesics, σ1, σ2 joining mk to v and dH(σ1, σ2) =
k
2 + 1

4 with k arbitrarily large.

Remark 14. Notice that the same property that characterizes being quasi-isometric to a tree (Corollary 3)
also characterizes being hyperbolic, when restricted to triangles (Theorem 6), having stable geodesics,
when restricted to bigons (Theorem 12), and having stable geodesics between vertices, when restricted to
bigons between vertices (Theorem 13).

Remark 15. In the context of multi-path routing, (BP) implies that given any nominal path (with minimum
cost) joining x and y, then any other path would remain close (at least at some point) to the nominal one.
Furthermore, if we consider all paths with minimum cost, the stability of geodesics characterized above implies
that every point of any minimal path is close to the nominal one.

The proof of Proposition 7 can be adapted to prove also the following:

Proposition 8. If G is ( k
4 − m)-densely (k, m)-chordal on B0 with k > 4m, then for every geodesic [ab]

with d(a, b) ≥ k
2 + 2 and every pair of vertices a′, b′ ∈ [ab] with d({a′, b′}, {a, b}) ≥ m + 1 and such that

d(a′, b′) ≥ k
2 − 2m, [a′b′] ⊂ [ab] is an ab-Nm-obstructing set. In particular, for every pair of vertices a, b in G

with d(a, b) ≥ k
2 + 2, there is a geodesic σ of length k

2 − 2m or k+1
2 − 2m such that σ is ab-Nm-obstructing.

Proof. Consider any geodesic [ab] with d(a, b) ≥ k
2 + 2 and any pair of vertices a′, b′ ∈ [ab] with

d({a′, b′}, {a, b}) ≥ m + 1 and d(a′, b′) ≥ k
2 − 2m. Let a′′ be the vertex in [aa′] ⊂ [ab] with d(a′, a′′) = m

and b′′ be the vertex in [b′b] ⊂ [ab] with d(b′, b′′) = m. Therefore, d(a′′, b′′) ≥ k
2 .

Suppose that there is some geodesic γ0 joining a and b such that γ ∩ Nm([a′b′]) = ∅. Then,
[ab] ∪ γ0 contains a cycle C composed by two geodesics: γ1 with [a′′b′′] ⊂ γ1 ⊂ [ab] and γ2 ⊂ γ0.
Clearly, L(C) ≥ k. Consider the midpoint c in [a′b′]. Since G is ( k

4 − m)-densely (k, m)-chordal on
B0, then there is a strict shortcut σ with L(σ) ≤ m joining two vertices in C with a shortcut vertex v1

such that dC(v1, c) ≤ k
4 −m, and hence, v1 ∈ [a′b′]. Furthermore, since γ1 and γ2 are geodesics, then

σ joins v1 to a vertex, v2, in γ2 ⊂ γ0. Therefore, d(v2, [a′b′]) ≤ m and γ0 ∩ Nm([a′b′]) 6= ∅, leading to
a contradiction.
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