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Abstract: One application of the Cosmological Gravitational Lensing in General Relativity is the
measurement of the Hubble constant H0 using the time delay ∆t between multiple images of lensed
quasars. This method has already been applied, obtaining a value of H0 compatible with that
obtained from the SNe 1A, but non-compatible with that obtained studying the anisotropies of
the CMB. This difference could be a statistical fluctuation or an indication of new physics beyond
the Standard Model of Cosmology, so it desirable to improve the precision of the measurements.
At the current technological capabilities it is possible to obtain H0 to a percent level uncertainty,
so a more accurate theoretical model could be necessary in order to increase the precision about the
determination of H0. The actual formula which relates ∆t with H0 is approximated; in this paper
we expose a proposal to go beyond the previous analysis and, within the context of a new model,
we obtain a more precise formula than that present in the literature.

Keywords: classical general relativity; gravitational lenses

1. Introduction

One of the nicest consequences of the existence of symmetries in nature is General Relativity.
In fact, the Einstein equations:

Rµν −
1
2

Rgµν + Λgµν = 0, (1)

where Rµν and R are the Ricci tensor and the Ricci scalar, respectively, gµν is the metric and Λ is the
cosmological constant, are the equations of motion for gµν, seen as dynamical tensor field, naturally
derived from the Hilbert action:

SH =
∫

d4x
√
−g(R− 2Λ), (2)

where g is the determinant of gµν. The Hilbert action (2), in turn, is the most general scalar functional,
including up to second order derivatives of gµν, invariant under diffeomorphisms of the metric gµν

δgµν = LV gµν = ∇µVν +∇νVµ, (3)

where ∇µVν is the covariant derivative of a vector field Vν generating the diffeomorphisms.
The transformations (3) represent gauge transformations, whose geometrical setup is commonly
exploited to obtain nontrivial results in several branch of theoretical physics, from gravity to condensed
matter and AdS/CFT [1–7] As it is well known, General Relativity is, under any respect, a gauge
field theory, for the gauge invariance (3), with all the subtleties which this implies [8]. It is therefore
perfectly legitimate to include General Relativity as a majestic consequence of the Symmetry Principle
governing our Universe.

Symmetry 2017, 9, 202; doi:10.3390/sym9100202 www.mdpi.com/journal/symmetry

http://www.mdpi.com/journal/symmetry
http://www.mdpi.com
http://dx.doi.org/10.3390/sym9100202
http://www.mdpi.com/journal/symmetry


Symmetry 2017, 9, 202 2 of 17

One of the first tests of General Relativity was the effect called Gravitational Lensing (GL):
the presence of a massive object, which could be a star, a black hole or a galaxy cluster (we will
refer to them as lenses), deforms the spacetime in its neighborhood, causing the deflection of light.
Although in this paper we will consider the deformation induced by massive objects, this is not the
only possibility to deform the spacetime.

This deflection generates multiple images of the source: according to the equations of General
Relativity the photons follow different paths from the source to the observer.

The deflection of light is not the only consequence of GL because if we consider two photons,
emitted at the same time but following different paths, they will be observed at different times: we will
call this difference time delay.

This delay is important because it is directly related to the value of the Hubble constant, providing
us a method to determine its value. As pointed out in [9], there is a certain degeneracy in the
determination of the cosmological parameters from the CMB [10] and independent measurements are
important because they could break this degeneracy. In particular, the value of H0 can be determined
using the GL [11–15] , following [16], or Standard Candles [17]; these measurements are compatible
with each other but not with the one in [10]. In order to face this problem, there have been different
proposal involving, for example, dynamical dark energy [18]. In order to evaluate the delay between
the detection of this two photons, we should compare the flight time needed to travel the different paths
from the emitting source (S) to the observer on Earth (E). To do this, we should solve the geodesic of
the photons, which in general is a tough task. We will instead adopt a perturbative approach.

The paper is organized as follows:

• In Section 2, in order to face the task of solving the geodesics, the delay will be split in
two contributions in order to get an approximate expression, following the standard analysis.

• In Section 3 we extend in an easy way the standard analysis.
• In Section 4 we propose an alternative method to calculate the time delay, possibly in a more

precise way. This is important because, if we will obtain an expression of the delay which refines
and contains the standard one, we will strengthen the result in [15].

2. Standard Analysis

2.1. Basics of Gravitational Lensing

We have to solve the Einstein Equations (1) where the role of matter is covered by the gravitational
lens L. In order to do that, we will adopt a perturbative approach decomposing the metric gµν

as follows:
gµν = ḡµν + hµν (4)

where ḡµν is the background metric and hµν the perturbation induced by the massive object.
In Cosmology, the commonly used energy-momentum tensor corresponding to gravitational

lenses is that of non-relativistic matter, which is parametrized as a perfect fluid:

Tµν = (ρ + P)UµUν + Pgµν, (5)

where the pressure P is negligible with respect to the density ρ

P� ρ. (6)

hence the energy-momentum tensor in the Einstein equations for GL is:

Tµν = ρUµUν (7)

where Uµ is the 4-velocity of the lens.
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The details of calculations can be found in [8], here we will simply sketch the method and expose
the main results.

We are interested in the Cosmological Lensing and so we should use as background metric the
Robertson-Walker (RW) metric; however, we will use the Minkowski metric:

ds2 = −dt2 + dxidxjδij (8)

because the calculations are simpler and we will be able to insert in the result the information of
the cosmological expansion. In any case, as we will see later, the same results can be rigorously
obtained perturbing the (flat) Robertson-Walker metric, as it should be. Using as background metric
the Minkowski metric the result is:

ds2 = − (1 + 2Φ) dt2 + (1− 2Φ) dxidxjδij (9)

with Φ satisfying the Poisson equation:

∇2Φ = 4πGρ (10)

thus, we can interpret Φ as the Newtonian potential associated to the lens.
This result explains why we observe only two images of the source if we consider a spherically

symmetric lens. In this case, the potential will be of the form:

Φ = Φ(r) (11)

thus the metric (9) has a rotational invariance, so the angular momentum of the photon is conserved
and this means that the motion of the photon is restricted to the plane individuated by the S, L and the
momentum of the photon, as in the case of the Schwarzschild’s geodesics. Furthermore, the equation
which determines the position of the images, the lens equation which can be found in [8], is a quadratic
equation and thus there will be two solutions.

As already anticipated in the introduction, the delay will be split in two different parts

• The Shapiro delay, or potential time delay, caused directly by the motion of the light through the
gravitational potential of the lens

• The geometric delay, caused by the increased length of the total light path from the source to
the earth.

2.2. The Shapiro Time Delay in Minkowski Metric

We want to study the geodesic of a photon moving in the metric (9). Following a perturbative
approach, we will divide the geodesic in two parts, the background term x̄µ and a perturbative term
x′µ (From now on we will indicate with a bar all the background quantities and with a prime the
perturbed quantities). Then we have:

xµ(λ) = x̄µ(λ) + x′µ(λ) (12)

where λ parametrizes the geodesic. From now on we will perform all the integrals along the
background paths; this is a good approximation, as long as it is satisfied:

x′i∂iΦ� Φ (13)

This condition ensures that the potential along the background path does not sensibly differ from
that of the real path.
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The equation for null geodesic is

gµν
dxµ

dλ

dxν

dλ
= 0 (14)

We will solve Equation (14) perturbatively order by order. It will be useful to define the
following quantities:

kµ ≡ dx̄µ

dλ
lµ ≡ dx′µ

dλ
(15)

At zeroth order we have:
ηµν

dx̄µ

dλ

dx̄ν

dλ
= 0 (16)

which gives us the constraint:
− (k0)2 + |~k|2 = 0 (17)

From now on we will use the following notation:

|~k|2 = k2 (18)

At first order we have:
2ηµνkµlν + hµνkµkν = 0 (19)

which, using (8), (9) and (17), becomes:

− kl0 +~l ·~k = 2k2Φ (20)

Now, let us consider the geodesic equation:

d2xµ

dλ2 + Γµ
ρσ

dxρ

dλ

dxσ

dλ
= 0 (21)

where Γµ
ρσ are the Christoffel symbols corresponding to the metric (9), which can be found in

Appendix A.1. At order zero we have:
dkµ

dλ
= 0 (22)

This means that the background trajectories are straight lines, as we expected.
At first order we have:

dlµ

dλ
= −Γµ

ρσkρkσ (23)

Let us consider the µ = 0 component:

dl0

dλ
= −2k(~k · ~∇Φ) (24)

and the spatial components:
d~l
dλ

= −2k2∇⊥Φ (25)

where we have introduced the transverse gradient ∇⊥Φ, defined as the total gradient less the gradient
along the path:

∇⊥Φ ≡ ∇Φ−∇‖Φ = ∇Φ− 1
k2 (

~k · ∇Φ)~k (26)
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It is worth emphasizing that evaluating the following indefinite integral:

l0 =
∫ dl0

dλ
dλ = −2k

∫
(~∇Φ ·~k)dλ =

= −2k
∫ d~̄x

dλ
· ~∇Φdλ = −2k

∫
~∇Φ · d~̄x = −2kΦ

(27)

the integration constant is fixed demanding that l0 = 0 when Φ = 0. Plugging this expression in (20)
we obtain:

~l ·~k = 0 (28)

which means that the two vectors are orthogonal one to each other.
We can now evaluate the time delay between a photon moving in the unperturbed Minkowski

metric (8) and one moving in the perturbed metric (9). Following [19], let us consider a photon emitted
in S, which is detected in E after being deflected by L (see Figure 1), in the perturbed metric (9). Having
in mind that the approximate path travelled by the photon is SPE, where P is the deflection point
closest to the lens L, the flight time of the photon moving in the perturbed metric is

t =
∫ dx0

dλ
dλ =

∫ (dx̄0

dλ
+

dx′0

dλ

)
dλ =

∫ (
k0 + l0

)
dλ (29)

while the flight time of the photon moving in the unperturbed metric is

t̄ =
∫ dx̄0

dλ
dλ =

∫
k0dλ (30)

Figure 1. S1 and S2 are the images of the source S. The points P1 and P2 are the deflection points of
the light rays deflected by the lens L and observed in E. SP1E and SP2E approximate the deflected
photon geodesics.

The time delay between the two paths is

∆t1 = t− t̄ =
∫

l0dλ (31)
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Using the expression already obtained for l0 given by (27) we obtain:

∆t1 = −2k
∫

Φdλ (32)

Using the infinitesimal line element dl = kdλ we can write:

∆t1 = −2
∫

SPE
Φdl (33)

We stress again that the integral is done over the path SPE [19]. Notice that this time delay depends
on the gravitational potential Φ of the lens, which therefore has the effect of reducing the effective
speed of light relative to propagation in vacuum. In presence of two images S1 and S2, we have to deal
with two photons travelling two distinct paths, namely SP1E and SP2E. Correspondingly, the total
Shapiro time delay is given by [19]:

∆tS = ∆t2 − ∆t1 = −2
(∫

SP2E
Φdl −

∫
SP1E

Φdl
)

(34)

In order to put (34) in a more compact form we must introduce the angular diameter distance and
the gravitational lensing potential.

If we observe from a point P an object in Q of proper length l, perpendicular to PQ and with
angular size θ, then we define the angular diameter distance dA(PQ):

dA(PQ) =
l
θ

(35)

in particular, it can be showed that in flat spacetime we have:

dA(PQ) =
rPQ

1 + zQ
(36)

where rPQ is the radial coordinate from P to Q in a coordinate system centered in P and zQ is the
redshift of Q with respect to P; the details about the angular diameter distance can be found in [8].

Moreover, the gravitational lensing potential ψ is given by:

ψ(~θ) ≡ 2
dA(LS)

dA(EL)dA(ES)

∫
Φ(dL~θ, l)dl (37)

where we inserted the dependence on~θ because the value of the angle determines the integration path,
which is taken to be the spatial background geodesic in Figure 1; it is worth emphasizing that this
angles are vectors because, in general, we will not consider only planar angles but also angles in the
space. Using this two quantities we can write the Equation (34) as:

∆tS = −2
dA(LS)

dA(EL)dA(ES)
dA(EL)dA(ES)

dA(LS)

(∫
SP2E

Φdl −
∫

SP1E
Φdl

)
= (38)

= −dA(EL)dA(ES)
dA(LS)

(
ψ(~θ2)− ψ(~θ1)

)
. (39)

We have not yet considered the contribution arising from the expansion of the universe. However,
this can be taken into account as follows. As we can see from (34) the main contribution to the integral
is originated near the lens, so we can say that the Shapiro delay is originated near the lens. This means
that when photons leave the region of space perturbed by the lens they have already acquired the
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delay given by (39), then we simply have to redshift the result by (1 + zL) and we can conclude that
the Shapiro time delay ∆tS observed from the Earth is

∆tS = −(1 + zL)
dA(EL)dA(ES)

dA(LS)

(
ψ(~θ2)− ψ(~θ1)

)
(40)

where we have used the definition of redshift z:

a(t) =
1

1 + z
, (41)

and a(t) is the scale factor at time t. More details about redshift can be found in [8]. As we will see,
the same result (40) can be obtained perturbing the flat RW metric, with the advantage that the redshift
scaling (1 + zL) will be obtained naturally. and not put by hand as we just did here.

2.3. Geometric Time Delay

Let us calculate the geometric time delay ∆tG. Using the lightlike interval and the unperturbed
RW flat metric:

ds2 = −dt2 + a2(t)dxidxjδij (42)

we have: ∫ tE0

tS

dt
a(t)
≡ σSE (43)

where σSE is the proper length between Earth and the light Source, tS is the emission time and tE0

is the arrival time of the photon running along the straight path. We perturbed the flat RW metric
because it is compatible with the experimental result |Ωc| < 0.1 [8].

Now, let us calculate the flight time of the photon running along the lengthened path in the
perturbed metric: we can parametrize the trajectory with two segments, one from the source to the
minimum distance point P and one from P to the Earth (see Figure 1). Thus:

∫ tE

tS

dt
a(t)

= σSP + σPE (44)

We can calculate the delay ∆t′ between the two paths subtracting (43) from (44):

∫ tE

tS

dt
a(t)
−
∫ tE0

tS

dt
a(t)

= σSP + σPE − σSE (45)

We can evaluate the left hand side of (45):

∫ tE

tS

dt
a(t)
−
∫ tE0

tS

dt
a(t)

=
∫ tE

tE0

dt
a(t)
≈ ∆t̃

a(tE)
= ∆t̃ (46)

where we used the observation that time delay is small compared to Hubble time, so we can consider
a(t) constant, the usual normalization a(tE) = 1 and we have introduced the delay between the
two photons ∆t̃. In order to evaluate the proper distance it is convenient to use radial coordinates with
the origin positioned on the Earth, so we can immediately write:

σSE =
∫ rES

0
dr = rES σPE =

∫ rEP

0
dr = rEP (47)

σSP is not purely radial; from the geometry in Figure 1 we have:

σSP =
√

r2
ES + r2

EP − 2rESrEP cos α (48)
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We are interested in small angles, so we can perform an expansion:

σSP ≈
√

r2
ES + rEP2− 2rESrEP + rESrEPα2 =

= (rES − rEP)

√
1 +

rEPrESα2

(rES − rEP)2 =

≈ rES − rEP +
rEPrESα2

2(rES − rEP)

(49)

from which it follows:

∆t̃ =
rESrEPα2

2(rES − rEP)
(50)

We can use rES − rEP ≈ rLS because a more precise treatment would introduce higher order
corrections. Thus, we have:

∆t̃ =
rESrEPα2

2rLS
= (1 + zL)

dA(ES)dA(EL)α2

2dA(LS)
(51)

where we have used (36).
As in the previous case, we are not interested in the delay given by (51) since it is not observable,

but in the delay between two photons running along different geometric paths, so we obtain:

∆tG = ∆t̃2 − ∆t̃1 = (1 + zL)
dA(ES)dA(EL)

2dA(LS)
(α2

2 − α2
1) (52)

Adding (40) to (52) we obtain the total delay ∆t:

∆t = ∆tS + ∆tG = (1 + zL)
dA(ES)dA(EL)

dA(LS)

[
(α2

2 − α2
1)

2
−
(

ψ(~θ2)− ψ(~θ1)
)]

(53)

which is the same formula that can be found in [19]; however we want an expression which involves
H0. If we use (36) we obtain:

∆t =
rESrEL

rLS

[
(α2

2 − α2
1)

2
−
(

ψ(~θ2)− ψ(~θ1)
)]

=

=
rESrEL

rES − rEL

[
(α2

2 − α2
1)

2
−
(

ψ(~θ2)− ψ(~θ1)
)] (54)

We will use the following relation, which can be derived using the lightlike interval and the first
Friedmann equation; a complete derivation can be found in [8],

rES =
1

H0

∫ zS

0

dz′

E(z′)
≡ R(zS)

H0
(55)

where

E(z) =

[
∑

i
Ωi0(1 + z)ni

]1/2

(56)

Notice thatR(z) is written in terms of the cosmological parameters Ωi0. If we use (55), then (54) becomes:

∆t =
1

H0

R(zS)R(zL)

R(zS)−R(zL)

[
(α2

2 − α2
1)

2
−
(

ψ(~θ2)− ψ(~θ1)
)]

(57)
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3. An Easy Extension

Studying delay we have obtained two different contributions: the Shapiro time delay, given by
Equation (40), and the geometric time delay, given by (52). When we calculated ∆tG we made
an approximation expanding (48) because we neglected contributes of order O(α3). When we
calculated ∆tS we perturbed Minkowski rather than RW metric, so we had to add manually the
redshift in order to account for the expansion of the universe. In the next subsections we will show a
more precise result for ∆tG and a more rigorous calculation for the Shapiro time delay ∆tS.

3.1. The Extension of ∆tG

Let us consider Equation (48):

σSP =
√

r2
ES + r2

EP − 2rESrEP cos α (58)

expand the RHS we obtain:

σSP = rES − rEP +
rESrEP

2(rES − rEP)

+∞

∑
k=1

ckα2k (59)

where the first coefficients are reported in Appendix A.2. If we repeat the analysis of Section 2.3
using (59) instead of (49) we obtain:

∆t =
rESrEP

2(rES − rEP)

+∞

∑
k=1

ckα2k (60)

rES and rEP are not observable, but we can use (55) we have:

∆t =
R(zS)R(zP)

2H0(R(zS)−R(zP))

+∞

∑
k=1

ckα2k (61)

Thus, the geometric time delay is

∆tG =
R(zS)

2H0

+∞

∑
k=1

ck

( R(zP2)

(R(zS)−R(zP2))
α2k

2 −
R(zP1)

(R(zS)−R(zP1))
α2k

1

)
(62)

The distance between P1 and L and between P2 and L are small compared to cosmological scales,
thus we can make the following approximation:

zP2 ' zP1 ' zL (63)

obtaining a generalization for the geometric time delay (52):

∆tG =
R(zS)R(zL)

2H0(R(zS)−R(zL))

+∞

∑
k=1

ck

(
α2k

2 − α2k
1

)
(64)

Using (64) instead of (52) we obtain the following expression for the total time delay:

∆t =
1

H0

R(zS)R(zL)

R(zS)−R(zL)

+∞

∑
k=1

ck

(
α2k

2 − α2k
1

)
2

−
(

ψ(~θ2)− ψ(~θ1)
) (65)

It is easy to check that (65) includes (53), which trivially coincides with the first term of
the expansion.
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Evaluating numerically the second coefficient of the expansion in (65), in the case of the quasar
Q0957+561, it has been obtained that c2 is of the order of the unity, which is good for the convergence
of the series, while α is of the order of the arcsecond, i.e., 10−5 rad, which is a typical value for quasars.
Indeed, the second order contribution is smaller than the first one by a factor of 1010; using the lenses
in the CASTLES catalogue [20] it is not possible to detect this contribution. This shows that, in order to
solve the tension about H0, we must follow another way.

3.2. The Shapiro Time Delay in RW Metric

In Section 2.2 we obtained the value of the Shapiro delay ∆tS on Cosmological Scales perturbing
Minkowski spacetime and adding at the result the value of the redshift of the lens. In this section we
want to show a derivation of ∆tS on Cosmological Scales perturbing Minkowski spacetime and adding
at the result the value of the redshift of the lens. In this section we want to show a derivation of ∆tS
considering the flat RW metric (42) and the RW metric perturbed by a massive object.

The perturbed metric can be obtained in a similar manner to (9), following the same steps
(more details can be found in [21]):

ds2 = − (1 + 2Ψ(x)) dt2 + a2(t) (1− 2Ψ(x)) dxidxjδij (66)

with Ψ satisfying:
∇2Ψ(x) = 4πGa2(t)ρ(x) (67)

where ρ is the energy density of the massive object. The energy density of the non-relativistic matter
behaves as [8]:

ρ(x) = ρ0(~x)a(t)−3 (68)

It can be useful to introduce:
Φ(x) ≡ Ψ(x)a(t) (69)

Using (67) and (68) we obtain that:
Φ = Φ(~x) (70)

Plugging (70) in (66) we obtain:

ds2 = −
(

1 +
2Φ(~x)

a(t)

)
dt2 + a2(t)

(
1− 2Φ(~x)

a(t)

)
dxidxjδij (71)

with Φ satisfying the Poisson Equation (10). We perturbed the flat RW metric because it is compatible
with the observations (|Ωc| < 0.1).

Now we will calculate the delay between a photon moving in (71) and one moving in (42)
evaluating the integral along the path γ1, which is the RW deformation of the minkowskian SP1E,
then we will calculate the observable delay. Using the lightlike interval and (42) we have:

∫ tE0

tS

dt
a(t)

=
∫

γ1

dl (72)

Instead, using the lightlike interval and the perturbed flat RW metric (71) we have:

∫ tE

tS

dt
a(t)

=
∫

γ1

√
1− 2Φa−1

1 + 2Φa−1 dl '
∫

γ1

(
1− 2

Φ
a(t)

)
dl (73)

where in the last step we have performed an expansion in Φ/a because in situation of cosmological
interest it has a small value.
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Subtracting (72) from (73) we obtain:

∫ tE

tS

dt
a(t)
−
∫ tE0

tS

dt
a(t)

=
∫

γ1

(
1− 2

Φ
a(t)

)
dl −

∫
γ1

dl (74)

The LHS of (74) gives the delay between the two photons:

∫ tE

tS

dt
a(t)
−
∫ tE0

tS

dt
a(t)

=
∫ tE

tE0

dt
a(t)
≈ ∆t1

a(tE)
= ∆t1 (75)

where we used the observation that time delay is small compared to Hubble time, so we can consider
a(t) constant, and the usual normalization a(tE) = 1. Thus we obtain:

∆t1 = −2
∫

γ1

Φ
a(t)

dl (76)

The potential delay between two photons moving in the perturbed metric is

∆tS = ∆t2 − ∆t1 = −2
∫

γ2

Φ
a(t)

dl + 2
∫

γ1

Φ
a(t)

dl (77)

We are not able of evaluating this integrals analytically; however we can avoid this difficulty.
Let us consider two scalar functions f (x) and g(x) that have the same value on a interval Ω, except for
a interval ∆x0 around a value x0, and a scalar function a(x) that is nearly constant in the interval ∆x0;
then, we can make the following approximation:∫

Ω
a(x) ( f (x)− g(x)) dx ' a(x0)

∫
Ω
( f (x)− g(x)) dx (78)

Let us come back to (77): the Newtonian potential evaluated along two different paths will be
sensibly different only in the neighborhood of the lens; in analogy with the previous example we
can write:

∆tS ' −
2

a(tL)

(∫
γ2

Φdl −
∫

γ1

Φdl
)

(79)

where tL is the time when the photon pass near the lens. Using the expression for the lensing
gravitational potential (37) and the redshift (41), Equation (79) becomes:

∆tS = −(1 + zL)
dA(EL)dA(ES)

dA(LS)

(
ψ(~θ2)− ψ(~θ1)

)
(80)

which is exactly the result of (40); the main advantage of this method is that we obtained the Shapiro
delay ∆tS considering the expansion of the universe ab initio because we have perturbed RW instead
of Minkowski metric. In other words, the scale factor (1 + zL) comes naturally, without need of
introducing it by hand as it has been done in (40).

4. Cosmological Born-Oppenheimer Approximation for Time Delay

In Section 3 we calculated an extension of the geometric delay, showing that it does not solve the
tension about H0. This leads us to develop a different approach: we will not calculate ∆tS and ∆tG
separately, we will calculate directly the total delay in one shot using an alternative approximation for
the geodesics of the photon.

The Idea

Our idea is to divide the space into a region where the gravitational potential originated by the
lens is negligible and another with a non vanishing gravitational potential, in close analogy with the
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Born-Oppenheimer approximation in non-relativistic Quantum Mechanics. It is worth emphasizing
that the potential, in general, does not have to possess any symmetry because in the following we will
not make any assumptions about Φ. We will approximate the photon spatial geodesic with SQPE,
as shown in Figure 2. In particular SQ and PE are straight lines in the region with vanishing potential
and QP is a curve in the region with non vanishing potential. We will calculate the flight time of
the photon moving along the curve SQPE using the unperturbed flat RW metric (71) only along QP,
while elsewhere the perturbing effect of the lens L is taken into account by (42).

Let us start from the photon moving in the unperturbed metric. The proper length between the
Earth E and the Source S is ∫ tE0

tS

dt
a(t)

= σSE (81)

Figure 2. The geometry we will consider.

Let us consider the SQPE path, that we can divide into three parts; using the perturbed metric (71)
we have: ∫ tQ

tS

dt
a(t)

+
∫ tE

tP

dt
a(t)

+
∫ tP

tQ

dt
a(t)

= σSQ + σPE +
∫ P

Q

(
1− 2Φa−1(t)

)
dl (82)

Notice that the path from Q to P is calculated along the curved line and not along the straight
line, as shown in Figure 2.

Let us evaluate the left hand side of (82);∫ tQ

tS

dt
a(t)

+
∫ tE

tP

dt
a(t)

+
∫ tP

tQ

dt
a(t)

=
∫ tE

tS

dt
a(t)

(83)

Instead, for the RHS of (82):

σSQ + σPE +
∫ P

Q

(
1− 2Φa−1(t)

)
dl = σSQ + σPE + σQP −

2
a(tL)

∫ P

Q
Φdl (84)

So, Equation (82) becomes:

∫ tE

tS

dt
a(t)

= σSQ + σPE + σQP −
2

a(tL)

∫ P

Q
Φdl (85)

We want to calculate the time delay between the photon moving in the perturbed RW metric and
the photon moving in the background RW metric; in order to obtain this result let us subtract (81)
from (85): ∫ tE

tE0

dt
a(t)

= σSQ + σPE + σPQ − σSE −
2

a(tL)

∫ P

Q
Φdl (86)
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Let us evaluate the LHS of the (86): the difference between tE and tE0 is small compared to Hubble
time, thus we can consider a(t) constant, and considering the usual normalization a(tE) = 1 we obtain:

∫ tE

tE0

dt
a(t)

= tE − tE0 (87)

We need to evaluate the RHS of (86)

σPE = rPE σES = rES (88)

In order to have an explicit expression of σPQ we can approximate it with an arc:

σPQ = bµ (89)

where the angle µ and the distance b are defined in Figure 2. We can obtain an expression for σSQ using
the geometry in Figure 2

σSQ =
√

r2
EQ + r2

ES − 2rESrEQ cos γ (90)

We can use Equation (59) to calculate σSQ, obtaining:

σSQ = rES − rEQ +
rESrEQ

2(rES − rEQ)

+∞

∑
k=1

ckγ2k (91)

Plugging all together we obtain:

tE − tE0 = rES − rEQ +
rESrEQ

2(rES − rEQ)

+∞

∑
k=1

ckγ2k + rEP + bµ− rES −
2

a(tL)

∫ P

Q
Φdl (92)

The delay between the photon moving in the perturbed metric and the photon moving in the
background metric is

tE − tE0 = −rEQ +
rESrEQ

2(rES − rEQ)

+∞

∑
k=1

ckγ2k + rEp + bµ− 2
a(tL)

∫ P

Q
Φdl (93)

As in the previous cases we should consider the delay between photons running along different
perturbed paths; if we define:

ψ1 [Q1P1] ≡ 2
dA(LS)

dA(EL)dA(ES)

∫
Q1P1

Φdl (94)

and

ψ2 [Q2P2] ≡ 2
dA(LS)

dA(EL)dA(ES)

∫
Q2P2

Φdl (95)

we obtain:

∆t = [b2µ2 − b1µ1]−
[
(rEQ2 − rEP2)− (rEQ1 − rEP1)

]
+

− (1 + zL)
dA(EL)dA(ES)

dA(LS)
(ψ2 − ψ1) +

+

[
rESrEQ2

2(rES − rEQ2)

+∞

∑
k=1

ckγ2k
2 −

rESrEQ1

2(rES − rEQ1)

+∞

∑
k=1

ckγ2k
1

] (96)
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using (36) and (55) we can conclude:

∆t = [b2µ2 − b1µ1] +
1

H0

[
(R(zP2)−R(zQ2))− (R(zP1)−R(zQ1))

]
+

+
1

H0

+∞

∑
k=1

[
R(zS)R(zQ2)

R(zS)−R(zQ2)

(
ckγ2k

2
2
− ψ2

)
−
R(zS)R(zQ1)

R(zS)−R(zQ1)

(
ckγ2k

1
2
− ψ1

)]
.

(97)

The expression for the time delay (97) is more precise then the one obtained in (53). In fact,
in a certain limit, the former reduces to the latter. In order to see this, let us consider the
following approximations: {

b1µ1 ' rEQ1 − rEP1

b2µ2 ' rEQ2 − rEP2

(98)

{
γ1 ' α1

γ2 ' α2
(99)

zQ1 ' zQ2 ' zL (100)

These approximations have a precise meaning: our proposal for the time delay (97) is more
accurate than the previous one (65), which in turn contains the “standard” time delay formula (53)
because we considered a more complicated geometry, but with the previous approximations we can
reduce (97) to (65). In fact, Plugging (98), (99) and (100) in (96) we find:

∆t =
1

H0

R(zS)R(zL)

R(zS)−R(zL)

[
+∞

∑
k=1

(
ckα2k

2
2
− ψ2

)
−

+∞

∑
k=1

(
ckα2k

1
2
− ψ1

)]
(101)

There is only a small difference between (65) and (101): ψ1 and ψ2 have not the same value of
ψ(~θ1) and ψ(~θ2) due to the longer integration path of the latter. However, the difference is negligible
because the integrand decays quickly. Therefore, we can conclude that (97) is an extension of (65).

A remark is in order concerning the points P and Q in Figure 2: the angles in Figure 1 are uniquely
identified unlike the angles in Figure 2. In other words, we could set the position of Q and P in different
ways. Only after the determination of µ and γ we will be able to use (97). Nevertheless, we already
have some constraints: γ must be smaller than θ, while µ must be small. However, the two points
P and Q in Figure 2 can be determined by imposing a smooth connection (for instance a tangency
condition) between the straight lines PE and SQ and the curve QP [22].

5. Conclusions

In this paper we have studied one of the main tests of GR, the Gravitational Lensing: massive
objects can modify the structure of spacetime, with the consequence that photons will not follow
straight paths. This effect has a remarkable consequence: we will detect multiple images of lensed
light-source, which will not be synchronized due to the different paths followed by light. In Section 2 we
have divided this delay in two contributions, the Shapiro, or potential, delay and the geometric delay,
which we calculated following the standard analysis [19], obtaining an approximate expression, (53),
known in the Literature [19]. This formula is important because it is directly related to the value of
the Hubble constant H0, so we can obtain a direct measurement of its value studying the time delay
of lensed images. However, the results of the H0LiCOW collaboration [15] are not compatible with
the measurement obtained by the PLANCK collaboration [10]; this tension is a strong motivation to
improve the expression of time delay (53). In Section 3 we studied two slightly different approaches:
we developed a more rigorous treatment for the Shapiro delay and a more precise value for the
geometric delay, obtaining the time delay formula (65) involving higher orders in the angles α1,2, which
identify the images of the source S. The crucial fact to notice is that it can be traced back to the Taylor
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series of the cosine, hence it goes like even powers of the angles. Now, it has been possible to give
a preliminary estimate of the second order correction of the time delay formula (65), applied to a typical
source like the twin quasar Q0957+561. For this lensing phenomenon, the angular separations are of the
order of one arcsecond, i.e., 10−5 rad. Using the lens parameters, the coefficient c2 in (65) is of the order
of unity. Hence, the second order correction is of the order 10−10 which is far too small to be detected
with the lenses at our disposal. For lenses with bigger angular separation (around 22 arcseconds),
the second order correction reaches 10−8, which is still too little. The important conclusion is that,
at least for the lenses appearing in the CASTLES catalogue [20], the standard formula (57) for the time
delay seems to be acceptable within the actual instrumental capabilities. This even more motivates the
search for an alternative formula for time delay, which goes beyond the simple expansion in powers of
the angles.

In Section 4 we proposed a new approach: in analogy with the first Born-Oppenheimer
approximation for the scattering amplitude in non-relativistic Quantum Mechanics, we considered the
lens as a kind of cosmological scattering target, and consequently we divided the space in two regions:
one where the gravitational potential originated by the lens is negligible, and another one, closer to the
lens, where the gravitational potential is different from zero. This led to consider a more complicated
geometry, which gave us the possibility to calculate the total delay in a single shot. We believe that our
result represent an important improvement, because it allows to avoid the inaccuracies of the standard
analysis. We also checked that the expression we have obtained for the time delay (97) can be reduced
to, hence includes, the known result (53).

In order to test the accuracy of our formula we should apply it in a real situation, obtaining
an estimate of H0; in particular, it would be of great interest the recognition of a situation where the
difference between (53) and (97) is not negligible.
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Appendix A.

Appendix A.1. Christoffel Symbols

The Christoffel coefficients used in Section 2.2 are

Γ0
i0 = Γi

00 = ∂iΦ (A1)

Γi
jk = δjk∂iΦ− δik∂jΦ− δij∂kΦ (A2)

Appendix A.2. Coefficients of the Expansion

The first coefficients appearing in the expansion present in (59) are

c1 = 1 (A3)

c2 = −
(r2

ES + rESrEP + r2
EP)

12(rES − rEP)2 (A4)
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c3 =
r4

ES + 11r3
ESrEP + 21r2

ESr2
EP + 11rESr3

EP + r4
EP

360(rES − rEP)4 (A5)

c4 = −
r6

ES + 57r5
ESrEP + 393r4

ESr2
EP + 673r3

ESr3
EP + 393r2

ESr4
EP + 57rESr5

EP + r6
EP

20160(rES − rEP)6 (A6)
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